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1 Weil Sheaves: Notes by Dan Dore

1.1 Definition and Classification of Weil Sheaves
In the course of Deligne’s proof of the purity theorem, he makes certain monodromy construc-
tions which do not a priori yield legitimate `-adic sheaves. In order to make the proof work, it
therefore becomes necessary to slightly enlarge the category of sheaves considered from `-adic
(constructible) sheaves to Weil sheaves. These satisfy very similar formal properties to ordinary
`-adic sheaves, and the Grothendieck-Lefschetz trace formula remains valid in this context. Then,
using this formalism, it becomes possible to analyze the sheaves that are actually relevant to the
proof, and to demonstrate that they are in fact `-adic sheaves in the ordinary sense.

Now, fix a scheme X0 of finite type1 over a finite field k = Fq and an algebraic closure k2, and
let X = X0 ×k k with π : X → X0 the projection morphism. Let F : α 7→ α1/q be the geometric
Frobenius automorphism of k, which topologically generates Gal(k/k).

Definition 1.1.1. The base change FX := idX0 ×k F acts as an automorphism of X . I will call
this the Galois-theoretic geometric Frobenius automorphism (or G-Frobenius for short) of X to
emphasize that this is the Frobenius morphism coming from Gal(k/k).

There are several other Frobenius morphisms floating around:

Definition 1.1.2. The absolute Frobenius endomorphism of an Fq-scheme Y is the morphism
σY : Y → Y which is the identity on the underlying topological space |Y | and which is the map
α 7→ αq on the structure sheaf.

Definition 1.1.3. The relative Frobenius endomorphism of X is the morphism FrX : σX0 ×k idk.

Note that this is k-linear.3 These endomorphisms are related to each other:

Proposition 1.1.4. σX ◦ FX = FrX

This is because σX = σX0 ×k σSpec k = σX0 ×k F−1.
Let’s recall a few facts about Frobenius maps: details are given in Nicollo’s notes from the

previous lecture.

Proposition 1.1.5. For any constructible Q`-sheaf G0 on X0 with pullback G = π∗G0, there is a
canonical isomorphism Fr∗XG

∼−→ G .

1The finite type hypothesis is not necessary for most of these basic definitions, but certainly we will use it once we
start discussing constructible sheaves, etc.

2The notion of a Weil sheaf depends on the choice of algebraic closure, and so k will be fixed once and for all.
3For this reason, one might reasonably refer to this as a “geometric” Frobenius, which is why I emphasized the

Galois-theoretic nature of the ’G-Frobenius’ FX . I will avoid using the phrase “geometric Frobenius,” which I think
is unduly confusing.
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Since FrX is proper, it induces a pullback map from Hi
c(X,G ) to Hi

c(X,Fr∗XG ). Compos-
ing this with the above canonical isomorphism Fr∗XG

∼−→ G , we obtain an endomorphism Fr∗G :
Hi
c(X,G )→ Hi

c(X,G ).
Due to Proposition 1.1.4 and the fact, proven in Nicollo’s notes, that σX acts on cohomology

by the identity map, we have the following pleasant fact:

Proposition 1.1.6. The action on cohomology Fr∗G : Hi
c(X,G )→ Hi

c(X,G ) agrees with the Galois
action of the automorphism FX .

Let’s recall how FX acts on cohomology. Since it is an automorphism, it induces a pullback
map Hi

c(X,G ) → Hi
c(X,F

∗
XG ). Then, since FX is an automorphism of X over X0 and because

G = π∗G0, there is a canonical isomorphism F∗XG '
(
π ◦ (FX)

)∗
G0 = G . So, as with Fr∗G , we

obtain an endomorphism on Hi
c(X,G ).

Now, consider the following situation. Let G be a constructible Q`-sheaf onX; what additional
information do we need to be able to descend G to a Q`-sheaf on X0? Galois descent theory gives
a complete answer: the correspondence G0 7→ π∗G0 gives an equivalence of categories between
constructible Q`-sheaves on X0 and constructible Q`-sheaves on X with a specified action of
Gal(X/X0) = Gal(k/k) on G . This action takes the form of isomorphisms ϕ∗G ∼−→ G for all
ϕ ∈ Gal(X/X0) which respect the composition in Gal(X/X0).

Now, we have an isomorphism Ẑ
∼−→ Gal(X/X0) which sends 1 to FX , so this Galois action

amounts to an isomorphism F∗XG → G which extends continuously to Ẑ. If we are in a set-
ting where we know that such an isomorphism exists, but we cannot immediately verify that it is
continuous, we are led to the following definition:

Definition 1.1.7. A Weil sheaf 4 G0 on X0 consists of a constructible Q`-sheaf G on X , plus a
specified isomorphism FG0

: F∗XG → G . A lisse Weil sheaf on X0 is a Weil sheaf G0 such that the
corresponding constructible Q`-sheaf G on X is lisse.

