
Math 396. Vector fields and local coordinates

1. Motivation

Let M be a smooth manifold and let ~v1, . . . , ~vn be pointwise linearly independent smooth vector
fields on an open subset U ⊆ M (n ≥ 1). One simple example of such vector fields is ∂x1 , . . . , ∂xn
on a coordinate domain for local smooth coordinates {x1, . . . , xN} on an open set U in M . Can all
examples be described in this way (locally) for suitable smooth coordinates?

Choose a point m0 ∈ U . It is very natural (e.g., to simplify local calculations) to ask if there
exists a local C∞ coordinate system {x1, . . . , xN} on an open subset U0 ⊆ U around m0 such that
~vi|U0 = ∂xi in VecM (U0) = (TM)(U0) for 1 ≤ i ≤ n. The crux of the matter is to have such an
identity across an entire open neighborhood of m0. If we only work in the tangent space at the
point m0, which is to say we inquire about the identity ~vi(m0) = ∂xi |m0 in Tm0(U0) = Tm0(M) for
1 ≤ i ≤ n, then the answer is trivial (and not particularly useful): we choose local C∞ coordinates
{y1, . . . , yN} near m0 and write ~vi(m0) =

∑
cij∂yj |m0 , so the N × n matrix (cij) has independent

columns. We extend this to an invertible N ×N matrix, and then make a constant linear change
of coordinates on the yj ’s via the inverse matrix to get to the case cij = δij . Of course, such new
coordinates are only adapted to the situation at m0. If we try to do the same construction by
considering the matrix of functions (hij) with ~vi =

∑
hij∂yj near m0, the change of coordinates

will now typically be non-constant and so in this new cooordinate system the coefficient functions
for our vector fields will involve partials of the hij ’s (which were 0 in the constant case), thereby
leading to a big mess.

There is a very good reason why the problem over an open set (as opposed to at a single point)
is complicated: usually no such coordinates exist! Indeed, if n ≥ 2 then the question generally has
a negative answer because there is an obstruction that is often non-trivial: since the commutator
vector field [∂xi , ∂xj ] vanishes for any i, j, if such coordinates are to exist around m0 then the
commutator vector fields [~vi, ~vj ] must vanish near m0. (Note that the concept of commutator of
vector fields is meaningless when working on a single tangent space; it only has meaning when
working with vector fields over open sets. This is why we had no difficulties when working at a
single point m0.)

For n ≥ 2, the necessary condition of vanishing of commutators for pointwise independent vector
fields usually fails. For example, on an open set U ⊆ R3 consider a pair of smooth vector fields

~v = ∂x + f∂z, ~w = ∂y + g∂z

for smooth functions f and g on U . These are visibly pointwise independent vector fields, but

[~v, ~w] = (∂xg − ∂yf)∂z,

and so a necessary condition to have ~v = ∂x1 and ~w = ∂x2 for local C∞ coordinates {x1, x2, x3}
near m0 ∈ U is ∂xg = ∂yf near m0. We shall see later (as part of the proof of the Frobenius
Integrability Theorem) that such vanishing conditions on commutators are in fact necessary and
sufficient for an affirmative answer to our question. The proof requires as input a special case in
which the commutator condition is vacuous: n = 1. Indeed, since [~v,~v] = 0 for any smooth vector
field, in the case n = 1 we see no obvious reason why our question cannot always have an affirmative
answer. The aim of this handout is to show how to use the theory of vector flow along integral
curves to prove such a result.

In the case n = 1, pointwise-independence for the singleton {~v1} amounts to pointwise non-
vanishing. Hence, we may restate the goal we have: if ~v is a smooth vector field on an open set
U ⊆M and ~v(m0) 6= 0 for some m0 ∈ U (so ~v(m) 6= 0 for m near m0, by continuity of ~v : U → TM),
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then there exists a local C∞ coordinate system {x1, . . . , xN} near m0 in U such that ~v = ∂x1 near
m0.
Example 1.1. Consider the circular vector field ~v = −y∂x + x∂y on M = R2 with constant speed
r ≥ 0 on the circle of radius r centered at the origin. This vector field vanishes at the origin, but
for m0 6= (0, 0) we have ~v(m0) 6= 0. Let U0 = R2 − L for a closed half-line L emanating from the
origin and not passing through m0. For a suitable θ0, trigonometry provides a C∞ parameterization
(0,∞) × (θ0, θ0 + 2π) ' U0 given by (r, θ) 7→ (r cos θ, r sin θ), and ∂θ = ~v|U0 . Thus, in this special
case we get lucky: we already “know” the right coordinate system to solve the problem. But what
if we didn’t already know trigonometry? How would we have been able to figure out the answer in
this simple special case?
Example 1.2. In order to appreciate the non-trivial nature of the general assertion we are trying
to prove, let us try to prove it in general “by hand” (i.e., using just basic definitions, and no
substantial theoretical input such as the theory of vector flow along integral curves). We shrink U
around m0 so that there exist local C∞ coordinates {y1, . . . , yN} on U . Hence, ~v =

