
THE BEHAVIOR OF RANDOM REDUCED BASES

SEUNGKI KIM AND AKSHAY VENKATESH

ABSTRACT. We prove that the number of Siegel-reduced bases for a randomly
chosen n-dimensional lattice becomes, for n→∞, tightly concentrated around
its mean. We also show that most reduced bases behave as in the worst-case
analysis of lattice reduction. Comparing with experiment, these results suggest
that most reduced bases will, in fact, “very rarely” occur as an output of lattice
reduction. The concentration result is based on an analysis of the spectral the-
ory of Eisenstein series and uses (probably in a removable way) the Riemann
hypothesis.

1. INTRODUCTION

For us, a lattice L ⊂ Rn is the set Z.B of all linear combinations of a basis
B = {x1, . . . ,xn} for Rn; we say, then, that B is a basis for L. The volume vol(L)
of the lattice L is the determinant of the matrix with rows xi. In what follows, we
assume vol(L) = 1.

Define x∗i to be the projection of xi to the orthogonal complement of 〈xi+1, . . . ,xn〉.
We say that the basis B = (x1, . . . ,xn) is Siegel-reduced with parameter T if the
following conditions hold:

• ‖x∗i ‖ ≥ T−1‖x∗i+1‖, and
• If we write xi = x∗i +

∑
j>i njix

∗
j , then all |nji| ≤ 1

2 .

Since we suppose vol(L) = 1, we obtain1

(1.1) ‖xn‖ ≤ T
n−1

2 .

The LLL algorithm produces (in polynomial time) 2 Siegel-reduced bases with
parameter T for any lattice L and any T > T0 := 2/

√
3. In particular, it produces

a “relatively short” vector xn, which is guaranteed to satisfy (1.1).
In practice, the situation is even better: Nguyen and Stehlé [10] have investigated

in detail the experimental behavior of the LLL algorithm and observed that it “typ-
ically” produces a basis with ‖xn‖ ≈ (1.02)n. By comparison,

√
T0 ≈ 1.075 . . . ;

1Our indexing of the basis corresponds to the standard numbering of roots for SLn, and is unfor-
tunately opposite to that usually used in analysis of LLL.

2 In fact, they satisfy a slightly stronger reduction condition. We ignore the difference for the
purpose of this introduction. Our expectation is that very similar theorems hold in both cases, but we
don’t know how to prove our main result for the LLL reduction condition.
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said differently, the typical quality of an output basis of LLL is very much better
than the worst-case bound (1.1) for reduced bases.

The main point of this paper is to observe that the output of LLL is not just
better than the worst-case bound for reduced bases, but also better than the average
bound for reduced bases. Recall [12] that there is a unique probability measure µn
on the space of covolume 1 lattices which is invariant by linear transformations;
thus there is a notion of random lattice. The following gives a flavor of what’s
proven:

(*) If we first choose a µn-random lattice L, and then choose a
basis B uniformly and randomly from the finite set {B1, . . . ,Br}
of Siegel-reduced bases for L, we have ‖xn‖

T (n−1)/2 > 0.999 with
probability approaching 1 as n→∞.

This result says that typical reduced bases behave just as badly as (1.1). It is
derived from the more precise theorem below. Thus, the good properties of LLL are
not merely a function of the properties of random reduced bases; the LLL algorithm
itself “selects” good bases. This suggests, for example, that there should be a very
large number of “dark” reduced bases which are practically never selected by the
LLL algorithm. It also suggests the importance of the following (not quite well-
defined)

Problem. Determine a reliable heuristic that, given a reduced basis B, predicts
how frequently it occurs as the output of LLL-reduction if we choose “random”
input bases for the lattice Z.B.

These questions have been studied numerically in the PhD thesis [6] of the
second-author; that work gives some evidence for the “dark” reduced basis phe-
nomenon, and suggests that that the likelihood of a reduced basis (xi)1≤i≤n to be
chosen by LLL is inversely related to the “energy”

∏n
i=1 ‖xi ∧ xi+1 · · · ∧ xn‖.

To state the main theorem, we set up some notation. Let T > 1. Let

Sn = {B ∈ (Rn)n : B is Siegel-reduced with parameter T , det(Z.B) = 1}

be the set of Siegel-reduced bases with parameter T for lattices of volume 1; here
Z.B denotes the lattice spanned by B. Let Ln be the set of lattices of determinant
1. The natural map

π : Sn → Ln, π(B) = Z.B
has finite fibers. We equip Ln and Sn with the probability measures invariant by
SLn(R); then

∫
Sn
f =

∫
L∈Ln

∑
π−1L f . Let N(L) be the size of the fiber above

L ∈ Ln, i.e., the number of Siegel-reduced bases for the lattice L ∈ Ln.
Before we proceed, we observe that the above result has a much easier variant.

We can simply choose B at random from the set Sn. In this model of random B the
analogue of (*) is quite straightforward to establish: it is part (iii) of the Theorem
below. However, it seems to us that the model of (*), i.e. first choosing a random
lattice and then choosing a random basis for it, is more natural (for example, in
considering the behavior on LLL on many different bases for the same lattice).
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The difficult part of this paper, then, is verifying that the two models are essentially
equivalent, and this is accomplished by part (ii) of the Theorem below.

Theorem 1.1. As above, let N(L) be the number of Siegel-reduced bases for the
lattice L ∈ Ln, with reduction parameter T . Then:

(i) The µn-expectation of N(L) satisfies limn
logEN(L)

n3 = 1
6 log T .

(ii) (Assuming the Riemann hypothesis):3 The µn-standard deviation of N(L)
is at most exp(−an2) times its mean.

(iii) Fix δ > 0 and let Xδ ⊂ Sn be the subset satisfying ‖xn‖/T (n−1)/2 <
1− δ. Then

measure Xδ

measure Sn
→ 0

as n → ∞. In words: If we choose a basis from Sn at random, the ratio
‖xn‖/T (n−1)/2 is concentrated at 1.

(iv) Corollary to (i) and (ii): in large enough dimension, 99.9% of lattices have
a basis that is Siegel-reduced with parameter 1.0001.

Proof. (i) is proved in §3.5 and (ii) is the main theorem (proved by the end of the
paper). (iii) is proved in §3.6. (iv) is an immediate consequence of (i) and (ii): for
any T > 1 (for example T = 1.0001), the random variable N(L) must be positive
with the exception of a set of relative measure exp(−cn2), for suitable c > 0.

�

While it is not at all surprising that N(L) is concentrated around its mean, the
extent of the concentration is rather surprising. To place the Gaussian exp(−an2)
that appears in (ii) in perspective, let us note the following: if we consider the
set L′ ⊂ Ln of lattices L which possess a vector y of length ‖y‖ ≤ 1, then in
fact µn(L′) ≥ e−C

′n log(n) for suitable C ′. Now lattices in L′ seem very atypical,
because they possess a vector of very short length; one might expect this to strongly
skew the set of Siegel-reduced bases – but the theorem implies that they must
mostly have the correct number of Siegel-reduced bases nonetheless!

We note finally that, in practice, LLL is often replaced by more sophisticated
versions such as BKZ (see [4], for instance). It would be interesting to try to
understand the analogue of our results in that context.

1.1. Proof of the statement (*). Let us see how to derive the quoted statement on
the previous page.

Fix δ > 0. ForB a Siegel-reduced basis, say thatB is “δ-good" if ‖xn‖/T (n−1)/2 <
1 − δ. (The larger the value of δ, the better the basis!) For each lattice L, let
Nδ(L) be the number of δ-good Siegel-reduced bases for L with parameter T . For
α ∈ (0, 1) consider now the exceptional set L! of L for which Nδ(L) > αN(L).
We will show its measure approaches zero. For definiteness, let us show this mea-
sure is less than 1

25 .

3We anticipate that this assumption should not be difficult to remove, but it would require a more
messy contour argument.
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By (iii), for all sufficiently large n, we have∫
Ln
Nδ(L) = measure of Xδ(1.2)

≤ (α/100)

∫
Ln
N(L)(1.3)

For such n, then, we have ∫
L!

N(L) <
1

100

∫
Ln
N(L).

Because of part (ii) of the Theorem, there exists a subset Y ⊂ Ln of measure
≤ exp(−an2) so that N(L) > 0.5

∫
Ln N(L) for L /∈ Y . Therefore,∫

L!\Y
N(L) <

1

100

∫
Ln
N(L) =⇒ meas(L!\Y ) <

1

50

=⇒ meas(L!) <
1

50
+ exp(−an2) <

1

25
,

where the last inequality again holds for large enough n. �

It is quite easy to carry out the analog of (i) and (iii) for LLL-reduction; it
shows, for example, that the mean number Nn of LLL-reduced bases still satisfies
lim logNn

n3 log T
= 1

6 . (For details, see [6].) We conjecture that the other results also
remain valid for LLL reduced-bases.

1.2. About the proof. The function L 7→ N(L) is, in the standard terminology of
automorphic forms, a “pseudo–Eisenstein” series. The theory of Eisenstein series
allows one (at least in principle) to write it as an integral of standard Eisenstein
series, and then evaluate its L2 norm. So one “just” has to write everything out and
bound each term.

For n = 2, this computation amounts to computing the variance in the number
of vectors that a lattice has in a fixed ball. Such a computation was apparently first
done by W. M. Schmidt [11] and rediscovered more recently by Athreya–Margulis
[3]. But most of our complexity comes from the issues of large dimension.

The complication here is there are many types of “standard Eisenstein series”
for SLn; they are indexed roughly by partitions of n. Correspondingly, the ac-
tual formula for the L2-norm is very complicated. It involves many terms of the
following type (cf. (5.4)):

(1.4)
∏
b∈B

ξ(±z +mb)

ξ(z +mb + jb)

for a certain purely imaginary variable z and where mb, jb are half-integers. Also,
ξ is the completed Riemann zeta function, ξ(s) = π−s/2Γ(s/2)ζ(s).

The only real concern is that one might have jb < 0 for many B. In that case,
the Γ-functions in the numerator of (5.4) are evaluated much further to the right
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than the Γ-functions in the denominator, and (5.4) would be “large.” This unfor-
tunate possibility is ruled out by an explicit combinatorial Lemma (Lemma 5.1),
which shows that in fact all the jb ≥ 0 (this is not at all obvious from the general
presentation of the constant term of Eisenstein series, although perhaps it is forced
in some more subtle way by the internal structure of Eisenstein series).

Besides this point, the other issues are minor. One needs plenty of careful book-
keeping to keep track of measures on everything. Another minor issue arises from
the pole of the Riemann ζ-function, which we avoid by shifting to avoid it and
using Cauchy’s integral formula. The use of the Riemann hypothesis arises in this
step; it could likely be avoided with a little more care.

It may be helpful to remember that, throughout the paper, terms of size nn will
be essentially negligible. Thus, for example, the total number of partitions of n is
negligible, compared to other quantities that we have to bound. We need to worry
only about terms that are exponential in n2 and higher.

In conclusion, from the point of view of automorphic forms, our result is in
some sense a straighforward exercise. However, it seems to us that the study of
analysis on SLn(Z)\SLn(R) as “n → ∞” is an interesting direction, and this
paper represents a first step in that direction.
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2. MATHEMATICAL FORMULATION OF THE MAIN THEOREMS

Write G = SLn(R),Γ = SLn(Z). Note that g 7→ Zng defines a homeomor-
phism between Γ\G and Ln; moreover, for fixed g ∈ G, the rule

γ 7→ the rows of γg

defines a bijection between Γ and bases for the lattice Zng.
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Let N,A,K be, as usual, the subgroups of G consisting of upper-triangular
unipotent matrices, diagonal matrices with positive entries, and orthogonal matri-
ces, respectively. LetB = AN be the Borel subgroup of upper triangular matrices.
We write ΓN = N ∩ Γ, etc.

The product map gives a diffeomorphism

(2.1) N ×A×K ∼−→ G

For g ∈ G we denote by H(g) the “A” component, i.e. g = ngH(g)kg with
ng ∈ N,H(g) ∈ A, kg ∈ K. Let αi : A → R+ is the simple root which sends
a = diag(a1, . . . , an) 7→ ai/ai+1. (Note that

∏
ai = 1.)

Let x1, . . . ,xn for the rows of g, and x∗1, . . . ,x
∗
n be the rows of n−1

g g = H(g)kg;
th x∗i are orthogonal, ‖x∗i ‖ = ai, and we have xi = x∗i +

∑
j>i nijx

∗
j . In particular,

x∗i must be the projection of xi onto the orthogonal complement of 〈xi+1, . . . ,xn〉.
We deduce that the basis for Zng given by the rows of g is Siegel-reduced with

parameter T if and only if

αi(H(g)) ≥ T−1, and for i 6= j we have |(ng)ij | ≤ 1/2,

Let f be the function on A given by

(2.2) f(a) =
∏

1αi>1/T

where 1... denotes “characteristic function”.
The pseudo-Eisenstein series induced from f is by definition

(2.3) Ef (g) =
∑

γ∈ΓB\Γ

f(H(γg))

Now g 7→ Zng yields (away from a measure zero set of g) a bijection between
ΓN\Γ and reduced bases of Zng. Since [ΓB : ΓN ] = 2n−1, we see that

Ef (g) =
1

2n−1
N(Zng),

where N(Zng) was as before the number of Siegel-reduced bases with parameter
T inside the lattice Zng. (Note that f implicitly depends on T ).

Let Ef be the average value of Ef over the space of lattices. We will prove the
following (with ξ(s) the completed Riemann zeta function, ξ(s) = π−s/2Γ(s/2)ζ(s)):

(2.4) Ef = T
1
6

(n3−n) · 1

n

n∏
i=2

1

i(n− i)
· ξ(2)−1 . . . ξ(n)−1

(2.5)
‖Ef − Ef‖2
‖Ef‖2

≤ Ae−δn2

for suitable constants A, δ. Note that A will depend on T , but δ does not. Said
differently, the orthogonal projection of Ef to the orthogonal complement of con-
stants accounts for at most Ae−δn

2
of the L2-norm.
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The proof of (2.4) is quite straightforward and is completed in §3.5, but (2.5) is
quite a bit deeper. It uses the full spectral theory of automorphic forms on SLn.

3. SETUP

3.1. Haar measures. Fix Haar measure dn on N such that the covolume of ΓN
is 1. Explicitly we take dn =

∏
i<j dnij . We equip A with the Haar measure

da :=
∏
dαi/αi.

Let 2ρ : A → R+ be the sum of all positive roots of A. We will often use
additive, rather than multiplicative, notation for characters of A; therefore,

(3.1) 2ρ =
∑
i

i(n− i)αi.

By means of NA ' G/K we get a G-invariant measure on G/K:

(3.2) dn · da · a−2ρ.

We pull this measure back to G via G → G/K, normalizing the measure of K to
equal 1.

3.2. The vector subspace
∑
xi = 0. Let Un = {

∑
xi = 0} ⊂ Rn. This

subspace has three natural measures on it;

• The “fibral” measure νf given by disintegrating Lebesgue measure over
the map Rn → R given by (xi) 7→

∑
xi. This is given as a differential

form by |ω|, where ω = ∧n−1
i=1 dxi (or indeed the same product omitting

any one of dx1,∧, . . . , dxn).
• The “Riemannian” measure νR, corresponding to the restriction of the

standard inner product on Rn.
• The “big” measure νb, given by |ω′| with ω′ = ∧n−1

i=1 dxi − dxi+1, i.e.
Lebesgue measure if we identify U ' Rn−1 via (x2−x1, . . . , xn−xn−1).

For example, when n = 2, the measure of the set {x1 + x2 = 0, 0 ≤ x1 ≤ 1} is
1,
√

2, 2 according to the three measures in the order specified above.
These measures are related by

νb =
√
nνR, νf =

1√
n
νR

Identify Un with its own dual via 〈xi, yi〉 =
∑
xiyi. Then (for dx any of the

measures just noted) we can define the Fourier transform of a function f on Un via

f̂(k) =

∫
f(x)e2πi〈x,k〉dx, (y ∈ Un)

and there is a Fourier inversion formula, replacing then dx by the dual measure.
The dual measure to νb is νf , and vice versa; the measure νR is self-dual.
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3.3. Volume. The volume of Γ\G in our normalization is 4

(3.3) vol(Γ\G) = n
n∏
j=2

ζ(j)S−1
j =

n

2n−1
ξ(2) . . . ξ(n)︸ ︷︷ ︸

Qn

,

where ξ is the completed ζ-function and Sj = 2πj/2

Γ(j/2) is the surface area of the
sphere in Rj . We write for short

(3.4) Qn = ξ(2) . . . ξ(n)

3.4. Characters ofA and their parameterization. Let χ be a character ofA, i.e.
a character A→ C∗.

We will usually represent χ in one of two ways:

χ(a) =
n∏
i=1

aνii ,
∑

νi = 0,

or as

χ =

n−1∑
i=1

µiαi, i.e. χ(diag(a1, . . . , an)) =
∏n−1
i=1 (ai/ai+1)µi .

We will often write νij as a shorthand for νi−νj . Also we will often write νi(χ)
or µi(χ) for the parameters µi or νi as above; they are related via

ν1 = µ1, ν2 = µ2 − µ1, . . . , νn−1 = µn−1 − µn−2, νn = −µn−1

and in the reverse direction

µn−1 = −νn = ν1 + . . . νn−1,(3.5)
µn−2 = −νn−1 − νn = ν1 + · · ·+ νn−2, . . .

and so on. Note that

(3.6) dν1 ∧ · · · ∧ dνn−1 = ±dµ1 ∧ · · · ∧ dµn−1.

We will write

(3.7) wt(χ) :=
∑

µi(χ),P(χ) =
∏

µi(χ).

e.g. from (3.1) we have wt(2ρ) =
∑n−1

i=1 i(n− i) = 1
6(n3 − n).

From (2.2) we get, for any character χ =
∏
αµii :

(3.8)
∫
A
fχ−1da =

n−1∏
i=1

∫ ∞
1/T

u−µi
du

u
=

1∏
µi
T
∑
µi =

Twt(χ)

P(χ)

(this computation is the main reason for introducing the notation (3.7)).

4Note if we denote by µT the “Tamagawa” measure, the measure induced by integrally normal-
ized differential form, it is related to our measure µ via µT = 1

n

∏n
j=2 Sj · µ where Sj = 2πj/2

Γ(j/2)
.

Here we used the fact that the measure of SOn is the product S2 . . . Sn.
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3.5. The average number of Siegel reduced bases. From our previous discus-
sion it follows that the average Ef of Ef is given by 1

vol(Γ\G)

∫
Ef . By unfolding,∫

Ef = 21−n ∫ a−2ρf(a):

(3.9)
∫
Ef =

∫
Γ\G

dg

∑
ΓB\Γ

f(H(γg)

 =

∫
ΓB\G

f(H(g))dg

= 21−n
∫

ΓN\G
f(g)dg

(3.2)
= 21−n

∫
f(a)a−2ρda

We conclude from (3.8) and (3.1):

Ef = T
1
6

(n3−n) · 1

n

n−1∏
i=1

1

i(n− i)
· ξ(2)−1 . . . ξ(n)−1.

3.6. The mean length of the first vector of a Siegel-reduced basis. By a similar
computation we can compute the mean value of an: Note

α1α
2
2 . . . α

n−2
n−2α

n−1
n−1 = (a1 . . . an−1)/an−1

n = a−nn .

So we want to compute the mean value of
∏n−1
i=1 α

−i/n
i . We do this just as in §3.5;

the mean value equals:

T
∑
i(n−i)+i/n

T
∑
i(n−i) ·

∏ i(n− i) + i/n

i(n− i)
∼ T

n−1
2 .

where∼ here means that the ratio of both sides approaches 1 as n→∞. Note that
this mean value corresponds exactly to the “worst case behavior” of ‖xn‖ from
(1.1).

In fact log(an) is obtained as the convolution
∑ i

nYi, where each Yi is a vari-
able on [log(T ),∞] with distribution function proportional to e−i(n−i)Y . It easily
follows that in fact log(an) is concentrated around its mean value.

3.7. Levi subgroups and their parameterization. Given n1, . . . , nk such that
n =

∑k
i=1 ni let M be the corresponding Levi subgroup of block diagonal matri-

ces, with Levi subgroup S(
∏k
i=1 GLni) ⊂ SLn; we write

NM = N ∩M,KM = K ∩M.

We also write

N1 = n1, N2 = n1 + n2, N3 = n1 + n2 + n3, . . .

The blocks of the Levi subgroup (thinking of it as block diagonal matrices) are
parameterized by the intervals

(3.10) [1, N1], [N1 + 1, N2], , [N2 + 1, N3], . . .

We call the tuple n1, . . . , nk, or equivalently the standard Levi subgroup M ,
good if n1 ≤ n2 ≤ . . . . Among each associate class of Levi subgroups there is a
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good representative; for this reason, it will be enough for us to consider only good
Levi subgroups.

We have a decomposition

(3.11) M = M0ZM

where M0 ⊂M is the subgroup of elements S(
∏k
i=1 GL±1) with determinant ±1

on each factor; and ZM is the subgroup of matrices that are positive scalar in each
block (so ZM ' Rk−1

>0 ); a typical element of ZM looks like

diag

z1, z1, . . . , z1︸ ︷︷ ︸
n1

, z2, . . . , z2︸ ︷︷ ︸
n2

, . . . , zk


We equip ZM with the Haar measure

∏
dβi/βi, where βi = αNi (considering

ZM ⊂ A). Inside M0 is the torus AM := A∩M0, which we equip with the analog
of the measure da on A, namely the measure∏

j

dαi
αi

where we take the product only over those i not equal to any of N1, N2, . . . . With
these normalizations, the product map ZM ×AM → A preserves measures.

3.8. More on measures. Let PM be the parabolic subgroup geneated by B and
M . Let UPM (or just UM for short) be the unipotent radical of PM ; thus, PM =
UM ·M , and UM ·NM = N , where NM = N ∩M .

We normalize measure on NM so that vol(NM/NM ∩ Γ) = 1. We normalize
measure on UM in exactly the same way.

This induces a normalization of measure on M/KM , via

UM ×M/KM ' G/K
– recall that the measure on G/K came from NA, see (3.2). More explicitly, this
is the measure obtained via

M = NMAKM

by equipping NM with the measure where vol(NM/NM ∩Γ) = 1, and A with the
same measure as before. The factorization (3.11), induces

M/KM 'M0/KM ×AM

3.9. Characters of M . Continue with the notation for M as previous; in particu-
lar, k is the number of blocks. Let a∗M be the space

(ν1, . . . , νk) ∈ Ck :
∑

niνi = 0.

We say that ν is unitary if every νi belongs to iR. We denote the subset of a∗M as
a∗M,0:

a∗M,0 = {(ν1, . . . , νk) ∈ (iR)k :
∑

niνi = 0}.
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Elements ν ∈ a∗M parameterize characters χν of M defined by

(3.12) χν : (g1 ∈ GLn1 , g2 ∈ GLn2 , . . . ) 7→
k∏
i=1

|det gi|νi

these are precisely those characters of M that are trivial on M ∩ K, which is all
that is of interest for us.

On ZM this character is given by

(3.13) χν(z1, z1, . . . , , zk, zk) =
∏

zniνii

Since zk =
∏
i<k z

−ni/nk
i we can rewrite this as

χν(z1, z1, . . . , , zk, zk) =
∏
i<k

z
ni(νi−νk)
i

The measure on ZM is equal to n
nk

dz1
z1
. . .

dzk−1

zk−1
. We may identify a∗M,0 with the

dual group to ZM , and we want to compute the corresponding dual measure.

From
∑
niνi = 0 we deduce that νk =

∑k−1
i=1 −

ni
nk
νi, and so

d(ν1−νk)∧· · ·∧d(νk−1−νk) =

(
1 +

k−1∑
i=1

ni
nk

)
dν1∧· · ·∧dνk−1 =

n

nk
dν1∧· · ·∧dνk−1

We deduce correspondingly that the measure on a∗M,0 that is dual to ZM is given
by (the absolute value of)

(3.14)
nk
n

k−1∏
i=1

nid(νi − νk)
2πi

=
k−1∏
i=1

nidνi
2πi

.

3.10. Volume of quotients for Levi subgroups. We will need to compute the
volume VM of ΓM\M0/KM . It equals the product of the quantity (3.3) over n =
n1, . . . , nk. In particular, if we write

(3.15) QM :=
∏

Qni

then e−An log(n) ≤ VM
QM
≤ eAn log(n) for a suitable constant A.

4. THE PRINCIPAL EISENSTEIN SERIES AND ITS CONSTANT TERM

We will summarize what we need from the theory of Eisenstein series, presented
in “classical” language. A clear summary of the theory of Eisenstein series, but in
adelic language, is given in [2]: the computation of constant terms is Lemma 7,
and the holomorphicity of Eisenstein series on the unitary axis is stated in the
Main Theorem. A reference which uses the language of real groups and is closer
to our presentation here is [7].
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4.1. Borel Eisenstein series. The usual Borel Eisenstein series is indexed by char-
acters χ of A:

EB(χ, g) =
∑

γ∈ΓB\Γ

〈χ+ ρ,H(γg)〉

The constant term of EB – i.e.,
∫

Γ∩N\N EB(ng)dn – depends only on the “A”
component of the NAK decomposition, and is of the form

(4.1) (EB)N =
∑
w∈W

awν+ρ
∏

wα<0,α>0

ξ(sα)

ξ(sα + 1)

where W ' Sn is the Weyl group acting by coordinate permutation on A, α
ranges over coroots, sα = 〈χ, α∨〉 and ξ(s) = π−s/2Γ(s/2)ζ(s) is the completed
ζ-function; more explicitly, in the coordinates χ = (ν1, . . . , νn) introduced in §3.4,
we have

(4.2) (EB)N =
∑
σ∈Sn

aσν+ρ
∏

i<j,σ(i)>σ(j)

ξ(νij)

ξ(νij + 1)

where we wrote νij = νi − νj , and also σν =
(
νσ−1(1), νσ−1(2), . . .

)
or more

evocatively (σν)σ(i) = νi .
In this normalization, the “unitary axis” is given by Re(χ) = 0, i.e. Re(νi) = 0.

The point χ = ρ is the intersection of all lines sα = 1 for all simple roots α, i.e.
the intersection of lines νi−νi+1 = 1. If we take iterated residues ofE along all of
these hyperplanes, the only term that contributes is σ ∈ Sn given by i 7→ n+1− i;
we get

(4.3) residue of E = constant function with value Q−1
n .

4.2. Degenerate Eisenstein series. We will be also interested in the Eisenstein
series induced from one-dimensional representations of a Levi subgroup.

Let M be a standard Levi factor (cf. §3.7) corresponding to the decomposition∑r
i=1 ni = n; we will identify this with the partition of

(4.4) {1, . . . , n} = [1, n1] ∪ [n1 + 1, n1 + n2] ∪ . . . [
r−1∑
i=1

ni + 1, n].

Just to recall our notation, we will refer to the subsets appearing above – [1, n1],
[n1 + 1, n1 + n2] and so forth – as the blocks associated with the Levi M ; and we
put N1 = n1, N2 = n1 + n2, etc.

We will only consider good Levi subgroups with n1 ≤ n2 ≤ . . . . Let P = MB
be the corresponding parabolic and ΓP = Γ ∩ P .

Let ν ∈ a∗M be as in §3.9. We define the degenerate Eisenstein series EM,ν

parameterized by ν, by means of

EM,ν(g) =
∑

γ∈ΓP \Γ

〈χν + ρP , H(γg)〉
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where χν is as in (3.12), ρP is the character of M defined by

ρP : (g1 ∈ GLn1 , g2 ∈ GLn2 , . . . ) 7→
∏
i<j

(
|det gi|nj
|det gj |ni

)1/2

.

4.3. The constant term of the degenerate Eisenstein seriesEM,ν . We now want
to compute the constant term of EM,ν . We do this by interpreting it as a residue of
EB(χ). For this we use “induction in stages,” we can expressEB(χ) as the iterated
Eisenstein series EGPE

M
M∩B(χ).

More precisely:∑
γ∈ΓB\Γ

〈χ+ ρ,H(γg)〉 =
∑

γ2∈ΓP \Γ

∑
γ1∈ΓB\ΓP

〈χ+ ρ,H(γ1γ2g)〉

and we have an identification ΓM∩B\ΓM ' ΓB\ΓP . The function

g 7→
∑

γ2∈ΓB\ΓP

〈χ+ ρ,H(γ1g)〉,

defines a function on ΓPUP \G/K ' ΓM\M/KM , which we call EMM∩B(χ); this
is an Eisenstein series for M . By an analogue of (4.3), the iterated residue of
EMM∩B(χ) along the lines

(4.5) νi − νi+1 = 1, for all i /∈ {N1, N2, . . . }

gives the constant function with value Q−1
M (see (3.15)), and therefore

EM,ν = QMRes EB(υ)

where the residue is still taken along (4.5), and we defined the shifted parameter:
(4.6)

υ =

(
n1 − 1

2
+ ν1,

n1 − 3

2
+ ν1, . . . ,−

n1 − 1

2
+ ν1,

n2 − 1

2
+ ν2, . . . ,−

n2 − 1

2
+ ν2, . . .

)
.

By means of (4.1) we get the following expression for the constant term ofEM,ν :
Define
(4.7)
S[M ] = {σ ∈ Sn : σ is monotone decreasing on each of [1, n1], [n1 + 1, n2] etc.}

Therefore the term
∏
i<j,σ(i)>σ(j)

ξ(νij)
ξ(νij+1) that appears in (4.2) has nonzero iterated

residue along (4.5) precisely when σ ∈ S[M ], because to have nonzero residue
along νi,i+1 = 1 we must contain a term corresponding to (i, j = i + 1), i.e. we
must have σ(i) > σ(i+ 1), i.e. σ must be decreasing on each block [1, n1], [n1 +
1, n2] and so on. Therefore,

(EM,ν)N = QM
∑

σ∈S[M ]

Res(4.5)

∏
i<j,σ(i)>σ(j)

ξ(υij)

ξ(υij + 1)
aσυ+ρ
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=
∑

σ∈S[M ]

∏
i<j,σ(i)>σ(j),i�j

ξ(υij)

ξ(υij + 1)
aσυ+ρ(4.8)

where as before υij = υi − υj and υ is as in (5.2); also i � j means they are
different parts of the partition (4.4) corresponding to M . For the second line, we
used the fact that the contribution of all terms with (i, j) in the same block is
precisely Q−1

M .
In summary, the constant term of the degenerate Eisenstein series EM,ν is given

by (4.8), where υ is given in terms of ν in (5.2); this expression is very similar to
the constant term (4.2) of the full Eisenstein series EB(χ).

Important warning. In general, the terms in this expression can still have poles;
a priori, they determine only a meromorphic function of ν, and (4.8) is valid as an
equality of meromorphic functions of ν. However, these meromorphic functions
are necessarily holomorphic on the line Re(νi) = 0: a basic result of the theory of
Eisenstein series (see e.g. the first sentence of the Main Theorem, [2]) is that the
Eisenstein series induced from a discrete-series representation is holomorphic on
the “critical line,” which in this case corresponds to Re(υij) = 0.

It is more convenient to rewrite this in a way that is indexed by blocks of the
LeviM . Recall the blocks are just the intervals of integers corresponding to blocks
of the Levi, cf. (3.10). We can write:

(4.9) (EM,ν)N =
∑

σ∈S[M ]

∏
A<B

∏
i∈A,j∈B,σ(i)>σ(j)

ξ(υij)

ξ(υij + 1)
aσυ+ρ

Here A < B means that A precedes B in the natural ordering.

4.4. Spectral theory. Let M be a standard Levi subgroup, as above.
LetWM be the group of self-equivalences ofM , that is to say, the set of w ∈W

with the property that w preserves the center of M . For example, if the lengths
of blocks n1, n2, . . . are all pairwise disjoint, then WM consists of those elements
w ∈ Sn which stabilize, setwise, each block [1, n1], [n1 + 1, n1 +n2] and so forth.

Let f be a function on A, and form the pseudo-Eisenstein series Ef as in (2.3).
We have a spectral decomposition

(4.10) Ef =
∑
M

V −1
M

1

|WM |

∫
ν∈a∗M,0

dν〈Ef , EM,ν〉EM,ν

where the sum is taken over good Levi subgroups M (see §3.7), the group WM

is as above, the ν-integral is taken over a∗M,0, and the measure to be taken on the
space of parameters is that dual to the Haar measure on ZM (cf. §3.7 and (3.14)).

Let us explain briefly the origin of (4.10). Indeed, there is a corresponding
expansion for any function ϕ on Γ\G, but it in general involves Eisenstein series
EM,ν(ψ) induced from all automorphic forms ψ onM that lie inL2 modulo center.
We must check that only those ψ that arise from characters of M contribute to this
spectral expansion (and then only those characters trivial onM ∩K give a nonzero
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contribution; these are precisely the characters of (3.12)). In other words, we must
verify that 〈Ef , EM,ν(ψ)〉 vanish unless ψ is a character of M . By unfolding,
this inner product vanishes unless EM,ν(ψ) has nontrivial constant term along N ,
which implies in particular that ψ itself has nontrivial constant term along NM . So
it is enough to verify that, on GLb, any automorphic form of the discrete series,
with nontrivial constant term along the unipotent radical of a Borel subgroup, must
in fact be a character. This is not a triviality; it follows from the computation of
the discrete spectrum of GL by Moeglin and Waldspurger [8]; they show that the
discrete spectrum for GLn arises from a divisor a|n and a cusp form πa on GLa:
one takes a certain residual Eisenstein series ΠE induced from πa � πa · · · � πa.
In particular, if a 6= 1, the constant term along the unipotent radical of a Borel
subgroup involves a constant term for πa, and is zero; in the case a = 1, then ΠE
is one-dimensional.

Note that the inner product 〈Ef , EM,ν〉Γ\G can be computed by unfolding Ef :
it equals

(4.11) 〈Ef , EM,ν〉Γ\G = 21−n〈f, a−2ρ(EM,ν)N 〉A
by the same argument as (3.9); the inner product is computed in L2(A).

4.5. Re-indexing. There is a bijection

divisions J of {1, . . . , n} −→ Levi subgroups M , σ ∈ S[M ]

where by a “division” J what we mean is an ordered collection of disjoint subsets
J1, . . . , Jk ⊂ {1, 2, . . . , n}, where

∐
Ji = {1, . . . , n}.

The bijection is defined thus: associated to J we take that Levi subgroup with
n1 = #J1, n2 = #J2 and so on. Write Jk = {jk,1, . . . , jk,nk} with j1 < · · · <
jnk ; then there is a unique element σJ of S[M ] where we take

σJ : {Nk + 1, . . . , Nk+1} → Jk

but reversing order, that is to say:

σJ (Nk+1 − t) = jk,t+1 0 ≤ t ≤ nk+1 − 1.

Note, for later use, that the number of such J as above is clearly at most
nn (clearly k ≤ n and the division is describeed by a function {1, . . . , n} →
{1, . . . , k}). In particular,

number of possible J × n! ≤ nCn

for suitable C.

4.6. The ρ parameters. Suppose (M,σ ∈ S[M ]) corresponds to J , as above.
We make some computations related to the half-sum of positive roots for M .

Let ρM be the half-sum of positive roots for M , that is to say, 2ρM =
∑
eij

over all roots ei,j where i, j belong to the same block of the partition defined by
M , and also i < j. Define ρJ by the rule

2ρJ = −σ(2ρM )
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Therefore,
2ρJ =

∑
i∼J j,i<j

eij

where now i ∼ j means that they belong to the same part of the partition defined
by J .

Note that if J corresponds to σ ∈ S[M ], and υ is a normalized character corre-
sponding to unitary ν, as in (5.2), then Re(υ) = ρM and thus

(4.12) Re (συ) = −ρJ

We will compute the µi-coordinates of ρJ for later use. Visibly µi(2ρJ ) counts
the number of pairs a ∼ b with a ≤ i and b > i. Therefore,

wt(2ρJ ) =
∑

i∼j,i<j
(j − i)

wt(2ρ− 2ρJ ) =
∑

i�j,i<j
(j − i)

Note that, if J has more than one part, then

(4.13) µi(2ρ− 2ρJ ) ≥ 1 for all i.

Indeed, if µi(ρ− ρJ ) were zero, it means that every a ≤ i and b > i belong to the
same part of J , which forces that J has just one part.

Lemma 4.1. Let #J be the number of parts of J and let z be the size of the
largest part. For all A > 0 and big enough n, we have

(4.14) wt(2ρ− 2ρJ ) ≥ A(n log n ·#J + (n− z)n log(n)) + αn2.

for an absolute constant α (we can take α = 1/64) and for all J with #J > 1.

Note that the clumsy shape of the right-hand side is just chosen to match with
what we will need later.

Proof. We saw that wt(2ρ− 2ρJ ) can be written thus:
1

2

∑
k

∑
a∈Jk

∑
b/∈Jk

|b− a|

where the 1/2 comes from the fact that for each such pair (a, b), either a > b or
b > a.

Fixing k for a moment, write s = n− |Jk|. Note that, for a ∈ Jk, we have∑
b/∈Jk

|a− b| ≥ s2/4

since given a set S ⊂ Z of size s and not containing 0, we have∑
S

|t| ≥

{
(s+ 1)2/4− 1/4

(s+ 1)2/4
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according to whether s is even or odd, with equality attained e.g. in the cases{
S = {−1,−2, . . . ,−s/2} ∪ {1, 2, . . . , s/2}
{−1,−2, . . . ,−(s− 1)/2} ∪ {1, 2, . . . ,−(s+ 1)/2}

Therefore,

wt(2ρ− 2ρJ ) ≥ 1

8

∑
k

|Jk|(n− |Jk|)2

︸ ︷︷ ︸
:=W

.

First of all, all but one part has size ≤ n/2 and for such parts (n − |Jk|)2 ≥
(n2/4). This immediately leads to the bound

(4.15) wt(2ρ− 2ρJ ) ≥ 1

32
n2(#J − 1).

Next, pick any part Jk, with |Jk| = t. For k′ 6= k we have n − |Jk′ | ≥ t, and
summing over all such k′ gives a contribution of ≥ (n − t)t2 to W . The part Jk
itself contributes t(n− t)2 to W ; and therefore

W > (n− t)t2 + t(n− t)2 = t(n− t)n.

If z is the size of the largest part (or more precisely, the size of a fixed part
with maximum size), every other part satisfies n− |Jk| ≥ n− z. Thus each other
part contributes at least (n − z)2|Jk|, and summing over the other parts gives a
contribution of at least (n − z)3 to W . On the other hand, the contribution of the
fixed part with size z itself is z(n− z)2. In total, we get W ≥ n(n− z)2.

Averaging the last two bounds gives: W ≥ 1
2n

2(n− z), that is

(4.16) wt(2ρ− 2ρJ ) ≥ 1

16
n2(n− z),

where z continues to be the size of the largest part.
Adding our (4.15) and (4.16), we get (for #J ≥ 2 and so n− z ≥ 1):

4 · wt ≥ 1

32
n2(#J − 1) +

1

32
n2(n− z) +

1

32
n2(n− z)(4.17)

≥ 1

64
n2 ·#J +

1

32
n2(n− z) +

1

32
n2(4.18)

which certainly implies our desired bound.
�

5. THE COMBINATORICS OF A BLOCK INTERTWINING

Here we examine the contribution of a given pair of blocks of the Levi to the
constant term of a degenerate Eisenstein series.

More specifically, let M be a Levi subgroup. Following our previous notation,
if we write

B = [Nt + 1, Nt+1], C = [Nr + 1, Nr+1].
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for the t + 1st and r + 1st block of the Levi, we examine the contribution of
i ∈ B, j ∈ C to the constant term (4.8), and simplify the resulting expression.
Roughly speaking we show that the ζ-factors that occur in the constant term cancel
in a more or less favorable way, so that the larger values tend to be on the bottom.

Let ν ∈ a∗M,0, as in §3.9. For short, write

(5.1) νB = νt−1, νC = νr−1.

nB = nt, nC = nr,

κB = t+ 1, κC = r + 1.

so these are the ν-values for B and C, and the size of the blocks B and C, and finally
the sequential position of B and C respectively. (The κ-notation will only be used
later; we include it here just for reference.)

We assume t < r, i.e. B precedes C; because of our conventions (see §3.7) we
have nB ≤ nC .

Theorem 5.1. Notations as above, let υ be as in (5.2), so that
(5.2)

υ =

(
n1 − 1

2
+ ν1,

n1 − 3

2
+ ν1, . . . ,−

n1 − 1

2
+ ν1,

n2 − 1

2
+ ν2, . . . ,−

n2 − 1

2
+ ν2, . . .

)
.

Fix σ ∈ S[M ], so that σ : B
∐
C → {1, . . . , n} is monotone decreasing on both

B and C separately. The product

(5.3)
∏

i∈B,j∈C,σ(i)>σ(j)

ξ(υij)

ξ(υij + 1)

(note that for i ∈ B, j ∈ C we always have i < j) can be rewritten as

(5.4)
∏
b∈B

ξ(εbz +mb)

ξ(z +mb + jb)

where z = νB − νC , ε ∈ ±1 and the mb, jb are half-integers. Moreover, 1/2 ≤
mb ≤ n, jb ≥ 0 and the mb + jb are pairwise distinct, and we can suppose εb = 1
whenever mb = 1/2.

The (purely combinatorial) proof comprises the rest of this section. It will be
more convenient to index each block by the real parts of the character, i.e. we
identify

(5.5) ιB : B ∼−→ B :=

{
nB − 1

2
,
nB − 3

2
, . . . ,−nB − 1

2

}
via ιB : i 7→ nB−1

2 − (Nt+1 − i), and similarly

(5.6) ιC : C ∼−→ C :=

{
nC − 1

2
,
nC − 3

2
, . . . ,−nC − 1

2

}
Observe that the bijections (5.5) and (5.6) are order-reversing.
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Finally, set

C∗ = (C + 1/2) ∪ (C − 1/2) =
{nC

2
, . . . ,−nC

2

}
(so that C∗ and C interlace one another).

We may regard σ as a map

B
∐

C ↪→ {1, . . . , n}

(i.e., the map given by σι−1
B on B and σι−1

C on C). Note that ιB, ιC reverse order-
ing; in particular, when considered as above, σ is monotone increasing on B and
C individually. With this convention, we can rewrite (5.3) as

(5.7)
∏

b∈B,c∈C,σ(b)>σ(c)

ξ(z + b− c)
ξ(z + b− c+ 1)

Each b ∈ B specifies a “cut” of C: it separates it into the sets given by σ(c) >
σ(b) and σ(c) < σ(b). This coincides with the “cut” specified by a unique element
of C∗; said differently, there is a unique function f : B → C∗ with the property
that for b ∈ B, b ∈ C we have

σ(b) > σ(c) ⇐⇒ f(b) > c.

Note that the resulting function f is necessarily non-decreasing because σ was
increasing on B. Write [f(b)] = f(b) − 1/2. In other words, [f(b)] is the largest
element of C that is less than f(b), if such an element exists; if there exists no such
element, which happens exactly when f(b) = −nC/2, we have [f(b)] = −nC−1

2 .
Therefore, [f(b)] is valued in C ∪ {−nC+1

2 }.

Now fix b and compute
∏
b∈C,σ(b)>σ(c)

ξ(b−c+z)
ξ(b−c+z+1) :

ξ(b− [f(b)] + z)

ξ(b− [f(b)] + z + 1)
· ξ(b− [f(b)] + z + 1)

ξ(b− [f(b)] + z + 2)
. . .

ξ(b−
(
−nC−1

2

)
+ z)

ξ(b−
(
−nC−1

2

)
+ 1 + z)

=
ξ(b− [f(b)] + z)

ξ(b+ nC+1
2 + z))

(note that this remains valid even in the case when f(b) = −nC/2 and so [f(b)] =
−nC−1

2 : the product on the left-hand side is empty.) Introducing a product over
b ∈ B, we get∏

b∈B,c∈C,σ(b)>σ(c)

ξ(b− c+ z)

ξ(b− c+ z + 1)
=

∏
b∈B ξ(b− [f(b)] + z)

ξ(nB+nC
2 + z) . . . ξ(nC−nB2 + 1 + z)

There are the same number nB of ξ-factors in numerator and denominator. We
rewrite it, using the functional equation ξ(s) = ξ(1− s), as
(5.8)∏

b∈B ξ(
1
2 + |b− [f(b)]− 1/2| ± z)

ξ(nB+nC
2 + z) . . . ξ(nC−nB2 + 1 + z)

=

∏
b∈B ξ(

1
2 + |b− f(b)| ± z)

ξ(nB+nC
2 + z) . . . ξ(nC−nB2 + 1 + z)
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where, writing εb for the sign in front of z in the bth term of the product (just as in
the theorem statement), we have εb = −1 precisely when b < f(b).

Recall nC ≥ nB because B precedes C.
The following Lemma implies the first statement of the theorem:

Lemma 5.1. Suppose that nC ≥ nB , and that

f∗ : B = {−(nB − 1)/2, . . . , (nB − 1)/2} → {−nC/2, . . . , nC/2} = C∗

is a non-decreasing function. Then for q ≥ 0 integer, the equation

(5.9) |b− f∗(b)| ≥ nB + nC − 1

2
− q

has at most q + 1 solutions. Moreover, equality holds for all q only when either
f∗ ≡ −nC/2 or f∗ ≡ nC/2. 5

More explicitly,

#{b : |b− f∗(b)| ≥ nB + nC − 1

2
} ≤ 1

#{b : |b− f∗(b)| ≥ nB + nC − 1

2
− 1} ≤ 2

and so on.
In particular, if we order the the quantities 1

2 + |b − f∗(b)|, for b ∈ B, with
multiplicity and in nonincreasing order as r0 ≥ r1 ≥ · · · ≥ r|B|−1, then we have
rt ≤ nC+nB

2 − t.

Proof. We will prove in the next Lemma that the quantity (5.9) is maximized (for
any fixed q) by a constant function, i.e. f∗ sending all of B to c ∈ C∗. Assuming
this, we verify (5.9). By symmetry, we may assume c ≥ 0. We consider the effect
of increasing c by one. Denote by sc(t) the number of solutions b ∈ B to |b−c| = t.
Then sc(t) = sc+1(t) except when t = |nB−1

2 − c| or t = | − nB−1
2 − 1 − c|; in

the former sc+1(t) = sc(t) − 1, and in the latter sc+1(t) = 1 and sc(t) = 0. This
shows that, as c increments, the number of solutions to |b − f∗(b)| ≥ r does not
decrease. This completes the proof of (5.9).

The remaining assertions follows easily: If rt > nC+nB
2 − t, it follows that

1
2 + |b − f∗(b)| ≥ nC+nB

2 − t + 1 has at least t + 1 solutions, i.e. |b − f∗(b)| ≥
nC+nB−1

2 − (t− 1) has ≥ t+ 1 solutions, contradicting the first assertion. �

Lemma 5.2. Suppose that nC ≥ nB , and that

f∗ : B = {−(nB − 1)/2, . . . , (nB − 1)/2} → {−nC/2, . . . , nC/2} = C∗

is a non-decreasing function. Then there exists a constant function g∗ : B → C∗

such that, for any r, the number of solutions to |b − g∗(b)| ≥ r is no less than the
number of solutions to |b− f∗(b)| ≥ r.

5These correspond to the cases where every element of σ(B) is either less than σ(C), or vice
versa. In the case f∗ ≡ −nC/2, the ξ-ratio is identically 1.
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Proof. Fix r. The strategy is to modify f∗ one step at a time so that the number
of solutions to |b − f∗(b)| ≥ r does not decrease after each step and f∗ becomes
constant at the end of the process.

A modification of f∗ will be a function g∗ with the property that |x− g∗(x)| ≥
|x− f∗(x)| for all x ∈ B. In particular, the number of solutions to |b− g∗(b)| ≥ r
is at least the number of solutions to |b− f∗(b)| ≥ r.

Enumerate elements of B by b1, b2, . . . , in increasing order. Suppose that

(5.10) f∗(b1) = f∗(b2) = · · · = f∗(bk−1) = f∗(bk) < f∗(bk+1),

where we allow k = 0 to mean there is no constraint at all. We will show that
either

(5.11) g∗1(b) =

{
f∗(b), b 6= bk+1

f∗(bk), b = bk+1
or g∗2(b) =

{
f∗(bk+1), b ≤ bk
f∗(b), b ≥ bk+1.

.

is a modification of f . Note that g∗j (b1) = · · · = g∗j (bk+1) for j = 1, 2. Iteratively
applying this claim shows that we may suppose that f∗ is constant, as claimed.

We analyze the following three cases in turn:

(i) |bk − f∗(bk)| > |bk+1 − f∗(bk+1)|.
(ii) |bk − f∗(bk)| < |bk+1 − f∗(bk+1)|.

(iii) |bk − f∗(bk)| = |bk+1 − f∗(bk+1)|.

(i) If f∗(bk) > bk then

f∗(bk)− bk > f∗(bk+1)− bk+1 =⇒ f∗(bk) + 1 > f∗(bk+1)

which contradicts (5.10). Since f∗(bk) 6= bk by assumption (5.10), we
must have f∗(bk) < bk; then

|bk+1 − f∗(bk+1)| < bk − f∗(bk) < bk+1 − f∗(bk),

so we can take g∗1 as the desired modification.
(ii) If f∗(bk+1) < bk+1, then also f∗(bk) < bk by (5.10), and so

bk − f∗(bk) < bk+1 − f∗(bk+1) =⇒ f∗(bk) + 1 > f∗(bk+1),

a contradiction as before. Therefore f∗(bk+1) > bk+1. We take g∗ = g∗2 .
To verify this works, we must check that for all b ≤ bk we have

(5.12) |f∗(b)− b| ≤ |f∗(bk+1)− b|.

If f∗(bk) ≥ bk (5.12) is true because

|f∗(bk+1)− b| = f∗(bk+1)− b ≥ f∗(bk)− b = f∗(b)− b ≥ 0

If f∗(bk) < bk (5.12) is true because

b− f∗(b) < bk − f∗(bk) < f∗(bk+1)− bk+1 < f∗(bk+1)− b,

f∗(b)− b = f∗(bk)− b < f∗(bk+1)− b.

(iii) We are assuming that |bk − f∗(bk)| = |bk+1 − f∗(bk+1)|. Then either:
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(iii-a) f∗(bk) ≥ bk. In this case, g∗2 is a modification just as before – for b ≤ bk,

f∗(bk+1)− b ≥ f∗(bk)− b ≥ 0

(iii-b) f∗(bk) < bk: in this case, g∗1 is a modification because

bk+1 − f∗(bk) ≥ bk − f∗(bk) = |bk+1 − f∗(bk+1)|.

�

6. BOUNDS

Lemma 6.1. (Bounds for ζ) Suppose |σ| ≤ 10−3. Put q(z) = min(10|z|, 1). Put
ζq(s) = q(s− 1)ζ(s). Then there exists a constant A such that:

(i) |ζq(1/2 + σ + it)| ≤ A(1 + |t|)0.2

(ii) |ζq(1 + σ + it)| ≤ A(1 + |t|)0.01

(iii) assuming the Riemann hypothesis, |ζ(1 + σ + it)|−1 ≤ A(1 + |t|)0.01;
(iv) |ζq(j + σ + it)| ≤ A and |ζ(j + σ + it)|−1 ≤ A if j ≥ 3/2.

Proof. For (i), (ii), (iv) see [5, Chapter 8]. For (iii) see Corollary 13.22 of [9]. �

Lemma 6.2. (Bounds for ζ ratios) Assume the Riemann hypothesis (this is the
only point where we do). Let ζq be as in Lemma 6.1. Then uniformly for |Re(z)| ≤
0.01/n4 we have:∣∣∣∣ζq(1− z)ζq(1 + z)

∣∣∣∣ ≤ A log(5 + |t|)(1 + |t|)|Re(z)| t = Im(z),

with an absolute constant A

Proof. Write z = µ + it. We may as well suppose that t ≥ 10. Split into two
cases, according to whether |µ| > 1/ log log(t) or not. We use the bounds in In
Corolllary 13.16 of [9]:

• If |µ| < 1/ log log(t), the bounds there show at once that the ratio in ques-
tion is bounded by an absolute constant times log log(t).
• If |µ| > 1/ log log(t), the bounds therein show that the ratio is bounded by

log(t) · eC log(t)2|µ|
for a suitable absolute constant C; without loss C ≥ 2.

Now,
log(t) · eC log(t)2|µ| ≤ A log(t)(1 + |t|)|µ|,

for suitable A. 6

�

6 Here we use the fact that, with u = log(t), we have the bound

Cu2µ ≤ C4 + µu, u ≥ C4

To verify this, look at the function C4 + µu − Cu2µ. Its derivative is µ(1 − 2Cu2µ−1) , so it is
increasing for u ≥ C2.
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Lemma 6.3. (Bounds for Γ)
Write, for short, ΓR(s) = π−s/2Γ(s/2). We have the bounds, valid uniformly

for Re(z) ≥ 0.49 and |p| ≤ 0.26 (with an absolute constant A and R):

(6.1) A−1 ≤ 1

|z|p/2

∣∣∣∣ΓR(z + p)

ΓR(z)

∣∣∣∣ ≤ A
(6.2)

∣∣∣∣ΓR(z + r)

ΓR(z)

∣∣∣∣ ≥ (1 + |z|)1/4 (r ∈ 1

2
Z, r > R).

Proof. Recall Stirling’s formula (see, for example, 6.1.40 of [1])

Γ(z) =
√

2πzz−1/2e−z(1 + ε)

where |ε| ≤ 1
4|z| ; this formula is valid for arg(z) between (−π/2, π/2).

For (6.1) it is enough to prove a similar bound with ΓR replaced by Γ, i.e. upper
and lower bounds for 1

|z|p

∣∣∣Γ(z+p)
Γ(z)

∣∣∣ where we now restrict to Re(z) ≤ 0.49/2 and

|p| ≤ 0.49/2. Stirling says that
∣∣∣Γ(z+p

Γ(z)

∣∣∣ = zp

e1/4

(
1 + p

z

)z+p−1/2 ·
(

1+ε1
1+ε2

)
. Now the

bracketed term is absolutely bounded in the specified region. So is both

log(1 +
p

z
) and log

(
1 +

p

z

)z
= z log(1 +

p

z
)

(in the first case z 7→ p/z takes the set Re(z) > 0.49 into a subset of the disc
|u| ≤ 0.9; in the second case, we use the power series for log(1 + p/z) when z is
large.) Our claim (6.1) follows.

The claim (6.2) follows from (6.1) applied with p = 1/2 many times, once we
notice

A−N−1|z(z + 1) . . . (z +N)| ≥ N !A−N−1

3
≥ 1

for an N that depends only on A. �

Theorem 6.1. Let B and jb,mb be as in Theorem 5.1, that is to say: 1/2 ≤ mb ≤
n, jb ≥ 0, the mb + jb are pairwise distinct, and εb = 1 whenever mb = 1/2.

Write q(z) = min(10|z|, 1). We have a bound valid uniformly for |Re(z)| ≤
0.001/n4, with an absolute constant C:
(6.3)∏
B

ξ(εbz +mb)

ξ(z +mb + jb)
≤ C |B|

∏
b:mb=1

q(z)−1·log(5+|t|)·

{
(1 + |t|)−0.02, some jb 6= 0,
(1 + |t|)0.01/n2

, all jb = 0.

Finally, when all jb = 0, the corresponding product has absolute value 1 on the
line Re(z) = 0 (obvious).

Proof. Set ξq(s) = π−s/2Γ(s/2)ζ(s)q(s − 1). Note that, for |Re(z)| ≤ 0.01, we
have ξq(z + mb) = ξ(z + mb) unless mb = 1. What we will prove is that (for a
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suitable absolute constant C):

(6.4)
∣∣∣∣ ξq(εbz +mb)

ξ(z +mb + jb)

∣∣∣∣ ≤ C


(1 + |t|)−0.03, unless jb = 0,

(1 + |t|)0.01/n4
, jb = 0,mb 6= 1

(1 + |t|)0.01/n4
log(5 + |t|), jb = 0,mb = 1

The result follows: if we take the product of all these factors, we get at least one
factor of (1+ |t|)−0.03 as long as not all js are zero; we get at most |B| ≤ n factors
of (1 + |t|)0.01/n4

, and finally at most one factor of log(5 + |t|).
Now to prove (6.4). We write the quantity to be bounded as

(6.5)
ζq(εbz +mb)

ζ(z +mb + jb)
· ΓR(εbz +mb)

ΓR(z +mb + jb)

We subdivide into four cases. The first three cases will be jb > 0 but jb in different
ranges; the last case is jb = 0.

• First case of jb 6= 0: jb ≥ R + 1, where R is the absolute constant in the
Lemma 6.3.

By Lemma 6.1 the ζ in the denominator is absolutely bounded below.
By the same Lemma, the ζq in the numerator is in all cases bounded by a

constant multiple of (1 + |t|)0.2. Therefore,
∣∣∣ ζq(z)
ζ(z+mb+jb)

∣∣∣ ≤ C(1 + |t|)0.2.
If ε = 1, we apply the bounds (6.2) directly, with r = jb, to get that the

Γ-ratio is bounded by C(1 + |t|)−0.25; we are done.
If ε = −1, we write z = σ + it and conjugate the numerator to get:∣∣∣∣ ΓR(εbz +mb)

ΓR(z +mb + jb)

∣∣∣∣ =

∣∣∣∣ ΓR(−σ + it+mb)

ΓR(σ + it+mb + jb)

∣∣∣∣ ≤ C(1 + |t|)−0.24

where we applied (6.1) with r = 2σ and then (6.2) with r = jb to conclude.
• Second case of jb 6= 0: suppose that 0 < jb ≤ R but mb ≥ R, where
R is the absolute constant in Lemma 6.3. Referring again to (6.5), the
ζ-quotient is absolutely bounded above, and iterated application of (6.1)
at most 4R times (so the implicit constants don’t matter) gives the bound
C(1 + |t|)−0.24 for the ratio of Γ-functions. This proves the desired bound
this case.
• Third and final case of jb 6= 0: 0 < jb ≤ R and mb < R.

There are at most O(1) of these factors, because each factor of the
denominator occurs O(1) times – recall that, by assumption, the various
mb + jb are pairwise distinct. We can therefore ignore any implicit con-
stants in this analysis. So fix m, j ∈ 1

2Z ∩ [1/2, R] and examine again
(6.5). The Γ-quotient decays as (1 + |t|)−0.24 by the same logic as in the
previous case, and the quotient of ζ-functions grows at most as (1+ |t|)0.21

by Lemma 6.1. This proves the desired bound in this case.
• Terms with jb = 0. Here we can assume that εb = −1 (otherwise the

term is 1) and therefore also that mb ≥ 1 (part of our assumptions: see last
sentence of Theorem statement).
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The term in question is

ζq(−z +mb)

ζ(z +mb)
· ΓR(−z +mb)

ΓR(z +mb)

The Γ-ratio is bounded above, by means of (6.1), by an absolute constant
multiplied by (n+ |t|)0.001/n4 ≤ C(1 + |t|)0.001/n4

(here we also used the
fact that mb ≤ n). If mb > 1, the ζ-term is absolutely bounded above and
below. If mb = 1 (and note that there is at most one term of this form,
in the product we are analyzing) the ζ-term ζq(−z + 1)/ζq(z + 1) can be
analyzed with Lemma 6.2 to get a bound of log(5 + |t|) · (1 + |t|)0.001/n4

.

This concludes the proof of the Theorem.

7. BOUNDING THE CONSTANT TERM VIA A CONTOUR INTEGRAL

We now return to analyzing the behavior of the full constant term (4.8) forEM,ν .
As mentioned after (4.8), some of the individual terms in (4.8) can have poles;
however, (EM,ν)N and so the whole sum is holomorphic at the points of interest
where Re(νi) = 0. To bound (4.8), then, we deform along a contour where none
of the individual terms have poles, and use the Cauchy estimate.

Theorem 7.1. Let f : A → C be as in (2.2). Let M be a Levi subgroup with k
blocks, and let ν = (ν1, . . . , νk) ∈ a∗M,0 parameterizes a unitary character of M .
Let other notation be as in §4.2. Then for an absolute constant C,

(7.1) |〈fa−2ρ, (EM,ν)N 〉A| ≤ Cnk log(n)
∑

σ∈S[M ]

|〈f, a−ρ+συ〉A|

where k is the number of parts of the partition associated to M , υ is the shifted
ν-parameter, as in (5.2), and S[M ] is as in (4.7). The inner products on both sides
are taken in L2(A).

Proof. Note that the right-hand side of (7.1) equals, by (3.8),
∑

σ

∣∣∣TRe(wt(ρ−συ))Cnk log(n)∏
|µi(−ρ+συ)|

∣∣∣.
The left hand side of (7.1) can be rewritten, following (4.9), and Theorem 5.1,

as 21−n times the absolute value of

(7.2)
∑

σ∈S[M ]

∏
B<C

∏
b∈B

ξ(mBCσ
b + εBCσb (νB − νC))

ξ(mBCσ
b + jBCσb + νB − νC)

〈f, a−ρ+συ〉

where mBCσ, jBCσ ∈ 1
2Z≥0 and εBCσ ∈ {±1} are so denoted to recall that

they depend on B,C and σ. Moreover we wrote for short νB = νr if B is the
(r + 1)st block [Nr + 1, . . . , Nr+1], just as in (5.1). For each fixed σ,B,C the
mBCσ, jBCσ, εBCσ ∈ {±1} satisfy the constraints enunciated in Theorem 5.1.

We will bound this left-hand side one σ at a time.
First of all, let us separate into cases according to whether jBCσ = 0 for all

B,C or not.
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Case 1: σ is such that jBCσ = 0 for all B,C. These terms are trivially bounded
by 〈f, a−ρ+συ〉A: the term looks like∏

B,C

∏
b∈B

ξ(mBCσ
b + εBCσb (νB − νC))

ξ(mBCσ
b + νB − νC)

〈f, a−ρ+συ〉

The function ξ(m−z)/ξ(m+z) is holomorphic everywhere along the line Re(z) =
0. Therefore, the ξ-product/ratio is holomorphic at the given value of νB , and even
better, has absolute value 1.

Case 2: there exists at least one B,C for which jBCσ > 0. To bound this, we
apply (6.3) and a contour integration argument. Fix some small parameters

δ = n−8, H = n−4.

As in (5.1), let κB be the parameter of the block B (i.e., the block [1, N1] has
parameter 1 and so on).

Let Cδ,H be the basic contour: the oriented closed curve in the complex plane
which consists of the two vertical lines ±δ + iv, for v ∈ [−H,H], together with
the two horizontal lines ±iH + b, b ∈ [−δ, δ].

Let νz ∈ a∗M be the parameter:

νz := (ν1 + z, ν2 + 2z, . . . , νk + kz)

so that νz takes the value νB + κBz on the block B. Note that νz will no longer be
unitary, i.e. νz /∈ a∗M,0. We define υz to be the shifted υ-parameter attached to νz ,
so that the relationship between υz and νz is as in (5.2).

Note that EM,νz is a meromorphic function of z, and we will use Cauchy’s
formula to compute EM,ν as a contour integral along Cδ,H . As z moves along
Cδ,H , the term νB − νC moves along the contour νB − νC + (κB − κC)Cδ,H . Note
that κB − κC is nonzero for B 6= C, so z is really moving.

Thus we must study (7.2) as z ∈ Cδ,H . For ν of the form νz , with z on Cδ,H , we
have by (6.3):∣∣∣∣∣ ∏
B<C

∏
b∈B

ξ(mBCσ
b + εBCσb (νB,z − νC,z))

ξ(mBCσ
b + jBCσb + νB,z − νC,z)

∣∣∣∣∣ ≤ ∏
B<C

q((νB − νC + (κB − κC)z)︸ ︷︷ ︸
νB,z−νC,z

)−r(B,C)

log(5 + |t|)k2 ×
∏
B,C

C |B| × (1 + |t|)0.01ℵ/n2−0.02i

where t = Im(νB,z − νC,z), and:

• ℵ is the number of (B,C) where all jBCσb = 0

• i is the number of (B,C) where not all jBCσb = 0.
• r(B,C) is the number of b ∈ B with mBCσ

b = 1.

By assumption, i ≥ 1 and of course ℵ ≤ n2; thus (1 + |t|)0.01ℵ/n2−0.02i ≤
(1 + |t|)−0.01. Next

max
t

log(5 + |t|)k2
(1 + |t|)−0.01 ≤ C log(k)k2

.
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Also,
∏
B,C C

|B| ≤ Cnk, so the above expression is actually bounded by

Cnk log(n)
∏
B,C

q((νB − νC + (κB − κC)z))−r(B,C).

So it remains to give an upper bound for

(7.3)
∫
Cδ,H

∏
B,C

q((νB − νC + (κB − κC)z))−r(B,C)

(a priori this quantity could even be infinite for certain δ,H).
Recall that q(z) = min(10|z|, 1) and in particular

q(z)−1 ≤ min
(
|Re(z)|−1, |Im(z)|−1

)
.

Write tB = Im(νB), tC = Im(νC). Then for any z ∈ Cδ,H , by the inequality
just above, we have

q(νB − νC + (κB − κC)z)−1 ≤ δ−1 +
1

|(tC − tB)− (κC − κB)H|
(7.4)

+
1

|(tC − tB) + (κC − κB)H|.

Lemma 7.1. Write log+(x) = max(log(x), 0) for x > 0, and log+(x) = 0 for
x ≤ 0. Then:

• For x, y > 0, we have log+(x+ y) ≤ log+(x) + log+(y) + 1.
• On any subinterval I ⊂ R of length s, the average value of log+(|x|−1) is

bounded above by {
1− log(s/2), s < 2

2/s, s ≥ 2
.

Proof. Note that log+(x + 1) ≤ log+(x) + 1 for x ≥ 0: obvious for x ≤ 1, and
otherwise it follows from (x + 1) ≤ ex. Thus the result follows for y ≤ 1 or
(symmetrically) x ≤ 1. Otherwise, we must check log(x+y) ≤ log(x)+log(y)+
1, i.e. x+ y ≤ exy; without loss x ≥ y, and then exy ≥ ex ≥ 2x ≥ x+ y.

Given any interval I = [a, b] with 0 < a < b, visibly the average value of
log+(x−1) on I is less than its average value on the shifted interval I−a = [0, b−
a]. Next, given any interval I containing zero, the average value of log+(|x|−1)
is less than the corresponding average on the “symmetrized” interval [−`/2, `/2],
where ` is the length of I .

We are reduced to doing the computation on the interval (0, s/2); in that case
we get (with b = s/2, and assuming b ≤ 1):

1

b

∫ b

0
− log(x) =

1

b
(−x log(x) + x)|b0 = − log(b) + 1

Therefore, the average is − log(s/2) + 1 if s/2 < 1. If s/2 ≥ 1 we similarly
get an upper bound of 2/s. �
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Using the obvious bound log(. . .) ≤ log+(. . .), and taking into account that
r(B,C) ≤ |B| and so

∑
B,C r(B,C) ≤ kn, we get that for all z ∈ Cδ,H

log
∏
B,C

q(νB − νC + (κB − κC)z)r(B,C) ≤ Ckn log(n)(7.5)

+
∑
B,C

r(B,C) log+(|(tC − tB)− (κC − κB)H|−1) + ( similar term) .

Now we choose H suitably. Average over 0 < H < 1/n; the average of
each log+ term is, by the prior lemma, at most O(log n). Therefore, there exists
H ∈ (0, 1/n) for which the right-hand side is bounded above by Cnk log(n).

In summary, we can choose H ∈ (0, 1/n) with the property that the integrand
of (7.3) is bounded above by exp(Cnk log(n)). Cauchy’s integration formula now
concludes the proof (of the Theorem 7.1). �

8. CONCLUSION

We now complete the paper by giving the proof of (ii) of the main Theorem
1.1. At this point this is a matter of putting our prior bounds together, plus some
elementary estimates for integrals on Euclidean spaces.

We continue to use 〈−,−〉A to denote inner products in L2(A). In our notation,
(ii) of the main Theorem amounts to the assertion that

(8.1) ‖Ef − Ēf‖2 < exp(−an2)‖Ēf‖2

for some a > 0 and big enough n.
Terms of size nn are negligible from the point of view of proving (8.1). So we

shall use the notation
B ∼n B′

if there exists constants b1, a2 so that

B

B′
,
B′

B
≤ b1 exp(a2n log(n))

Often we will supress the subscript ∼n and just write ∼.

8.1. Begin with the spectral decomposition (4.10), or what we obtain from it by
taking inner products with Ef :

‖Ef − Ēf‖2 =
∑
M 6=G

V −1
M

∫
ν∈a∗M,0/WM

|〈Ef , EM,ν〉|2

(4.11)
= 41−n

∑
M 6=G

V −1
M

∫
ν

∣∣〈fa−2ρ, (EM,ν)N 〉A
∣∣2 dν

(7.1)
6 Ank log(n)

∑
M

V −1
M

∫
ν

 ∑
σ∈SM

∣∣〈f, a−ρ+συ〉A
∣∣2
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Note that the total number of M and also the size of |S[M ]| are both ∼n 1. Also
recall from (3.9) that

Ēf = V −1
G 21−n〈f, a−2ρ〉A.

Therefore, (8.1) will follow if we check that, for any constant A and sufficiently
large n, there is a constant A′ such that

(8.2) Ank log(n)V
−2
M

∫
ν |〈f, a

−ρ+συ〉A|2dν
V −2
G |〈f, a−2ρ〉A|2

≤ A′ exp(−δn2)

where k is the number of parts in the partition associated to M , or equivalently in
the division J (see §4.5) associated to the pair (M,σ).

From (3.8) we have |〈f, a−2ρ〉| ∼n Twt(2ρ). Let s ≤ n − 1 be the size of the
largest part of J . By an elementary estimate from the definitions (3.15) and (3.4),
we see that VG

VM
is bounded (up to factors of size eCn log(n)) by ξ(s+ 1) . . . ξ(n) ≤

const · ξ(n)n−s+1, which leads to the bound:

VG
VM
≤ exp(C(n− s)n log(n))

We will prove that for σ ∈ S[M ] so that (M,σ) is parameterized by J we have

(8.3)
∫
ν
|〈f, a−ρ+συ〉A|2 �n C

n lognT 2wt(ρ+ρJ )

Here J is as in §4.6. Once that’s done, our conclusion (8.2) follows from Lemma
4.1, since 〈f, a−2ρ〉2A ∼n T 4wt(ρ).

Proof. (of the bound (8.3)):
Recall first that (4.12) shows that

Re(συ) = −ρJ
Now, (3.8) shows that

|〈f, a−ρ+συ〉A|2 = T 2wt(ρ)+2wt(ρJ ) ·
∏
i

|µi(−ρ+ συ)|−2

The real part of µi(−ρ+ συ), i.e. of µi(−ρ− ρJ ), satisfies

|Re µi(ρ+ ρJ )| ≥ 1,

since both ρ and ρJ is a sum of positive roots, and each positive simple root occurs
at least once.

For 1 ≤ i ≤ n− 1, we write ui = Im (µi(συ)). Therefore, |µi(−ρ+ συ)|−2 ≤
1

1+u2
i
, and it will be enough to bound

∫
ν∈a∗M,0

∏
i

1
1+u2

i
,

Write ti = Im(νi); recall that the subset of unitary characters in a∗M is identified,
when considered as characters on ZM (cf. (3.13)) as the subspace Q ⊂ Rn where

Q = {t ∈ Rn : t1 = · · · = tN1 , tN1+1 = · · · = tN2 , . . . }

and moreover
∑
ti = 0.



30 SEUNGKI KIM AND AKSHAY VENKATESH

Since ν and υ have the same imaginary part, coordinate by coordinate, we see

(8.4) ui = Im(µi(συ)) = Im(µi(σν))
(3.5)
=

i∑
j=1

Im(σν)j =
i∑

j=1

tσ−1j

we wish to prove∫
Q

1

1 + t2
σ−1(1)

1

1 + t2
σ−1(1)

+ t2
σ−1(2)

· · · �n C
n logn

The measure onQ has been described in (3.14); it differs by exponentially bounded
factors (negligible for our purpose) from the measure |∧id(tNi − tNi+1)| on Q. In
what follows, we equip Q with this latter measure.

8.2. Some Fourier analysis. The proof of (8.3) now reduces to an elementary
estimate on Euclidean spaces (we take a long time to do it just because we get very
nervous about measures).

Let V be the full space {(t1, . . . , tn) ∈ Rn :
∑
ti = 0}, equipped with the

measure
νb = | ∧i (dti − dti+1)|.

Thus dimV = n− 1 and Q ⊂ V has dimension k− 1; the measure on Q is as just
described.

For a nice function f on V , we have by the usual Fourier inversion formula

(8.5)
∫
Q
f =

∫
(κ1,κ2,...,κn−k)

dκ

∫
V
f(t)e2πi(κ1(t2−t1)+κ2(t3−t2)+... )dνb

where we omit the terms corresponding to tNk+1− tNk , and the κ-measure is usual
Lebesgue measure. Now the sum in the exponential is given by

κ1(t2 − t1) + κ2(t3 − t2) + · · ·+ κN1−1(tN1 − tN1−1) + κN1(tN1+2 − tN1+1) + . . .

= −κ1t1 + (κ1 − κ2)t2 + · · ·+ (κN1−2 − κN1−1)tN1−1 + κN1−1tN1 + . . .(8.6)

Changing coordinates in the κ variable, we can re-write (8.5) as:

(8.7)
∫
Q
f =

∫
Q⊥

f̂(k), f̂ :=

∫
V
dνb(t) f(t)e2πi

∑
kiti

where Q⊥ is the n− k dimensional space

(8.8) Q⊥ = {(k1, . . . , kn) :

Nj+1∑
Nj+1

ki = 0}

and the measure on Q⊥ is that obtained by taking the product of

dk1 ∧ · · · ∧ dkN1−1, dkN1+1 ∧ · · · ∧ dkN2−1,

i.e. omitting one coordinate from each block.
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Write as above ui =
∑i

j=1 tσ−1j and f =
∏n
i=1

1
1+u2

i
. We evaluate

∫
Q f by

means of Fourier inversion (8.7). We have

f̂(k) =

∫
dνb e

2πi
∑
kiti
∏ 1

1 + u2
i

.

For short, let us write k∗i = kσ−1(i) and t∗i = tσ−1(i). Note that∑
kiti =

∑
k∗i t
∗
i

= k∗n(t∗1+· · ·+t∗n)+(k∗n−1−k∗n)(t∗1+· · ·+t∗n−1)+(k∗n−2−k∗n−1)(t∗1+· · ·+t∗n−2)+· · ·+(k∗1−k∗2)t∗1

Therefore, if we rewrite the integral for f̂(k) in coordinates un−1 = t∗1 +
. . . t∗n−1, un−2 = t∗1 + · · ·+ t∗n−2, . . . , t

∗
1, and note that

|du1 ∧ · · · ∧ dun−1| = |dt∗1 ∧ · · · ∧ dt∗n−1|
§3.2
=

1

n
dνb(t)

we get 7

f̂(k) = nπn−1e−2π‖k∗‖,

where we write

‖k∗‖ = |k∗1 − k∗2|+ |k∗2 − k∗3|+ |k∗3 − k∗4|+ · · ·+ |k∗n−1 − k∗n|+ |k∗n|.

Therefore, applying (8.7), we get∫
Q
f ≤ nπn−1

∫
Q⊥

e−2π‖k∗‖

and it remains to check that
∫
Q⊥ e

−2π‖k∗‖ is exponentially bounded. Let Ξ be the
measure of the set ‖k∗‖ ≤ 1 inside Q⊥. Then, by a homogeneity argument, the
last integral equals Ξ ·

∫
e−2πzd(zn−k) = (n−k)!(2π)−(n−k) ·Ξ. Finally we have

in fact Ξ ≤ 1: we easily see that ‖k∗‖ ≥ supi |k|. Thus it is enough to bound the
volume of the set supi |ki| ≤ 1 inside Q. But this is a product of the volume of
various sets of the type inside

{(y1, . . . , yd) ∈ Rd : sup
i
|yi| ≤ 1,

∑
yi = 0}

taken with respect to dy1 ∧ · · · ∧ dyd−1; certainly each of these volumes is ≤ 1.
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