Note that every constructible Q`-sheaf G0 is canonically a Weil sheaf, via the canonical iso-
morphism F∗Xπ

∗G0
∼−→ (π ◦ FX)∗G0 = π∗G0. Most notions which make sense for constructible

(resp. lisse) Q`-sheaves on X0 can be extended immediately to the category of Weil sheaves
(resp. lisse Weil sheaves) on X0. Most importantly, we can define the functors Rp f∗,R

p f!, f
∗ for

maps f : X0 → Y0 of Fq-schemes by applying the corresponding functors for the base change
f ×k k : X → Y to G and using functoriality to obtain the structural isomorphism. Of course,
these specialize to functors Hi,Hi

c for the morphism X → Spec k. Using the specified isomor-
phism F∗XG → G , we obtain a Frobenius action F∗G0

on cohomology.
In particular, we can define both sides of the Grothendieck-Lefschetz trace formula:

Theorem 1.1.8 (Grothendieck-Lefschetz trace formula for Weil sheaves). For any Weil sheaf G0

on the finite type separated k = Fq-scheme X0, the following formula holds:

∏
x∈|X0|

det(1− td(x)F∗(G0)x
| (G0)x)

−1 =

2 dimX0∏
i=0

det(1− tF∗G0
| Hi

c(X,G ))(−1)
i

4For ease of notation, the adjective ’constructible’ will be omitted for Weil sheaves; we will never consider anything
which is not constructible.
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In order to deduce this theorem from the trace formula for ordinary Q`-sheaves, we would
like to characterize “how far” a Weil sheaf is from an ordinary sheaf. To do this, it is convenient
to adopt the representation-theoretic (monodromy) perspective to sheaves. Recall the following
correspondences:

Proposition 1.1.9. Assume that X0 is geometrically connected. Then, for a geometric point x
of X0, the functor F 7→ Fx defines an equivalence of categories from the category of lisse Q`-
sheaves to the category of continuous finite-dimensional representations of π1(X0, x) over Q` such
that:

• For a finite extension E of Q`, lisse E-sheaves correspond to representations which are de-
fined over E. Note that every continuous representation of the profinite group π1(X0, x)
into a finite-dimensional Q` vector space is defined over some such finite-dimensional ex-
tension E. This corresponds to the fact that a Q`-sheaf is an E-sheaf for some E, and it
follows essentially from the Baire category theorem applied to the metrizable topological
space GLn(Q`) = ∪EGLn(E), using the fact that there are countably many finite extensions
E of Q`.

• Any lisse E-sheaf can be regarded as a lisse OE-sheaf, and this corresponds to the fact
that any continuous representation of the profinite group π1(X0, x) stabilizes some lattice
Λ : On

E ↪−→ En. (To see this, note that for any lattice Λ0, GL(Λ0) ' GLn(OE) ⊆ GLn(E)
is an open subgroup, so its stabilizer has finite index in the profinite group π1(X0, x). Then
by adding the finitely many translates of Λ0, we get a new lattice Λ which is π1(X0, x)-stable
by construction).

• Choosing a strictly mE-adic representation F = (F•) of a lisse OE-sheaf, the lcc sheaves
Fm correspond to the finite π1(X0, x)-modules Λ/mm

EΛ.

• The rank of a Q` sheaf, i.e. the Q`-dimension of a stalk, corresponds to the dimension of
the corresponding representation.

• A lisse Q`-sheaf is irreducible in the sense of having no proper non-zero sub-objects iff the
corresponding representation is irreducible. A lisse Q`-sheaf is semisimple, i.e. a direct
sum of irreducibles, iff the corresponding representation is. If we regard a Q`-sheaf as a
E-sheaf for some (sufficiently large) E, then the condition of irreducibility means that the
E-representation is absolutely irreducible. In other words, even if an E-sheaf is irreducible
in the category ofE-sheaves (i.e. has no non-trivial proper subsheaves which areE-sheaves),
it may not be irreducible when considered as a Q`-sheaf. Whenever we use the adjectives
“irreducible” or “semisimple”, it always means in this stronger absolute sense.

• A lisse Q`-sheaf F0 on X0 is geometrically irreducible (resp. geometrically semisim-
ple) iff F = (F0)k is irreducible (resp. semisimple). In terms of representations, this
says that Fx is irreducible (resp. semisimple) as a representation of the normal subgroup
π1(X, x) ↪−→ π1(X0, x). Clearly geometric irreducibility (resp. geometric semisimplicity)
implies ordinary irreducibility (resp. semisimplicity).

3



Now, we may rephrase the definition of a Weil sheaf in terms of the Weil group of X0. Recall
that there is an exact sequence of topological groups:

1→ π1(X, x)→ π1(X0, x)→ Gal(k/k)→ 1

Now, Gal(k/k) ' Ẑ with topological generator F. The Weil group of k, W(k/k) is defined to
be the infinite cyclic subgroup generated by F. We consider this as a topological group with the
discrete topology. Then, we define:

Definition 1.1.10. The Weil group ofX0, denoted W(X0, x), is the inverse image of W(k/k) under
the above exact sequence. It is generated by π1(X, x) together with any element σ ∈ π1(X0, x)
which restricts to F in Gal(k/k). We give it a topology by considering it as the fiber product of
W(k/k) with π1(X0, x) over Gal(k/k). This makes π1(X, x) an open and closed subgroup. (Note:
this is not the same as the subspace topology).

We call the map W(X0, x) → W(k/k) ' Z, with the latter isomorphism sending F to 1,
“degree”. We will use σ to denote any degree one element. This should be thought of as “FX”,
although there may not be a canonical lift of FX to an element of π1(X0, x) (without specifying
a chosen rational point). However, any element of π1(X0, x) induces an automorphism of the
ind-étale cover X/X0, and π1(X, x) acts trivially. Thus, the action of π1(X0, x) on X/X0 factors
through the quotient π1(X0, x)→ Gal(k/k). In fact, identifying k = k(x) allows us to realize this
action of Gal(k/k) on X/X0 as σ 7→ idX0 ×σ. In particular, an element of W(X0, x) of degree 1
acts on X by idX0 ×F = FX .

Now, we have:

Proposition 1.1.11. When X0 is geometrically connected, the functor G0 7→ (G0)x defines an
equivalence of categories between the category of lisse Weil sheaves on X0 and the category of
continuous Q`-representations of W(X0, x). The compatibilities in Proposition 1.1.9 continue to
hold, with the fundamental group replaced everywhere by the Weil group.

The data of the `-adic sheaf G on X corresponds by the above dictionary to a continuous Q`-
representation (ρG , V ) of π1(X, x). Then, since W(X0, x) is a semi-direct product of this group
with an infinite cyclic group generated by any degree 1-element σ, a continuous representation of
W(X0, x) on V restricting to ρG is determined entirely by the action of σ on V . Thus, continuous
representations of W(X0, x) on V may be identified with lisse `-adic sheaves on X with stalk V at
x, along with an element ρ(σ) ∈ GL(V ) such that conjugation by ρ(σ) on ρ(π1(X, x)) ⊆ GL(V )
is compatible with conjugation by σ on π1(X, x). But we know that σ acts as FX on X , so a map
ρ(σ) which is compatible with this conjugation amounts to an isomorphism Fr∗XG → G .

Using this proposition, we obtain a criterion for a lisse Weil sheaf to be an ordinary Q`-sheaf:

Proposition 1.1.12. A lisse Weil sheaf G0 on a geometrically connected finite type k-scheme X0

is an ordinary Q`-sheaf if and only if some (equivalently, any) degree-1 element f ∈ W(X0, x)
acts on G0x with eigenvalues which are `-adic units (i.e. units of OE).

Proof. By the previous proposition, the question is whether the Q`-representation (ρ, V ) of W(X0, x)
given by the action of W (X0, x) on Gx extends to a representation of π1(X0, x). Since the repre-
sentation restricted to π1(X, x) is continuous, the image of π1(X, x) is contained in GLn(E0) for
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some finite extension E0 of Q` by Proposition 1.1.9. Then, the image of W(X0, x) is generated by
the images of π1(X, x) and of f , so increasing E0 to include the matrix coefficients of σ = ρ(f)
as well as its eigenvalues, we see that the representation is defined over some finite extension E of
Q`.

If the representation does extend to π1(X0, x), by Proposition 1.1.9, there is a π1(X0, x)-stable
lattice Λ ' On

E , so π1(X0, x) factors through GLn(OE), and the eigenvalues of an element of
GLn(OE) are `-adic units.

To see the converse, note that π1(X0, x) is the profinite completion of W(X0, x), so any mor-
phism from W (X0, x) to a profinite group extends to π1(X0, x). If W(X0, x) stabilizes a lattice Λ,
then as above the map W(X0, x)→ GLn(E) factors through the profinite group GLn(OE). So we
need to show that if the eigenvalues of σ are `-adic units, then there is a stable lattice.

To do this, we use the multiplicative Jordan decomposition theorem for σ to write

σ = (σ)ss · (σ)un

with (σ)ss semisimple and (σ)un unipotent, such that the eigenspaces of (σ)ss are invariant sub-
spaces for (σ)un. By splitting V into the eigenspaces of (σ)ss and constructing a stable lattice in
each subspace, we may assume that (σ)ss acts by multiplication by an `-adic unit on V . Then, any
lattice is stable for (σ)ss. Now, (σ)un = 1 + N , with Nk = 0 for some k > 0, so the powers of
(σ)un are spanned inside Mn(E) by 1, (σ)un, . . . , (σ)kun. Thus, the lattice spanned by the images of
the basis under the first k powers of (σ)un is preserved by (σ)un and therefore also by σ.

Now, we can study the monodromy to obtain a precise parametrization of irreducible lisse Weil
sheaves:

Theorem 1.1.13. Suppose that X0 is normal and geometrically connected. Then, an irreducible
lisse Weil sheaf G0 of rank n is an actual Q`-sheaf if and only if its determinant ∧nG0 is.

Corollary 1.1.14. If X0 is normal and geometrically connected, and G0 is an irreducible lisse Weil
sheaf, then there is some b ∈ Q`

×
and a lisse Q`-sheaf F0 such that

G0 ' F0 ⊗ χb

Here χb is the character W(X0, x) → Q`
×

which is trivial on π1(X, x) and maps some (equiva-
lently, any) degree-1 element to b.

The fact that the theorem implies the corollary is immediate from Proposition 1.1.12; choose
any degree-1 element σ, and then

∧n
(
G0 ⊗ χdet(σ)−1/n

)
= ∧n(G0)⊗ χdet(σ)−1

Then, the right hand side clearly maps σ to a unit, so Proposition 1.1.12 implies that it is a lisse
Q`-sheaf.

This result implies more generally, by an easy induction on rank:
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Corollary 1.1.15. If X0 is normal and geometrically connected, and G0 is a lisse Weil sheaf, there
is a filtration 0 = G (0)

0 ⊆ G (1)
0 ⊆ G (2)

0 ⊆ · · · ⊆ G (k)
0 = G0 such that the quotients G (m)

0 /G (m−1)
0 are

of the form F (m)
0 ⊗ χbm for some lisse Q`-sheaf F (m)

0 and some bm ∈ Q`
×

.

Finally, we can use this to prove the trace formula, since the substitution t 7→ tb fixes twisting
by χb, and both sides of the formula are additive in exact sequences.

Now let’s prove the theorem:

Proof. Let (V, ρ) be the representation of W(X0, x) associated to G0, and let σ be the image of
a degree-1 element. We know that the representation is defined over E for some finite extension
E/Qp. Thus, ρ is an absolutely irreducible representation of W(X0, x) over E. We will assume
that E is sufficiently large so that the characteristic polynomial of σ splits into linear factors. By
Proposition 1.1.12, it suffices to show that the eigenvalues of σ are units in OE . We already know
that the eigenvalues of ρ(g) are units for g ∈ π1(X, x), and the hypothesis on ∧nG0 implies that
det(σ) is a unit in OE . Furthermore, it clearly suffices to show that the eigenvalues of σm for some
power m are units.

In order to study this representation, we will use the following notion:

Definition 1.1.16. For a lisse Weil sheaf G0 of rank n, the geometric monodromy group Gg(G0)
is the Zariski closure of the image of π1(X, x) under the associated representation W(X0, x) →
GLn(Q`). The arithmetic monodromy group G(G0) is the semi-direct product of Gg(G0) with the
cyclic group generated by σ. Its Q`-points coincide with the subgroup of GLn(Q`) generated by
Gg(G0) and σ.

In a later lecture, we will prove the following:

Theorem 1.1.17. Suppose that X0 is geometrically connected and normal and that G0 is geomet-
rically semisimple. Then:

• Gg(G0) is a semisimple algebraic group defined over E.

• For some m, σm = g · z for some g ∈ Gg(G0)(Q`) and some z in the center of G(G0)(Q`).

Furthermore, if G0 is an arbitrary lisse Weil sheaf (not supposed to be geometrically semisimple), it
has geometrically semisimple irreducible constituents. In particular, a semisimple lisse Weil sheaf
is geometrically semisimple.

Remark 1.1.18. Let G0 be irreducible but not necessarily geometrically irreducible. Then it
is at least geometrically semisimple, so the Theorem applies. This means that there is g ∈
Gg(G0)(Q`) = ρ(π1(X, x)) and somem ≥ 0 such that σ′ := g−1σm is in the center of ρ(W(X0, x)).
Now, σ′ and π1(X, x) generate ρ(W (X ′0, x)), with X ′0 = X0 ×k k′ and k′/k the degree m exten-
sion. Now, let F0 be an irreducible component of the geometrically semisimple Weil sheaf F×kk′
on X0 ×k k′. Since σ′ is in the center of ρ(W(X0, x)), by Schur’s lemma it acts by a scalar on
(F0)x. Thus, any π1(X, x)-invariant subspace of (F0)x is automatically σ′-invariant as well, so it
is ρ(W(X0 ×k k′, x))-invariant. Thus, F0 is geometrically irreducible.
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Now, assume for the moment that (V, ρ) is irreducible as a representation of π1(X, x), i.e. that
G0 is geometrically irreducible. The above theorem then implies that there is a power m such
that σm = g · z with g ∈ Gg(G0) and z in the center of G(G0). Since Gg(G0) is a semisimple
algebraic group, any algebraic character from Gg(G0) to Gm must have finite image. This is
because connected semisimple groups have no non-trivial algebraic characters (i.e. because they
are equal to their own derived subgroups, which is the commutator on the level of points over
some algebraically closed field). Thus, an algebraic character on the finite-type Q`-group scheme
Gg(G0) factors through its finite component group. In particular, the determinant of g has finite
order, so by passing to a further power m if necessary we may assume that the determinant of
g is 1, so det(σm) = det(z) is an `-adic unit. Now, by irreducibility, z must be a scalar (using
Schur’s lemma). Thus, we are left with the task of showing that for g ∈ Gg(G0) with det g = 1,
the eigenvalues of g are units.

Now, note that ρ(π1(X, x)) ⊆ End(V ) is a compact subset. This generates a OE-submodule
A of End(V ), and because ρ is an absolutely irreducible π1(X, x)-representation, this must be a
full-rank lattice in the n2-dimensional E-vector space End(V ). This follows from the Jacobson
density theorem; see Corollary XVII.3.4 in Lang’s Algebra. Now, note that g = σmz−1 normalizes
the image of π1(X, x), because σm does and because z is in the center. Because g normalizes
ρ(π1(X, x)), conjugation by g stabilizes A. This means that the eigenvalues of the adjoint action
of g on End(V ) are units, and these eigenvalues are of the form λi/λ

−1
j , 1 ≤ i, j ≤ n for λi the

eigenvalues of g. Thus, since their product
∏

i λi = det(g) is a unit, each one must be as well.
Now, let’s reduce the general case to the case where G0 is geometrically irreducible. Since it

is irreducible by hypothesis, Remark 1.1.18 applies and thus there is a finite extension k′/k such
that the irreducible constituents of the semisimple Weil sheaf G ′0 := G0 ×k k′ are geometrically
irreducible. Then, we have:

ρ(W(X0, x)) =
m−1⋃
j=0

σjρ(W(X ′0, x))

Let U ⊆ V be an irreducible constituent of V for the action of W(X ′0, x). Since V is irreducible for
W(X0, x), we have V =

∑
j σ

jU , and the isomorphism σj : U → σjU intertwines the action of
σm (i.e. σmσj = σjσm), so σm acts on each space σjU with det(σm|σjU) = det(σm). Since U is
an irreducible constituent of G ′0, it is geometrically irreducible. Thus, the previous case applies to
show that σm acts with `-adic unit eigenvalues on U , and hence on each σjU . Thus, the eigenvalues
of σm, and hence of σ, are `-adic units on V .

1.2 Properties of Q`-sheaves and Weil sheaves
Finally, we will record various formal properties of Weil sheaves, as well as ordinary Q`-sheaves,
which can be proved using the monodromy point of view. These are not automatic, and the hypoth-
esis of normality is crucial for making sure the fundamental group is well-behaved with respect to
open covers. However, the proofs will be omitted.

Proposition 1.2.1. If X is a normal noetherian scheme, lisse Q`-sheaves satisfy étale descent.
This means that for any étale cover tUi → X , there is an equivalence of categories between
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the category of lisse Q`-sheaves on X and the category of lisse Q`-sheaves on Ui equipped with
descent data.

The proof in the crucial special case of a Zariski covering X = U1 ∪ U2 (so the descent data is
just an isomorphism over U1 ∩ U2) uses an étale version of the Seifert-van Kampen theorem. This
says that for i = 1, 2 and any x ∈ U1 ∩ U2, there are surjections π1(U1 ∩ U2, x) → π1(Ui, x) and
π1(Ui, x) → π1(X, x) such that the kernel of π1(U1, x) → π1(X, x) is the image in π1(U1, x) of
the kernel of π1(U1 ∩ U2, x)→ π1(U2, x).

Corollary 1.2.2. On a normal noetherian scheme, the property that a given constructible Q`-
sheaf is lisse may be checked étale-locally. Furthermore, the specialization criterion holds: a
constructible Q` sheaf is lisse iff for every specialization of geometric points s ∈ η, Fs

∼−→ Fη.

Remark 1.2.3. In the case that X is of finite type over a field or a Dedekind base scheme, we can
extend the descent result to constructible Q`-sheaves, even without normality assumptions. The
reasons for this additional hypothesis is that we need it to ensure that constructible sheaves are
preserved under pushforward j∗ (i.e. not just j!) by open immersions j, and also to ensure that all
normalizations are finite.

Next, with more care, some of the statements proved above for lisse Weil sheaves can be
extended to the constructible case:

Proposition 1.2.4. A (constructible) Weil sheaf G0 on X0 comes from an honest constructible
Q` sheaf on X0 iff it is “continuous”, meaning that there is a stratification of X0 such that the
restriction of G0 to each stratum is an honest lisse Q` sheaf.

Note that in order to prove this, we must formulate Proposition 1.1.11 without connectivity
assumptions. One application of these considerations is to verify that pullback (for example, en-
larging the base field k to an extension) behaves as expected. In particular, the pullback of a
constructible Q` sheaf considered as a Weil sheaf agrees with its pullback as a constructible sheaf.
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2 A Semicontinuity Theorem for Weights:
Notes by David Benjamin Lim

2.1 Weights
We fix the following notation. We will denote by k = Fq the finite field with q elements, k an
algebraic closure of k and kn a degree n extension of k (necessarily isomorphic to Fqn). In this
article, we will refer to a finite type scheme X0/k as simply a scheme. Furthermore, we will refer
to a Weil sheaf G0 onX0 as simply a sheaf. By convention, such a sheaf is always constructible, viz
isomorphic in the Artin-Rees category to a strictly constructible sheaf. We will fix an isomorphism
τ : Q` → C. For a closed point x ∈ |X0|, we will denote by d(x) the degree of the field extension
k(x)/k, and N(x) the cardinality of k(x). Recall the following definition of purity:

Definition 2.1.0.1. Let β be a real number.

1. Choose a k-point x ∈ X lying over x ∈ |X0|. The Weil group W (k/k(x)) acts on the stalk
at G0x via the geometric Frobenius Fx : G0x → G0x. We say that G0 is τ -pure of weight β if
for every x ∈ |X0|, and all eigenvalues α ∈ Q` of Fx, we have

|τ(α)| = N(x)β/2.

If G0 is a general Weil sheaf, not necessarily pure, we would still like to have the notion of the
weight of G0. This brings us to the following definition.

Definition 2.1.0.2. For a scheme X0/k and sheaf G0 on X0, we define the maximal weight of G0

(with respect to τ ) as

w(G0) := sup
x∈|X0|

sup
α eigenvalue

log(|τ(α)|2)
logN(x)

.

For reasons of convention, we define the weight of the zero sheaf to be −∞.

2.2 Convergence of the L-function
We show in this section that the weight of a Weil sheaf controls the convergence of its L-function.

Lemma 2.2.0.1. Let X0/k be a scheme. Then we have the estimate

|X0(kn)| = O(qn dimX0)

as n→∞.

Proof. We have |X0(kn)| = |X0red(kn)| and so we can reduce to the case thatX0 is reduced. By the
principle of inclusion-exclusion, we can reduce to the case where X0 is integral. Then by Noether
normalization, there is an open dense subset U0 ⊆ X0 with a finite morphism f : U0 → AdimX0

kn
.

Hence we obtain
|U(kn)| ≤ (deg f)(#kn)dimX0 = (deg f)qn dimX0 .

The result follows by induction on dimension, since dim(X0 \ U0) < dimX0.

9



Lemma 2.2.0.2. Let V be a finite dimensional vector space and F an endomorphism of V , and
d ∈ N a non-negative integer. Then

d

dt
log det(1− tdF |V )−1 =

∑
n≥1

Tr(F n)dtdn−1.

Proof. Recall that Niccolò introduced the formula

det(1− tdF |V )−1 = exp

∑
n≥1

Tr(F n)
tdn

n


in his talk. Taking derivatives, we get

d

dt
det(1− tdF |V )−1 =

∑
n≥1

Tr(F n)(dn)
tdn−1

n

 · exp

∑
n≥1

Tr(F n)
tdn

n


=

∑
n≥1

Tr(F n)dtdn−1

 det(1− tdF |V )−1

and hence the result.

Proposition 2.2.0.1. Let G0 be a sheaf on X0 and β a real number such that w(G0) ≤ β. Then the
L-function

τL(X0,G0, t) =
∏
x∈|X0|

τ det(1− td(x)Fx,G0x)
−1

converges for all |t| < q−β/2−dimX0 and has no zeroes or poles in this region.

Proof. The idea is that we can detect the poles an zeroes of the L-function by looking at its log-
arithmic derivative. This is because the logarithmic derivative of a complex valued function has
poles precisely where the original function has poles or zeroes. We will suppress the isomorphism
τ : Q` → C in the following for brevity.

d

dt
logL(X0,G0, t) =

∑
x∈|X0|

d

dt
log
(

det(1− td(x)Fx|G0x)
−1
)

=
∑
x∈|X0|

∑
n≥1

d(x)(Tr(F n
x ))td(x)n−1

=
∑
n≥1

 ∑
x∈|X0|:d(x)|n

d(x)(Tr(F n/d(x)
x ))

 tn−1.
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We passed from the first to second line using Lemma 2.2.0.2. By assumption on the bound of the
Frobenius eigenvalues, we have

|Tr(F n/d(x)
x )| ≤ rqnβ/2

where
r := max

x∈|X0|
dimQ`

G0x.

Hence

d

dt
logL(X0,G0, t) =

∑
n≥1

 ∑
x∈|X0|:d(x)|n

d(x)(Tr(F n/d(x)
x ))

 tn−1

≤
∑
n≥1

 ∑
x∈|X0|:d(x)|n

d(x) · (rqnβ/2)

 tn−1

=
∑
n≥1

|X0(kn)| · (rqnβ/2)tn−1.

By Lemma 2.2.0.1, we see that the logarithmic derivative converges for all |t| < q−β/2−dimX0 .
Therefore L(X0,G0, t) also converges for |t| < q−β/2−dimX0 .

2.3 Semicontinuity of Weights
The motivating question is the following. Suppose G0 is a sheaf on a scheme X0/k. Given an
open dense j0 : U0 → X0, how does the weight of G0 compare to that of j∗0G0? It turns out that
under certain hypotheses on G0 (made precise below), this is always true. This result will be used
in future arguments involving Noetherian induction on X0. First, we consider the case of curves.

Given a Weil sheaf G0 on a smooth curve X0/k, we recall the following facts concerning
H0
c (X,G ) and H2

c (X,G ).

1. If G0 is lisse, corresponding to some representation V of π1(X, x), then

H0(X,G ) = V π1(X,x).

2. If X0 is geometrically irreducible and U0 ⊆ X0 is an open dense subset, we have

H2
c (X,G ) = H2

c (U,G ).

Indeed, consider the excision sequence

0→ j!j
∗G → G → i∗i

∗G → 0
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associated to the inclusion of spaces

X \ U

U X

i

j

Choose a compactification j′ : X → X and apply j′! to the exact sequence above to get

0→ j′!j!j
∗G → j′!G → j′!i∗i

∗G → 0.

Since the sheaf j′!i∗i
∗G is supported on the finite set of closed points X \ U , it is enough to

prove that
H i(X, j′!i∗i

∗G ) = 0

for i = 1, 2. This follows from the fact that the higher étale cohomology of a separably
closed field is zero.

Lemma 2.3.0.1. Let X0/k be a geometrically irreducible affine curve, j0 : U0 → X0 an open
immersion of an open subscheme and G0 a sheaf on X0 such that the canonical adjunction map
G0 → j0∗j

∗
0G0 is an isomorphism. Assume further that j∗0G0 is lisse. Then

H0
c (X,G ) = 0.

Proof. Let Z ⊆ X be a complete subvariety and define V := X \ Z. Then V 6= ∅ because X is
not complete. We have to show that

H0
Z(X,G ) := ker

(
H0(X,G )→ H0(V,G |V )

)
is zero. Since G0 → j0∗j

∗
0G0 is an isomorphism, we may rewrite this as

H0
Z(X,G ) = ker

(
H0(U,G |U)→ H0(V ∩ U,G |U∩V )

)
.

The intersection U ∩ V is non-empty for X is irreducible. Let η denote the generic point of U .
Since G |U is lisse, for any u ∈ U the specialization map G0u → G0η is an isomorphism. This
implies that any section that vanishes on V ∩ U also vanishes on U , consequently H0

Z(X,G ) = 0
as desired.

Proposition 2.3.0.1 (Semicontinuity of Weights for Curves). Let X0/k be a geometrically irre-
ducible smooth curve. Let j0 : U0 ↪→ X0 be an affine open and G0 a lisse sheaf on U0. We define
S0 := X0 \ U0. Suppose G0 is a sheaf on X0 that satisfies the following conditions:

1. j∗0G0 is lisse.

2. H0
S(X,G ) = 0.
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Then
w(j∗0G0) ≤ β =⇒ w(G0) ≤ β.

The idea here is the following. We first reduce to the case whereH0
c (X,G ) = 0 by the previous

lemma. Therefore by the Grothendieck-Lefschetz trace formula, the only contribution to the poles
of the L-function will come from H2

c (X,G ). This allows us to show that L(X0,G0, t) has no
poles outside of the disk |t| < q−β/2−1. On the other hand, by assumption the L-function on U0

converges and has no zeroes in the same region. So writing

L(X0) = L(U0)L(S0),

and noticing that L(S0) has only finitely many factors, we deduce immediately bounds on the
frobenius eigenvalues of G0s for every s ∈ |S0|. The result follows by a trick of Deligne of
considering higher tensor powers of G0.

Proof. By removing a point fromU0, we may assume thatX0 is affine. The assumptionH0
S(X,G ) =

0 implies G0 ↪→ j0∗j
∗
0G0. In this case

w(G0) ≤ w(j0∗j
∗
0G0)

and so we can reduce to the case where G0 → j0∗j
∗
0G0 is an isomorphism. Then by Lemma 2.3.0.1

and the Grothendieck-Lefschetz trace formula, we have

L(X0,G0, t) =
det(1− Ft|H1

c (X,G ))

det(1− Ft|H2
c (X,G ))

.

Define F0 := j∗0G0. For u ∈ |U0|, this corresponds to a representation V of π1(U, u). Then

H2
c (X,G ) = H2

c (U,F )

= H0(U, F̌ (1))∨ (Poincaré duality)
= H0(U, F̌ ⊗Q`(1))∨

= H0(U, F̌ )∨ ⊗Q`(−1) (Künneth formula)
= (V π1(U,u))∨(−1)

= (Vπ1(U,u))(−1).

It follows that the poles of L(X0,G0, t) are of the form 1/αq where α is an eigenvalue of Fu on
Vπ1(U,u) (recall geometric Frobenius acts by q−1 on Q`(1)). Now from the definition of coinvari-
ance, αd(u) lifts to an eigenvalue on V . Therefore by the assumption w(F0) ≤ β, we have that
|τ(αd(u))| ≤ qd(u)β/2, i.e. ∣∣∣∣∣τ

(
1

αq

)∣∣∣∣∣ > q−β/2−1

and so L(X0,G0, t) converges for |t| < q−β/2−1.

On the other hand, we may write

L(X0,G0, t) = L(U0, j
∗
0G0, t)

∏
s0∈|S0|

det(1− Fstd(s),G0s)
−1.
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The asumption w(j∗0G ) ≤ β implies that the factor L(U0, j
∗
0G , t) converges and has no zeroes for

|t| < q−β/2−1. Therefore since |S0| is finite it follows that none of the factors

det(1− Fstd(s),G0s)
−1

has poles for |t| < q−β/2−1, which implies the estimate

|τ(α̃)| ≤ q−β/2−1

for α̃ an eigenvalue of Fs : G0s → G0,s. Finally, by considering the sheaves j0∗F⊗k we get the
estimate |τ(α̃)| ≤ q−β/2−1/k. Since this is true for every k, we are done.

Corollary 2.3.0.1 (Semicontinuity of Weights for general X0). Let G0 be a lisse sheaf on a ge-
ometrically irreducible scheme X0/k and let j0 : U0 → X0 be the inclusion of an open dense
subscheme of X0. Then

w(G0) = w(j∗0G0).

Proof. By taking the normalization of X0red we can reduce to the case where X0 is a normal
geometrically integral scheme. If dimX0 = 1 we are done by the semicontinuity theorem for
curves above. If dimX0 > 1, we may connect any point of X0 \ U0 to a point of U0 by a curve,
and conclude again using the semicontinuity theorem for curves above. The assumption that G0 is
lisse on X0 is used to say that H0

X\U(X,G ) = 0 in order to apply the previous lemma.
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