∑
hj∂yj , and

since ~v(m0) =
∑
hj(m0)∂yj |m0 is nonzero, we have hj(m0) 6= 0 for some j. By relabelling, we may

assume h1(m0) 6= 0. By shrinking U around m0, we may assume h1 is non-vanishing on U (so ~v is
non-vanishing on U). We wish to find a C∞ coordinate system {x1, . . . , xN} near m0 inside of U
such that ~v = ∂x1 near m0.

What conditions are imposed on the xi’s in terms of the yj ’s? For any smooth coordinate system
{xi} near m0, ∂yj =

∑
(∂yjxi)∂xi near m0, so near m0 we have

~v =
∑
j

hj
∑
i

(∂yjxi)∂xi =
∑
i

(
∑
j

hj∂yj (xi))∂xi .

Thus, the necessary and sufficient conditions are two-fold: x1, . . . , xN are smooth functions near
m0 such that det((∂yjxi)(m0)) 6= 0 (this ensures that the xi’s are local smooth coordinates near
m0, by the inverse function theorem) and∑

j

hj∂yj (xi) = δij

for 1 ≤ i ≤ N . This is a system of linear first-order PDE’s in the N unknown functions xi =
xi(y1, . . . , yN ) near m0. We have already seen that the theory of first-order linear ODE’s is quite
substantial, and here were are faced with a PDE problem. Hence, our task now looks to be
considerably less straightforward than it may have seemed to be at the outset.

The apparent complications are an illusion: it is because we have written out the explicit PDE’s
in local coordinates that things look complicated. It will be seen in the proof in the next section
that when we restate our problem in geometric language, the idea for how to solve the problem
essentially drops into our lap without any pain at all. This is reminiscent of a basic principle
we learned in linear algebra: geometric language is very effective at cutting through apparent
difficulties in coordinatized problems.

2. Main result

The fundamental theorem is this:

Theorem 2.1. Let M be a smooth manifold and ~v a smooth vector field on an open set U ⊆ M .
Let m0 ∈ U be a point such that ~v(m0) 6= 0. There exists a local C∞ coordinate system {x1, . . . , xN}
on an open set U0 ⊆ U containing m0 such that ~v|U0 = ∂x1.
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This theorem is proved in the course text as Theorem 7 in Chapter 5. You may like the picture
there, and perhaps you may also prefer the proof there. (It is the same proof as we give, except we
include some more details and geometric explanation.)

Proof. What is the geometric meaning of what we are trying to do? We are trying to find local
coordinates {xi} an open open U0 in U around m0 so that the integral curves for ~v|U0 are exactly
flow along the x1-direction at unit speed. That is, in this coordinate system for any point ξ near
m0 the integral curve for ~v through ξ is coordinatized as cξ(t) = (t+ x1(ξ), x2(ξ), . . . , xN (ξ)) for t
near 0. This suggests that we try to find a local coordinate system around m0 such that the first
coordinate is “time of vector flow”. Recall from our study of openness of the domain of definition
for vector flow along integral curves in manifolds that for a sufficiently small open U0 ⊆ U around
m0 there exists ε > 0 such that for all ξ ∈ U0 the maximal interval of definition for the integral
curve cξ contains (−ε, ε). More specifically, we proved that the vector-flow mapping

X~v : D(~v)→M

defined by (t, ξ) 7→ cξ(t) has open domain of definition in R×M and is a smooth mapping. Thus,
for small ε > 0 and small U0 ⊆ U around m0, we have that (−ε, ε) × U0 is contained in D(~v)
(as {0} ×M ⊆ D(~v)). The mapping X~v, restricted to (−ε, ε) × U0, will be the key to creating a
coordinate system on M near m0 such that the time-of-flow parameter t is the first coordinate.

Here is the construction. We first choose an arbitrary smooth coordinate system φ : W → RN

on an open around m0 that “solves the problem at m0”. That is, if {y1, . . . , yN} are the component
functions of φ, then ∂y1 |m0 = ~v(m0). This is the trivial pointwise version of the problem that we
considered at the beginning of this handout (and it has an affirmative answer precisely because
the singleton {~v(m0)} in Tm0(M) is an independent set; i.e., ~v(m0) 6= 0). Making a constant
translation (for ease of notation), we may assume yj(m0) = 0 for all j. In general this coordinate
system will fail to “work” at any other points, and we use vector flow to fix it. Consider points on
the slice W ∩ {y1 = 0} in M near m0. In terms of y-coordinates, these are points (0, a2, . . . , aN )
with small |aj |’s. By openness of the domain of flow D(~v) ⊆ R×M , there exists ε > 0 such that,
after perhaps shrinking W around m0, (−ε, ε)×W ⊆ D(~v).

By the definition of the yi’s in terms of φ, φ(W ∩ {y1 = 0}) is an open subset in {0} ×RN−1 =
RN−1, and φ restricts to a C∞ isomorphism from the smooth hypersurface W ∩ {y1 = 0} onto
φ(W ∩ {y1 = 0}). Consider the vector-flow mapping

Ψ : (−ε, ε)× φ(W ∩ {y1 = 0})→M

defined by
(t, a2, . . . , aN ) 7→ X~v(t, φ−1(0, a2, . . . , aN )) = cφ−1(0,a2,...,aN )(t).

By the theory of vector flow, this is a smooth mapping. (This is the family of solutions to a first-order
initial-value problem with varying initial parameters a2, . . . , aN near 0. Thus, the smoothness of the
map is an instance of smooth dependence on varying initial conditions for solutions to first-order
ODE’s.) Geometrically, we are trying to parameterize M near m0 by starting on the hypersurface
H = {y1 = 0} in W (with coordinates given by the restrictions y′2, . . . , y

′
N of y2, . . . , yN to H) and

flowing away from H along the vector field ~v; the time t of flow provides the first parameter in our
attempted parameterization of M near m0.

Note that Ψ(0, 0, . . . , 0) = cm0(0) = m0. Is Ψ a parameterization of M near m0? That is, is Ψ a
local C∞ isomorphism near the origin? If so, then its local inverse nearm0 provides a C∞ coordinate
system {x1, . . . , xN} with x1 = t measuring time of flow along integral curves for ~v with their
canonical parameterization (as integral curves). Thus, it is “geometrically obvious” that in such a
coordinate system we will have ~v = ∂x1 (but we will also derive this by direct calculation below).
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To check the local isomorphism property for Ψ near the origin, we use the inverse function theorem:
we have to check dΨ(0, . . . , 0) is invertible. In terms of the local C∞ coordinates {t, y′2, . . . , y′N}
near the origin on the source of Ψ and {y1, . . . , yN} near m0 = Ψ(0, . . . , 0) on the target of Ψ, the
N ×N Jacobian matrix for dΨ(0, . . . , 0) has lower (N − 1) × (N − 1) block given by the identity
matrix (i.e., (∂y′jyi)(0, . . . , 0) = δij) because ∂y′jyi = δij at points on W ∩ {y1 = 0} (check! It is not
true at most other points of W ).

What is the left column of the Jacobian matrixat (0, . . . , 0)? Rather generally, if ξ is the point
with y-coordinates (t0, a2, . . . , aN ) then the t-partials (∂tyi)(t0, a2, . . . , aN ) are the coefficients of
the velocity vector c′ξ(t0) to the integral curve cξ of ~v at time t0, and such a velocity vector
is equal to ~v(cξ(t0)) by the definition of the concept of integral curve. Hence, setting t0 = 0,
c′ξ(0) = ~v(cξ(0)) = ~v(ξ), so taking ξ = m0 = Ψ(0, . . . , 0) gives that (∂tyi)(0, . . . , 0) is the coefficient
of ∂yi |m0 in ~v(m0). Aha, but recall that we chose {y1, . . . , yN} at the outset so that ~v(m0) = ∂y1 |m0 .
Hence, the left column of the Jacobian matrix at the origin has (1, 1) entry 1 and all other entries
equal to 0. Since the lower right (N −1)× (N −1) block of the Jacobian matrix is the identity, this
finishes the verification of invertibility of dΨ(0, . . . , 0), so Ψ gives a local C∞ isomorphism between
opens around (0, . . . , 0) and m0.

Let {x1, . . . , xN} be the C∞ coordinate system near m0 on M given by the local inverse to
Ψ. We claim that ~v = ∂x1 near m0. By definition of the x-coordinate system, (a1, . . . , an) is
the tuple of x-coordinates of the point X~v(a1, φ

−1(0, a2, . . . , an)) ∈ M . Thus, ∂x1 is the field
of velocity vectors along the parameteric curves X~v(t, φ−1(0, a2, . . . , an)) = cφ−1(0,a2,...,an)(t) that
are the integral curves for the smooth vector field ~v with initial positions (time 0) at points
φ−1(0, a2, . . . , an) ∈ W ∩ {y1 = 0} near m0. Thus, the velocity vectors along these parametric
curves are exactly the vectors from the smooth vector field ~v! This shows that the smooth vector
fields ∂x1 and ~v coincide near m0. �


