SOME EFFECTIVE RESULTS FOR $\times a \times b$

JEAN BOURGAIN, ELON LINDENSTRAUSS, PHILIPPE MICHEL AND AKSHAY
VENKATESH

In memory of Bill Parry

1. Introduction

1.1. Let $a, b>1$ be multiplicatively independent integers ${ }^{(1)}$. In [5], Furstenberg showed that the only closed, infinite subset of \mathbb{R} / \mathbb{Z} invariant under the maps t_{a} : $x \mapsto a . x$ and $t_{b}: x \mapsto b . x$ is $\mathbb{R} / \mathbb{Z}($ with $a . x=a x \bmod 1)$. This implies that for any irrational x,

$$
\begin{equation*}
\overline{\left\{a^{k} b^{\ell} \cdot x: k, \ell \geq 0\right\}}=\mathbb{R} / \mathbb{Z} \tag{1.1a}
\end{equation*}
$$

Furstenberg raised the question of what are the t_{a}, t_{b} invariant measures on \mathbb{R} / \mathbb{Z}, conjecturing that the only nonatomic such measure ${ }^{(2)}$ is the Lebesgue measure λ. A theorem of Rudolph for a, b relatively prime [9], generalized by Johnson to the case of a, b multiplicatively independent [7], asserts that a probability measure on the circle \mathbb{R} / \mathbb{Z} that is invariant and ergodic with respect to the semigroup generated by the maps $t_{a}: x \mapsto a x$ and $t_{b}: x \mapsto b x$, and has positive entropy with respect to t_{a}, is equal to λ. We note that Bill Parry, to whose memory this paper is dedicated, has provided another, related but distinct, proof of Rudolph's theorem [8].

In this paper, we give an effective versions of the Rudolph-Johnson theorem, and use it (among other things) to obtain effective versions of Furstenberg's theorem, in particular giving an estimate on the rate in (1.1a) in terms of the Diophantine properties of x.
1.2. By a straightforward application of the ergodic decomposition, the RudolphJohnson theorem is equivalent to the following, which avoids any assumptions regarding ergodicity:
1.3. Theorem (Rudolph-Johnson Theorem). Let μ be a probability measure on \mathbb{R} / \mathbb{Z} invariant under t_{a} and t_{b} for a, b multiplicatively independent. Suppose that

$$
h_{\mu}\left(t_{a}\right)=\eta \log a .
$$

Then

$$
\begin{equation*}
\mu \geq \eta \lambda \tag{1.3a}
\end{equation*}
$$

i.e. for any measurable $A \subset \mathbb{R} / \mathbb{Z}, \quad \mu(A) \geq \eta \lambda(A)$.

Date: April 17, 2008.
This research has been supported by NSF grants DMS 0627882 (J.B.), DMS 0500205, 0554345 (E.L.) and DMS 0554365 (A.V). A.V. was also supported by the Sloan Foundation and by the Packard Foundation.
${ }^{(1)}$ I.e. not powers of the same integer, or equivalently so that $\log a / \log b \notin \mathbb{Q} —$ for example, a, b relatively prime.
${ }^{(2)}$ I.e. a measure which gives measure zero to any single point.

Linear combinations of Lebesgue measure and measures supported on rationals show that (1.3a) is sharp. We recall that in this context, the ergodic theoretic entropy ${ }^{(3)} h_{\mu}\left(t_{a}\right)$ is simply

$$
h_{\mu}\left(t_{a}\right)=\lim _{n \rightarrow \infty} H_{\mu}\left(\mathcal{P}_{a^{n}}\right)
$$

where $\mathcal{P}_{a_{n}}$ is the partition of \mathbb{R} / \mathbb{Z} into a^{n} intervals $\left[0,1 / a^{n}\right),\left[1 / a^{n}, 2 / a^{n}\right), \ldots$ and $H_{\mu}(\mathcal{P})=-\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P)$ the Shannon entropy of a partition \mathcal{P}.

We prove the following effective version of Theorem 1.3.
1.4. Theorem (Effective Rudolph-Johnson Theorem). Let a, b be multiplicatively independent, and μ an arbitrary probability measure on \mathbb{R} / \mathbb{Z} satisfying the entropy condition

$$
H_{\mu}\left(\mathcal{P}_{N}\right) \geq \rho \log N \quad \text { for some } \rho>0, N>N_{0}(a, b)
$$

Let $100 / \log _{a} N \leq \delta \leq \rho / 20$ and $f \in C^{1}(\mathbb{R} / \mathbb{Z})$ a nonnegative function. Then there is an integer $m=a^{s} b^{t}<N$ so that

$$
\begin{equation*}
[m \cdot \mu](f) \geq(\rho-3 \delta) \lambda(f)-\kappa_{1} \log (N)^{-\kappa_{2} \delta}\left\|f^{\prime}\right\|_{2} \tag{1.4a}
\end{equation*}
$$

with κ_{1}, κ_{2} depending only on a, b.
We give two proofs for this theorem: the first based on Host's (not explicitly effective) proof of Rudolph's Theorem [6] when a, b are relatively prime, and a second, related but different proof which works in the general multiplicative independent case. Where applicable the first proof is slightly more informative; in particular, when a, b are relatively prime one can take $\kappa_{2}=1 / 2$.

Note that here and below we have not attempted to optimize the exponents occurring, the quality of the results being measured rather in the number of logs.
1.5. It is interesting to compare this result, or more precisely its implications regarding t_{a}, t_{b}-invariant subsets of $N^{-1} \mathbb{Z} / \mathbb{Z}$, with the results of Bourgain [3] and Bourgain-Glibichuk-Konyagin [2]. Applying Theorem 1.4 to the measure $\mu=$ $|S|^{-1} \sum_{x \in S} \delta_{x}$ where $S \subset N^{-1} \mathbb{Z} / \mathbb{Z}$ is t_{a}, t_{b}-invariant we get:
1.6. Corollary. Let N be a integer greater or equal to some $N_{0}(a, b)$, with $(N, a b)=$ 1. Suppose that $S \subset N^{-1} \mathbb{Z} / \mathbb{Z}$ with $|S|>N^{\rho}$. Then for any subinterval $J \subset \mathbb{R} / \mathbb{Z}$ there is an $m=a^{s} b^{t}<N$ so that the proportion of $m . S$ inside J satisfies:

$$
\frac{|m \cdot S \cap J|}{|S|} \geq \rho \lambda(J)-\kappa_{3} \frac{\log \log \log N}{\log \log N}
$$

Moreover, the set

$$
\left\{m . s: m=a^{s} b^{t}<N, s \in S\right\}
$$

is $(\log N)^{-\kappa_{2} \rho / 100}$-dense.
(For the first statement, apply Theorem 1.4 with $\delta=\frac{\log \log \log N}{10 \kappa_{2} \log \log N}$ and suitable test function f supported on J with $\lambda(f) \geq \lambda(J)-\delta$ and $\left\|f^{\prime}\right\|_{\infty}<\delta^{-1}$; For the second statement, use $\delta=\rho / 10, J$ an interval with $\lambda(J)=\log N^{-\kappa_{2} \rho / 100}$ and a test function f supported on J with $\lambda(f) \geq \lambda(J) / 2$ and $\left\|f^{\prime}\right\|_{\infty}<\lambda(J)^{-1}$.)

When the multiplicative subgroup generated by a, b in $\mathbb{Z} / N \mathbb{Z}$ is of order N^{α} and if e.g. S is t_{a}, t_{b} invariant, the papers [2] (for N prime) and [3] (for general N) imply much sharper results, e.g. that S has no gaps of size $N^{-c_{1}}$ and that $|S \cap J| /|S| \geq \rho \lambda(J)-N^{-c_{2}}$ for some c_{1}, c_{2} depending on a, b, α but not N.

[^0]1.7. We deduce from Theorem 1.4 effective versions of Furstenberg's theorem. We begin by giving a quantification of (1.1a):
1.8. Theorem. Let a, b be multiplicative independent. Suppose $\alpha \in \mathbb{R} / \mathbb{Z}$ is irrational and Diophantine-generic: there exists k so that
$$
|\alpha-a / q| \geq q^{-k}, \quad q \geq 2
$$

Then $\left\{a^{s} b^{t} \alpha: s, t \leq N\right\}$ is $(\log \log N)^{-\kappa_{5}}$-dense in \mathbb{R} / \mathbb{Z} for constants $\kappa_{5}=\kappa_{5}(a, b)$ and for $N \geq N_{0}(k, a, b)$.

Here we say that $S \subset \mathbb{R} / \mathbb{Z}$ is ε-dense if any $x \in \mathbb{R} / \mathbb{Z}$ has distance $\leq \varepsilon$ from S.
1.9. It follows from Furstenberg's classification of closed t_{a}, t_{b}-invariant sets that for any given $\varepsilon>0$ there are only finitely many rationals whose orbit under t_{a}, t_{b} fails to be ε-dense. It can be effectivized as follows:
1.10. Theorem. Let a, b be multiplicatively independent and $(a b, N)=1$. Then for any $m \in(\mathbb{Z} / N \mathbb{Z})^{\times}$the set

$$
\left\{a^{k} b^{l} \cdot \frac{m}{N}: 0<k, l<3 \log N\right\}
$$

is $\kappa_{7}(\log \log \log N)^{-\kappa_{2} / 100}$-dense with κ_{7} depending only on a, b and κ_{2} as in Theorem 1.4 (in particular, if $(a, b)=1$, an absolute constant, otherwise a constant depending only on $a, b)$.
1.11. Acknowledgments. This work is closely connected to the work of E.L., P.M., and A.V. with Manfred Einsiedler; in particular Corollary 1.6 is an (effective) analogue of [4, Cor. 1.7]. We thank him for numerous discussions on these and related topics. We also thank Peter Varju for careful reading and helpful comments on a preliminary version of this manuscript.

2. Notations and preliminaries.

2.1. We use \mathbb{N} to denote the set $\{0,1,2, \ldots\}$ and $\mathbb{Z}^{+}=\{1,2, \ldots\}$. As is customary $A \subset B$ allows $A=B$; when B is a group we use $A<B$ to denote that A is a subgroup of B (again, $A=B$ is allowed). If μ is a measure on \mathbb{R} / \mathbb{Z} and $m \in \mathbb{Z}^{+}$, we denote by $m . \mu$ the pushforward of μ by $x \mapsto m x$. Sometimes it will be convenient to denote the map $x \mapsto m x$ by t_{m}.
2.2. For any $N \in \mathbb{Z}^{+}$, we will use \mathcal{P}_{N} to denote the partition of \mathbb{R} / \mathbb{Z} into N equal intervals, i.e. $[0,1 / N) \cup[1 / N, 2 / N) \cup \ldots[1-1 / N, 1)$. For $a \in \mathbb{Z}^{+}, n_{1}, n_{2} \in \mathbb{N}$ we let

$$
\mathcal{P}_{a}^{\left[n_{1}, n_{2}\right)}=\bigvee_{k=n_{1}}^{n_{2}-1} t_{a^{k}}^{-1}\left(\mathcal{P}_{a}\right)
$$

where $\mathcal{P} \vee \mathcal{Q}$ denotes the common refinement $\{P \cap Q: P \in \mathcal{P}, Q \in \mathcal{Q}\}$ of two partitions \mathcal{P}, \mathcal{Q}. In particular $\mathcal{P}_{a}^{[0, n)}=\mathcal{P}_{a^{n}}$.
2.3. Let μ be a measure on \mathbb{R} / \mathbb{Z} and $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$ a finite partition of \mathbb{R} / \mathbb{Z} into nice parts. We will use the notation

$$
\mu(\mathcal{P})=\left(\mu\left(P_{1}\right), \ldots, \mu\left(P_{N}\right)\right)
$$

The entropy $H_{\mu}(\mathcal{P})$ is defined to be

$$
H_{\mu}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Suppose that a partition \mathcal{P} as above refines a partition \mathcal{Q}. For each $Q \in \mathcal{Q}$ with $\mu(Q)>0$, let μ_{Q} be the probability measure $\left.\mu(Q)^{-1} \mu\right|_{Q}$. The conditional entropy $H_{\mu}(\mathcal{P} \mid \mathcal{Q})$ is given by:

$$
H_{\mu}(\mathcal{P} \mid \mathcal{Q})=H_{\mu}(\mathcal{P})-H_{\mu}(\mathcal{Q})=\sum_{Q \in \mathcal{Q}} \mu(Q) H_{\mu_{Q}}(\mathcal{P})
$$

where the latter sum is taken over those Q with $\mu(Q)>0$. If \mathcal{P} does not necessarily refine \mathcal{Q}, we may still define $H_{\mu}(\mathcal{P} \mid \mathcal{Q}):=H_{\mu}(\mathcal{P} \bigvee \mathcal{Q} \mid \mathcal{Q})$

More generally, for any $p>1$ define the ℓ^{p}-entropy by:

$$
H_{\mu}^{p}(\mathcal{P})=\frac{-\log \|\mu(\mathcal{P})\|_{p}}{1-1 / p}
$$

This quantity is also often called the Rényi entropy. The function $H_{\mu}^{p}(\mathcal{P})$ is nonincreasing in p, with $\lim _{p \downarrow 1} H_{\mu}^{p}(\mathcal{P})=H_{\mu}(\mathcal{P})^{(4)}$.

Finally, if μ is a measure on a finite set S and we use the notations above without specifying a partition \mathcal{P}, we shall mean to take the partition of S into singletons. In particular, in this context:

$$
\|\mu\|_{p}=\left(\sum_{s \in S}|\mu(\{s\})|^{p}\right)^{1 / p}, \quad H_{\mu}=-\sum_{s \in S} \mu(\{s\}) \log \mu(\{s\})
$$

2.4. We shall repeatedly use the following facts:
(i) $H_{\mu}(\mathcal{P}) \leq \log (\# \mathcal{P})$, with $\# \mathcal{P}$ denoting the number of elements of the partition $\mathcal{P}^{(5)}$.
(ii) $H_{\mu}(\mathcal{P} \vee \mathcal{Q})=H_{\mu}(\mathcal{P})+H_{\mu}(\mathcal{Q} \mid \mathcal{P}) \leq H_{\mu}(\mathcal{P})+H_{\mu}(\mathcal{Q})$.
2.5. Let μ be a probability measure on a finite set S. As we have already remarked H_{μ}^{p} is monotonically non-increasing in p, and one may certainly have a measure μ with $H_{\mu}^{1}=H_{\mu}$ large but H_{μ}^{p} small for any fixed $p>1$: indeed simply take μ the measure that gives measure $\frac{1}{2}$ to some $s_{0} \in S$ and divide the remaining measure uniformly on $S \backslash\left\{s_{0}\right\}$.

The following lemma allows us to "upgrade" the ordinary $\left(H_{\mu}\right)$ entropy to l^{p} entropy but at a price: at the price of replacing μ by a measure ν which is dominated by a certain constant (depending on H_{μ}) times μ.
2.6. Lemma. Let μ be a probability measure on a finite set S, with $|S|=N$ and $H_{\mu}=\rho \log N$. Let $\log 2 / \log N<\delta \leq \rho / 2$. Then there is a probability measure ν such that $\mu \geq(\rho-\delta) \nu$ and $\|\nu\|_{2}^{2} \leq 4 \rho^{-1} N^{-\delta}$.

[^1]Proof. Put $\mu(\{s\})=w_{s}$. Put $S_{1}=\left\{s \in S: w_{s}<2 N^{-\delta}\right\}, \quad S_{2}=S \backslash S_{1}$, and for $i=1,2$ let $\nu_{i}=\left.\frac{1}{\mu\left(S_{i}\right)} \mu\right|_{S_{i}}$. Then, denoting by • the partition of S into singletons,

$$
\begin{aligned}
\rho \log N & =H_{\mu}=H_{\mu}\left(\left\{S_{1}, S_{2}\right\}\right)+H_{\mu}\left(\cdot \mid\left\{S_{1}, S_{2}\right\}\right) \\
& =H_{\mu}\left(\left\{S_{1}, S_{2}\right\}\right)+\mu\left(S_{1}\right) H_{\nu_{1}}+\mu\left(S_{2}\right) H_{\nu_{2}} \\
& \leq \mu\left(S_{1}\right) \log N+\delta \mu\left(S_{2}\right) \log N+\mu\left(S_{1}\right) \log 2
\end{aligned}
$$

hence

$$
\mu\left(S_{1}\right) \geq \frac{\rho-\delta}{1-\delta+\log 2 / \log N}>\rho-\delta
$$

The claim now follows by taking $\nu=\nu_{1}$ and observing that

$$
\|\nu\|_{2}^{2} \leq\|\nu\|_{\infty} \leq 2 \mu\left(S_{1}\right)^{-1} N^{-\delta} \leq 4 \rho^{-1} N^{-\delta}
$$

We would need the following variant of Lemma 2.6:
2.7. Lemma. Let μ be a probability measure on some space X, and let \mathcal{P}, \mathcal{Q} be finite partitions of X. Assume $H_{\mu}(\mathcal{P} \mid \mathcal{Q})=\rho \log |\mathcal{P}|$. Let $0 \leq \delta \leq \rho / 2$. Then we can find probability measures ν_{1}, \ldots, ν_{k} and weights w_{1}, \ldots, w_{k} such that
(i) each ν_{i} is supported on a single atom of \mathcal{Q};
(ii) $\mu \geq \sum_{i} w_{i} \nu_{i}$ and $\sum_{i} w_{i} \geq(\rho-\delta)$;
(iii) $\sum_{i} w_{i}\left\|\nu_{i}(\mathcal{P})\right\|_{2}^{2} \leq 2|\mathcal{P}|^{-\delta}$.

Proof. Similarly to $\S 2.6$, set \mathcal{S}_{1} to be those $A \in \mathcal{P} \vee \mathcal{Q}$ for which

$$
\frac{\mu(A)}{\mu(Q)}<2|\mathcal{P}|^{-\delta} \quad \text { where } A \subset Q \in \mathcal{Q}
$$

and \mathcal{S}_{2} to be all the other members of $\mathcal{P} \vee \mathcal{Q}$.
For any $Q \in \mathcal{Q}$ set $\mathcal{S}_{1}^{Q}=\left\{A \in \mathcal{S}_{1}: A \subset Q\right\}, w_{Q}=\mu\left(\bigcup \mathcal{S}_{1}^{Q}\right)$ and $\nu_{Q}=\left.\frac{1}{w_{Q}} \mu\right|_{\cup \mathcal{S}_{1}^{Q}}$. As in Lemma 2.6,

$$
\mu\left(\bigcup \mathcal{S}_{1}\right)=\sum_{Q \in \mathcal{Q}} w_{Q} \geq \rho-\delta
$$

and

$$
\left\|\nu_{Q}(\mathcal{P})\right\|_{2}^{2}=\left\|\nu_{Q}(\mathcal{P} \vee \mathcal{Q})\right\|_{2}^{2} \leq\left\|\nu_{Q}(\mathcal{P} \vee \mathcal{Q})\right\|_{\infty} \leq \frac{2 \mu(Q)|\mathcal{P}|^{-\delta}}{w_{Q}}
$$

Summing over $Q \in \mathcal{Q}$, we get

$$
\sum_{Q} w_{Q}\left\|\nu_{Q}(\mathcal{P})\right\|_{2}^{2} \leq 2|\mathcal{P}|^{-\delta} \sum_{Q} \mu(Q)=2|\mathcal{P}|^{-\delta}
$$

[^2]2.8. Let now μ be a probability measure on \mathbb{R} / \mathbb{Z}. The following lemma shows that if N and M are comparable, the entropies $H_{\mu}\left(\mathcal{P}_{N}\right)$ and $H_{\mu}\left(\mathcal{P}_{M}\right)$ are essentially the same:
2.9. Lemma. Let μ be a probability measure on \mathbb{R} / \mathbb{Z}, and $N<M$ positive integers. Then
$$
H_{\mu}\left(\mathcal{P}_{M}\right)-\log (\lceil M / N\rceil+1) \leq H_{\mu}\left(\mathcal{P}_{N}\right) \leq H_{\mu}\left(\mathcal{P}_{M}\right)+\log 2
$$

Proof. Let $\mathcal{P}=\mathcal{P}_{N} \vee \mathcal{P}_{M}$. Then any atom of \mathcal{P}_{M} is a union of at most two element \mathcal{P} and hence

$$
H_{\mu}\left(\mathcal{P}_{N}\right) \leq H_{\mu}(\mathcal{P})=H_{\mu}\left(\mathcal{P}_{M}\right)+H_{\mu}\left(\mathcal{P} \mid \mathcal{P}_{M}\right) \leq H_{\mu}\left(\mathcal{P}_{M}\right)+\log 2
$$

The reverse inequalities obtain similarly, by observing that any atom of \mathcal{P}_{N} is a union of at most $\lceil M / N\rceil+1$ elements of \mathcal{P}.
2.10. We will use $\alpha_{1}, \alpha_{2}, \ldots$ to denote constants. The dependence of these constants on all parameters depends on the context. We will use the super script $\alpha_{1}{ }^{\text {abs }}$ the first time α_{1} is used to denote that it is an absolute constant, and use e.g. $\alpha_{1}(N, \neg \delta)$ to denote that α_{1} depends on N but not on δ (hopefully the dependence of α_{1} on any other conceivable parameter will be clear from the context; unless otherwise stated, and unless one of the parameters in the exponent is preceded by a \neg sign, the assumption is that α_{1} does not depend on any other parameter). The indexing of these constants is reset every section. Similarly we have $\kappa_{1}, \kappa_{2}, \ldots$ (numbering is consequtive throughout the paper), c_{1}, c_{2}, \ldots (reset every subsection). All our constants will be effective: i.e. in principle one can write an explicit formula how they depend on all parameters. As is often customary, " $a<\alpha_{2} b$ " is a shorthand to "There exists some constant $\alpha_{2}>0$ so that $a<\alpha_{2} b$ ". We will also use the notation \ll when we would like to keep the constant implicit; this implicit constant will always be absolute and effective.

As usual in analytic arguments, $e(x):=e^{2 \pi i x}$. For any measure ν on \mathbb{R} / \mathbb{Z} let $\widehat{\nu}(n)=\nu(e(n x))$ denote its Fourier transform; occasionally, the notation $\nu^{\wedge}(n)$ will be typographically friendlier.

3. Proof of the effective Rudolph theorem.

3.1. In this section we prove an effective version of the Rudolph-Johnson theorem for a, b relatively prime. A related, but different, argument will be given in the next section that works in the general case.
3.2. Theorem (Effective Rudolph Theorem). Let a, b be relatively prime integers, and μ an arbitrary probability measure on \mathbb{R} / \mathbb{Z} satisfying the entropy condition

$$
H_{\mu}\left(\mathcal{P}_{N}\right) \geq \rho \log N \quad \text { for some } \rho>0, N>N_{0}(a, b)
$$

Let
(3.2a) $\frac{10}{\log _{a} N} \leq \delta \leq \frac{\rho}{20}, a^{20 / \delta} \leq T \leq \frac{\delta}{4} \log _{b}(N), f \in C^{1}(\mathbb{R} / \mathbb{Z})$ non-negative.

Then there exists integers $s, t, 0 \leq s \leq(1-\delta) \log _{a}(N), 0 \leq t \leq T$ satisfying

$$
\left[a^{s} b^{t} . \mu\right](f) \geq(\rho-3 \delta) \lambda(f)-\kappa_{8} T^{-\delta / 2}\left\|f^{\prime}\right\|_{2}
$$

with κ_{8} depending only on a, b, and $\left\|f^{\prime}\right\|_{2}=\left(\int_{0}^{1}\left|f^{\prime}\right|^{2} d x\right)^{1 / 2}$.
3.3. Lemma. Let a, b be relatively prime. Then there is some $\alpha_{1}=\alpha_{1}(a, b)$ so that for every $r>\alpha_{1}$ the multiplicative subgroup $S_{b}<\left(\mathbb{Z} / a^{r} \mathbb{Z}\right)^{*}$ generated by b satisfies

$$
\begin{equation*}
S_{b}>1+a^{\alpha_{1}}\left(\mathbb{Z} / a^{r} \mathbb{Z}\right) \tag{3.3a}
\end{equation*}
$$

Proof. By elementary number theory, the group of elements in $\left(\mathbb{Z} / a^{r} \mathbb{Z}\right)^{*}$ congruent to 1 modulo a^{3} is cyclic; moreover, all its subgroups are of the form

$$
\begin{equation*}
\left\{x \in\left(\mathbb{Z} / a^{r} \mathbb{Z}\right): x \equiv 1 \bmod \underline{m}\right\} \tag{3.3b}
\end{equation*}
$$

where a^{3} divides \underline{m} and \underline{m} divides a^{r}. (To verify this assertion, one may use exponential and logarithm maps, defined via power series, to reduce the question to the corresponding statement in the additive group of $\left(\mathbb{Z} / a^{r} \mathbb{Z}\right)$, where it is obvious; if a is odd, one could even replace a^{3} by a.)

Let $\varphi\left(a^{3}\right)$ be the size of $\left(\mathbb{Z} / a^{3} \mathbb{Z}\right)^{*}$. The subgroup generated by $b^{\varphi\left(a^{3}\right)}$ is of the form (3.3b); clearly, $\underline{m} \leq b^{\varphi\left(a^{3}\right)}$. We take $\alpha_{1}=\left\lceil a^{3} \log _{a} b\right\rceil$.
3.4. Note that Lemma 3.3 is essentially equivalent to the following: for any prime p and integer b not divisible by p we have that

$$
\left|b^{k}-1\right|_{p} \geq p^{-\log _{b} k+\alpha_{1}}=p^{\alpha_{1}} k^{-\frac{\log p}{\log b}}
$$

3.5. Lemma. Let $(a, b)=1$ and $\gamma \in \mathbb{R} / \mathbb{Z}$ arbitrary. Let μ be a probability measure on $\gamma+a^{-\ell} \mathbb{Z} / \mathbb{Z}$, and let $S_{b}<\left(\mathbb{Z} / a^{\ell} \mathbb{Z}\right)^{*}$ be the multiplicative group generated by b. Then for any smooth f,

$$
\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}}|[\xi \cdot \mu](f)-\lambda(f)|^{2} \leq \alpha_{2}\left\|f^{\prime}\right\|_{2}^{2}\|\mu\|_{2}^{2}
$$

with $\alpha_{2}=\alpha_{2}(a, b)$, and f^{\prime} the derivative of f.
Here, and in the proof that follows, we enclose the measure $\xi . \mu$ in square brackets for typographical clarity.

In words: a random translate of μ by $\xi \in S_{b}$ is uniformly distributed if the " l^{2}-entropy" $\log \left(1 /\|\mu\|_{2}\right)$ is large.

Proof. It follows from (3.3a) of Lemma 3.3 that for any $s \in a^{-\ell} \mathbb{Z} / \mathbb{Z}, 0 \neq n \in \mathbb{Z}$

$$
\left|\sum_{\xi \in S_{b}} e(n \xi s)\right| \leqslant \begin{cases}0 & \text { if } a^{\alpha_{1}} n s \not \equiv 0 \bmod 1 \tag{3.5a}\\ \# S_{b} & \text { otherwise }\end{cases}
$$

(note that S_{b} implicitly depends on ℓ).
Recall that $\widehat{\nu}$ denotes the Fourier transform of a measure ν on \mathbb{R} / \mathbb{Z}. Set $w_{s}=$ $\mu(\{s+\gamma\})$ for $s \in a^{-\ell} \mathbb{Z} / \mathbb{Z}$. Then

$$
\begin{align*}
\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}}\left|[\xi \cdot \mu]^{\wedge}(n)\right|^{2} & =\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}}\left|\sum_{s} w_{s} e(n \xi(s+\gamma))\right|^{2} \tag{3.5b}\\
& =\frac{1}{\# S_{b}} \sum_{s, s^{\prime}} w_{s} w_{s^{\prime}} \sum_{\xi \in S_{b}} e\left(\xi n\left(s-s^{\prime}\right)\right) \\
& \quad \leq \quad \#\left\{s^{\prime \prime} \in \mathbb{Z} / a^{\ell} \mathbb{Z}: a^{\alpha_{1}} n s^{\prime \prime} \equiv 0 \bmod 1\right\} \sum_{s} w_{s}^{2} \\
& \leq a^{\alpha_{1}} \operatorname{gcd}\left(a^{\ell}, n\right)\|\mu\|_{2}^{2}
\end{align*}
$$

Figure 1. μ and s (relatively prime case)
with $\operatorname{gcd}\left(a^{\ell}, n\right)$ the greatest common divisor of a^{ℓ} and n (and C-S shorthand for Cauchy-Schwarz).

Expands f in a Fourier series $f(x)=\sum \widehat{f}(n) e(n x)$; in particular $\widehat{f}(0)=\lambda(f)$. Then

$$
\begin{aligned}
\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}}|[\xi \cdot \mu](f)-\lambda(f)|^{2} & =\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}}\left|\sum_{n \neq 0} \widehat{f}(n)[\xi \cdot \mu]^{\wedge}(n)\right|^{2} \\
& \leq\left(\frac{1}{\# S_{b}} \sum_{\xi \in S_{b}} \sum_{n \neq 0} n^{-2}\left|[\xi \cdot \mu]^{\wedge}(n)\right|^{2}\right)\left(\sum_{n} n^{2}|\widehat{f}(n)|^{2}\right) \\
& \leq\left\|f^{\prime}\right\|_{2}^{2}\|\mu\|_{2}^{2} a^{\alpha_{1}}\left(\sum_{n \neq 0} \frac{\operatorname{gcd}\left(a^{\ell}, n\right)}{n^{2}}\right)
\end{aligned}
$$

The constants $\sum_{n \neq 0} n^{-2} \operatorname{gcd}\left(a^{\ell}, n\right)$ can be explicitly evaluated as follows

$$
\sum_{n \neq 0} \frac{\operatorname{gcd}\left(a^{\ell}, n\right)}{n^{2}} \leq \sum_{\substack{d a^{\ell}}} \sum_{\substack{n \neq 0 \\ d \mid n}} d n^{-2} \leq \frac{\pi^{2}}{3} \frac{a}{\phi(a)}
$$

with $\phi(\cdot)$ the Euler totient function. This establishes Lemma 3.5 with

$$
\alpha_{2}=\frac{\pi^{2}}{3} \frac{a^{\alpha_{1}+1}}{\phi(a)}
$$

α_{1} as in (3.3a).
3.6. Lemma. Suppose given $\rho>0$ and a measure μ on $a^{-n} \mathbb{Z} / \mathbb{Z}$ so that $H_{\mu} \geq$ $\rho n \log a$. Let $\delta \leq \rho / 10$. For any $\frac{10}{\delta} \leq \ell \leq \delta n$, there exists $s \leq(1-\delta) n$ so that

$$
\left[a^{s} \cdot \mu\right] \geq \nu:=\sum w_{i} \nu_{i}
$$

where:
(i) Each ν_{i} is a probability measure supported on a translate of $a^{-\ell} \mathbb{Z} / \mathbb{Z}$;
(ii) the w_{i} are non-negative and satisfy $\sum w_{i} \geq \rho-2 \delta$.
(iii) ν_{i} and w_{i} satisfy $\sum_{i} w_{i}\left\|\nu_{i}\right\|_{2}^{2}<2 a^{-\ell \delta}$.

Proof. Expand using $\S 2$ 2.4.(ii), noting the fact that $\mathcal{P}_{a}^{[0, n)}$ induces the partition of $a^{-n} \mathbb{Z} / \mathbb{Z}$ into singletons:

$$
\begin{array}{r}
H_{\mu}=H_{\mu}\left(\mathcal{P}_{a}^{[0, n)} \mid \mathcal{P}_{a}^{[\ell, n)}\right)+H_{\mu}\left(\mathcal{P}_{a}^{[\ell, n)} \mid \mathcal{P}_{a}^{[2 \ell, n)}\right)+\ldots \\
\quad+H_{\mu}\left(\mathcal{P}_{a}^{[(m-1) \ell, n)} \mid \mathcal{P}_{a}^{[m \ell, n)}\right)+H_{\mu}\left(\mathcal{P}_{a}^{[m \ell, n)}\right)
\end{array}
$$

with $m=\lfloor n / \ell\rfloor$. Now $H_{\mu}\left(\mathcal{P}_{a}^{[m \ell, n)}\right) \leq \ell \log a$. From this we deduce that there is $0 \leq s \leq n-\ell$ so that

$$
H_{\mu}\left(\mathcal{P}_{a}^{[s, n)} \mid \mathcal{P}_{a}^{[s+\ell, n)}\right) \geq \frac{(\rho n-\ell) \log a}{m} \geq(\rho-\delta) \ell \log a
$$

We refer to Figure 1 for a graphical description of this. To help decode the picture, notice that $P_{a}^{[x, y)}$ is precisely the partition of $[0,1]$, whereupon two numbers lie in the same part if their a-ary expansions coincide between digits x and y.

To simplify notations, we replace for the remainder of this proof μ with $\left[a^{s} . \mu\right]$ and n with $n-s$; thus by our choice of s we have that

$$
\begin{equation*}
H_{\mu}\left(\mathcal{P}_{a}^{[0, n)} \mid \mathcal{P}_{a}^{[\ell, n)}\right) \geq(\rho-\delta) \ell \log a . \tag{3.6a}
\end{equation*}
$$

The lemma now follows by applying Lemma 2.7 to μ with $\mathcal{P}=\mathcal{P}_{a}^{[0, \ell)}, \mathcal{Q}=\mathcal{P}_{a}^{[\ell, n)}$ and $\rho^{\prime}=\rho-\delta$.
3.7. Lemma 3.5 and Lemma 3.6 together easily imply the following weak form of the quantitative Rudolph theorem; we will later see how this weaker statement can be massaged to give the stronger version given by Theorem 3.2. The only significant difference between the two versions is that in Proposition 3.8 the measure μ is assumed to be supported on the finite set $a^{-n} \mathbb{Z} / \mathbb{Z}$.
3.8. Proposition. Let a, b be relatively prime integers, $n \in \mathbb{N}$, and μ a probability measure on $a^{-n} \mathbb{Z} / \mathbb{Z}$ satisfying the entropy condition

$$
H_{\mu}=H_{\mu}\left(\mathcal{P}_{a^{n}}\right) \geq \rho n \log a \quad \text { for some } \rho>0
$$

Let $\alpha_{3}=\log a / 4 \log b$ and suppose

$$
\begin{equation*}
\frac{10}{\log _{a} N} \leq \delta \leq \frac{\rho}{10}, a^{20 / \delta} \leq T \leq \alpha_{3} \delta n, f \in C^{1}(\mathbb{R} / \mathbb{Z}) \text { non-negative. } \tag{3.8a}
\end{equation*}
$$

Then there exists integers $s, t, \quad 0 \leq s \leq(1-\delta) n, 0 \leq t \leq T$ satisfying

$$
\begin{equation*}
\left[a^{s} b^{t} . \mu\right](f) \geq(\rho-2 \delta) \lambda(f)-\kappa_{9} T^{-\delta / 2}\left\|f^{\prime}\right\|_{2} \tag{3.8b}
\end{equation*}
$$

with $\kappa_{9}=\kappa_{9}(a, b)$
Proof. Set $\ell=\left\lfloor\log _{a} T\right\rfloor$, and let $\nu_{i}, \nu=\sum_{i} w_{i} \nu_{i}$ be as in Lemma 3.6; we recall in particular that each ν_{i} is a probability measure on a translate of $a^{-\ell} \mathbb{Z} / \mathbb{Z}$ with $\sum_{i} w_{i}\left\|\nu_{i}\right\|_{2}^{2} \leq 2 a^{-\delta \ell}$. Let $w=\sum_{i} w_{i}$. Note that by (3.8a) the conditions $10 / \delta \leq$ $\ell \leq \delta n$ of Lemma 3.6 are satisfied ${ }^{(7)}$.

[^3]Let T^{\prime} be the order of b in the multiplicative group $\mathbb{Z} / a^{\ell} \mathbb{Z}$, and note that $T^{\prime}<$ $a^{\ell} \leq T$. By Lemma 3.5,

$$
\begin{align*}
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}}\left|\left[b^{t} . \nu\right](f)-w \lambda(f)\right| & \leq \sum_{i} w_{i}\left(\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}}\left|\left[b^{t} . \nu_{i}\right](f)-\lambda(f)\right|\right) \tag{3.8c}\\
& \leq w^{1 / 2}\left(\sum_{i} w_{i}\left(\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}}\left|\left[b^{t} . \nu\right](f)-\lambda(f)\right|\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i} w_{i} \frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}}\left|\left[b^{t} . \nu\right](f)-\lambda(f)\right|^{2}\right)^{1 / 2} \\
& \leq \alpha_{2}^{1 / 2}\left\|f^{\prime}\right\|_{2}\left(\sum_{i} w_{i}\left\|\nu_{i}\right\|_{2}^{2}\right)^{1 / 2} \\
& \leq 2 \alpha_{2}^{1 / 2}\left\|f^{\prime}\right\|_{2} a^{-\ell \delta / 2}
\end{align*}
$$

Since $\left[a^{s} . \mu\right] \geq \nu$ for some $s \leq(1-\delta) n$, equation (3.8c) implies that there are $s \leq(1-\delta) n, t \leq T$ so that

$$
\left[a^{s} b^{t} \cdot \mu\right](f) \geq(\rho-2 \delta) \lambda(f)-\kappa_{9} T^{-\delta / 2}\left\|f^{\prime}\right\|_{2}
$$

with $\kappa_{9}=2 a^{1 / 2} \alpha_{2}{ }^{1 / 2}$.
3.9. We now deduce the Effective Rudolph Theorem $\S 3.2$, from the seemingly weaker Proposition 3.8:

Proof of Theorem 3.2. Let the notations be as in the statement of Theorem 3.2. Let $n=\left\lfloor\log _{a} N\right\rfloor$. Define the measure μ^{\prime} on $a^{-n} \mathbb{Z} / \mathbb{Z}$ by

$$
\mu^{\prime}\left(\left\{\frac{k}{a^{n}}\right\}\right)=\mu\left(\left[\frac{k}{a^{n}}, \frac{k+1}{a^{n}}\right)\right) .
$$

By Lemma 2.9

$$
H_{\mu^{\prime}}=H_{\mu}\left(\mathcal{P}_{a^{n}}\right) \geq H_{\mu}\left(\mathcal{P}_{N}\right)-\log (a+1) \geq(n \rho-2) \log a \geq n(\rho-\delta)
$$

Assumptions (3.2a) on δ, ρ, T, N imply that $\rho^{\prime}=\rho-\delta, T^{\prime}=T, \delta^{\prime}=\delta, n$ satisfy (3.8a). Applying Proposition 3.8 we get that there are $0 \leq s \leq(1-\delta)\left\lfloor\log _{a} N\right\rfloor$ and $0 \leq t \leq T$ so that

$$
\begin{equation*}
\left[a^{s} b^{t} . \mu^{\prime}\right](f) \geq(\rho-3 \delta) \lambda(f)-\kappa_{9} T^{-\delta / 2}\left\|f^{\prime}\right\|_{2} \tag{3.9a}
\end{equation*}
$$

By the choice of $s, t, a^{s} b^{t} \leq N^{1-\delta / 2}\left(\right.$ hence $\left.a^{s-n} b^{t} \leq a N^{-\delta / 2}\right)$, hence

$$
\begin{equation*}
\left|\left[a^{s} b^{t} . \mu\right](f)-\left[a^{s} b^{t} . \mu^{\prime}\right](f)\right| \leqslant \max _{\left|x-x^{\prime}\right| \leq a N^{-\delta / 2}}\left|f(x)-f\left(x^{\prime}\right)\right| \leq a N^{-\delta / 4}\left\|f^{\prime}\right\|_{2} \tag{3.9b}
\end{equation*}
$$

As long as $N^{1 / 2}>\log _{b}(N)$ (a condition we can use to define $N_{0}(a, b)$), we have that $T \leq N^{1 / 2}$; hence from (3.9a), there are s, t as in Theorem 3.2 so that

$$
\left[a^{s} b^{t} . \mu\right](f) \geq(\rho-3 \delta) \lambda(f)-\kappa_{8} T^{-\delta / 2}\left\|f^{\prime}\right\|_{\infty}
$$

with $\kappa_{8}=\kappa_{9}+a$.

4. Proof of the effective Rudolph-Johnson theorem.

4.1. In this section we present a related, but different, proof of Theorem 3.2 that works for the general case of a, b multiplicatively independent, at the (modest) expense of not being able to consider smaller range for the power of b. Throughout this section we shall denote:

$$
\mathcal{S}_{a, b}=\left\{a^{n} b^{m}: n, m \geq 0\right\} .
$$

4.2. The following deep result regarding lower bounds on linear forms in two logarithms plays a role analogous to Lemma 3.3 in our second proof of an effective version of the Rudolph-Johnson theorem. The first nontrivial bounds in this direction (which are probably sufficiently good for our purposes) are due to Gelfond and Schneider, with subsequent improvements by Baker and others; the rather precise form we give here (in a much more general form) is due to Baker and Wüstholz [1].
4.3. Theorem (Baker and Wüstholz [1]). Let a, b be multiplicative independent integers. Then for any $k, n \in \mathbb{Z}$

$$
|k / n-\log a / \log b| \geq \exp \left(-\kappa_{10} \log a \log b \log (1+|k|+|n|)\right)
$$

with κ_{10} an effective absolute constant (indeed, one can take $\kappa_{10}=2^{31}$).
4.4. Corollary. There exists $\kappa_{11}, \kappa_{12}>0$ depending on a, b so that if we write the elements of $\mathcal{S}_{a, b}$ as $a_{1} \leq a_{2} \leq \ldots$, then the gap

$$
\begin{equation*}
a_{k+1}-a_{k} \leq \frac{\kappa_{11} a_{k}}{\left(\log a_{k}\right)^{\kappa_{12}}} \tag{4.4a}
\end{equation*}
$$

Proof. Let $a_{r}=a^{k} b^{n}$, and for notational convenience assume $a^{k}>b^{n}$. We want to show that there is an element $t \in \mathcal{S}_{a, b}$ with

$$
a_{r} \leq t \leq a_{r}\left(1+\frac{\kappa_{11} a_{k}}{\left(\log a_{k}\right)^{\kappa_{12}}}\right)
$$

Let p / q with be the last successive continued fraction approximations of $\log a / \log b$ so that $q<k$ and $p / q>\log a / \log b$, and let $p^{\prime} / q^{\prime}, p^{\prime \prime}, q^{\prime \prime}$ be the next two continued fraction approximations of $\log a / \log b$. Then

$$
\begin{align*}
& \frac{p^{\prime}}{q^{\prime}}<\frac{\log a}{\log b}<\frac{p^{\prime \prime}}{q^{\prime \prime}}<\frac{p}{q} \tag{4.4b}\\
& p-\frac{\log a}{\log b} q<\frac{1}{q^{\prime}} \tag{4.4c}\\
& p^{\prime}-\frac{\log a}{\log b} q^{\prime}>-\frac{1}{q^{\prime \prime}}>-\frac{1}{k} . \tag{4.4d}
\end{align*}
$$

Using Theorem 4.3 and (4.4d) we have

$$
k^{-1}>\left|p^{\prime}-\frac{\log a}{\log b} q^{\prime}\right|>\exp \left(-\kappa_{10} \log a \log b \log \left(1+p^{\prime}+q^{\prime}\right)\right)
$$

hence $q^{\prime}>k^{\kappa_{12}}$ for $\kappa_{12}=\left(2 \kappa_{10} \log a \log b(1+\log a / \log b)\right)^{-1}$. Equation (4.4c) and the inequality $b^{x} \leq 1+(b-1) x$ for $x \in[0,1]$ implies

$$
1<b^{p} a^{-q}<1+\frac{b-1}{q^{\prime}}
$$

We conclude that

$$
\begin{aligned}
a_{r}<a^{k-q} b^{n+p} & <a_{r}\left(1+(b-1) / q^{\prime}\right) \\
& <a_{r}\left(1+(b-1) k^{-\kappa_{12}}\right) \\
& \leq a_{r}\left(1+(b-1)\left(\frac{\log a_{r}}{2 \log a}\right)^{-\kappa_{12}}\right)
\end{aligned}
$$

hence we can take

$$
\kappa_{11}=\max \left((b-1)(2 \log a)^{\kappa_{12}},(a-1)(2 \log b)^{\kappa_{12}}\right) .
$$

4.5. Lemma. Let ν be a probability measure on $\mathbb{R} / \mathbb{Z}, \quad M \in \mathbb{Z}^{+}$and $f \in C^{1}(\mathbb{R} / \mathbb{Z})$. Then there is an absolute constant α_{1} so that for any $0 \neq \xi \in \mathbb{Z}$

$$
\begin{equation*}
M^{-1} \sum_{0}^{M-1}\left|[m . \nu]^{\wedge}(\xi)\right|^{2} \leq 2 \alpha_{1}|\xi|\left\|\nu\left(\mathcal{P}_{M}\right)\right\|_{2}^{2} \tag{4.5a}
\end{equation*}
$$

Proof. We first consider the case $\xi=1$. Number the intervals comprising \mathcal{P}_{M} as I_{0}, \ldots, I_{M-1}, and for $x \in \mathbb{R}$ we let $\|x\|$ denote the distance of x from \mathbb{Z}.

Let $h(m)$ be a non-negative function on \mathbb{Z} so that $h(i) \geq 1 / M$ for $0 \leq i \leq M-1$.

$$
\begin{equation*}
M^{-1} \sum_{0}^{M-1}\left|[m . \nu]^{\wedge}(1)\right|^{2} \leq \sum_{i} h(m)[m . \nu]^{\wedge}(1)^{2}=\iint G(x, y) d \nu(x) d \nu(y) \tag{4.5b}
\end{equation*}
$$

with $G(x, y)=\sum_{m} h(m) e(m(x-y))$. It is possible to choose ${ }^{(8)}$ the function $h(m)$ so that

$$
|G(x, y)|<5 \min \left(1, M^{-2}\|x-y\|^{-2}\right)
$$

Since for $\ell \neq \ell^{\prime}, \ell^{\prime} \pm 1$

$$
\|x-y\| \geq\left\|\frac{\ell-\ell^{\prime}}{M}\right\| / 2 \quad \text { for } x \in I_{\ell}, y \in I_{\ell^{\prime}}
$$

we have that

$$
\begin{equation*}
(4.5 \mathrm{~b}) \leq 20\left(\sum_{\ell} \nu\left(I_{\ell}\right)^{2}+\sum_{\ell \neq \ell^{\prime}} \frac{\nu\left(I_{\ell}\right) \nu\left(I_{\ell^{\prime}}\right)}{\left|\ell-\ell^{\prime}\right|^{2}}\right) \tag{4.5c}
\end{equation*}
$$

By Frobenius theorem the norm of the quadratic form above is bounded by the row sum of the matrix, which is bounded above by an absolute constant α_{1}. We conclude that

$$
\begin{equation*}
M^{-1} \sum_{0}^{M-1}\left|[m . \nu]^{\wedge}(1)\right|^{2} \leq \alpha_{1}\left\|\nu\left(\mathcal{P}_{M}\right)\right\|_{2}^{2} \tag{4.5~d}
\end{equation*}
$$

To obtain the required estimate for general ξ, apply (4.5d) on $\xi . \nu$ to obtain

$$
M^{-1} \sum_{0}^{M-1}\left|[m . \nu]^{\wedge}(\xi)\right|^{2} \leq \alpha_{1}\left\|\xi . \nu\left(\mathcal{P}_{M}\right)\right\|_{2}^{2}
$$

[^4]and note that
$$
\left\|\xi \cdot \nu\left(\mathcal{P}_{M}\right)\right\|_{2}^{2}=\left\|\nu\left(\xi^{-1} \mathcal{P}_{M}\right)\right\|_{2}^{2} \underset{(*)}{\leq} 2|\xi|\left\|\nu\left(\xi^{-1} \mathcal{P}_{M} \vee \mathcal{P}_{M}\right)\right\|_{2}^{2} \leq 2|\xi|\left\|\nu\left(\mathcal{P}_{M}\right)\right\|_{2}^{2}
$$
where the inequality marked by $(*)$ is a consequence of the fact that every atom of $\xi^{-1} \mathcal{P}_{M}$ intersects at most $2|\xi|$ atoms of $\xi^{-1} \mathcal{P}_{M} \vee \mathcal{P}_{M}$.
4.6. Lemma. Let a, b be multiplicative independent integers, and μ a probability measure, and s a sufficiently large integer $\left(s>\alpha_{2}\right)$. Assume that μ supported on the interval $\left[k a^{-s},(k+1) a^{-s}\right]$. Let $f \in C^{1}(R / \mathbb{Z}), \ell<\kappa_{12} \log _{a}(s) / 2 \quad\left(\kappa_{12}\right.$ as in Corollary 4.4). Then there is a subset
$$
R_{s} \subset S_{a, b} \cap\left\{1,2,3, \ldots, a^{s+\ell}\right\}
$$
(independent of μ, k) so that
\[

$$
\begin{equation*}
\frac{1}{\# R_{s}} \sum_{n \in R_{s}}|[n \cdot \mu](f)-\lambda(f)|^{2}<\alpha_{3} \ell^{2}\left\|f^{\prime}\right\|_{2}^{2}\left\|\mu\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2} \tag{4.6a}
\end{equation*}
$$

\]

Here α_{2} and α_{3} depend on a, b.
Proof. By Corollary 4.4, we can find a subset

$$
R_{s}=\left\{n_{1}, \ldots, n_{a^{\ell}}\right\} \subset S_{a, b} \cap\left\{1, \ldots, a^{s+\ell}\right\}
$$

so that

$$
\begin{equation*}
\left|n_{m}-m a^{s}\right|<\delta a^{s} \tag{4.6b}
\end{equation*}
$$

for $\delta=\kappa_{11}(s \log a)^{-\kappa_{12}}$. Define α_{2} so that if $s>\alpha_{2}$,

$$
(s \log a)^{\kappa_{12}}>10 \kappa_{11} \quad \text { and } \quad \delta \leq a^{-\ell}
$$

We now estimate for any $0 \neq \xi \in \mathbb{Z}$

$$
\begin{align*}
a^{-\ell} \sum_{m=0}^{a^{\ell}-1}\left|\left(n_{m} \cdot \mu\right)^{\wedge}(\xi)\right|^{2} \leq a^{-\ell}(& \sum_{m=0}^{a^{\ell}-1}\left|\left(m a^{s} \cdot \mu\right)^{\wedge}(\xi)\right|^{2} \tag{4.6c}\\
& \left.+\sum_{m=0}^{a^{\ell}-1}\left|\left(m a^{s} \cdot \mu\right)^{\wedge}(\xi)-\theta_{m}\left(n_{m} \cdot \mu\right)^{\wedge}(\xi)\right|^{2}\right)
\end{align*}
$$

were θ_{m} are arbitrary complex numbers with $\left|\theta_{m}\right|=1$. Taking $\theta_{m}=e\left(-n_{m} a^{-s} \xi\right)$ we have

$$
\begin{aligned}
\left|\left(m a^{s} \cdot \mu\right)^{\wedge}(\xi)-\theta_{m}\left(n_{m} \cdot \mu\right)^{\wedge}(\xi)\right| & \leq \max _{0 \leq t \leq a^{-s}}\left|e\left(m a^{s} \xi t\right)-e\left(n_{m} \xi t\right)\right| \\
& \leq 10|\xi|\left|m-n_{m} a^{-s}\right| \\
& \leq 10 a^{-\ell}|\xi|
\end{aligned}
$$

and

$$
\begin{equation*}
(4.6 \mathrm{c}) \leq 2 \alpha_{1}|\xi|\left\|\mu\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2}+100 a^{-2 \ell}|\xi|^{2} . \tag{4.6d}
\end{equation*}
$$

Figure 2. μ and s (general multiplicatively independent case)

Using (4.6d) we have

$$
\begin{aligned}
& a^{-\ell} \sum_{m=0}^{a^{\ell}-1}\left|\left[n_{m} \cdot \mu\right](f)-\lambda(f)\right|^{2}=a^{-\ell} \sum_{m=0}^{a^{\ell}-1}\left|\sum_{\xi \neq 0}\right|\left[n_{m} \cdot \mu\right]^{\wedge}(\xi)| | \widehat{f}(\xi)| |^{2} \\
& \leq a^{-\ell}\left\|f^{\prime}\right\|_{2}^{2} \sum_{m=0}^{a^{\ell}-1}\left(\sum_{\xi}|\xi|^{-2}\left|\left[n_{m} \cdot \mu\right]^{\wedge}(\xi)\right|^{2}\right) \\
& \leq\left\|f^{\prime}\right\|_{2}^{2}\left(\sum_{|\xi|<a^{\ell}}\left(2 \alpha_{1}|\xi|^{-1}\left\|\mu\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2}+200 a^{-2 \ell}\right)+2 a^{-\ell}\right) \\
& \leq\left(4 \alpha_{1} \log a+202\right) \ell^{2}\left\|f^{\prime}\right\|_{2}^{2}\left\|\mu\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2}
\end{aligned}
$$

Note that by the assumption on the support of μ,

$$
\left\|\mu\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2}=\left\|\left[a^{s} \cdot \mu\right]\left(\mathcal{P}_{a^{\ell}}\right)\right\|_{2}^{2} \geq a^{-\ell}
$$

4.7. Lemma. Suppose given $\rho>0, n$ and a measure μ on \mathbb{R} / \mathbb{Z} so that $H_{\mu}\left(\mathcal{P}_{a^{n}}\right) \geq$ $\rho n \log a$. Let $\delta \leq \rho / 10$. For any $\frac{10}{\delta} \leq \ell \leq \delta n$, there exists s with $\delta n \leq s+\ell \leq n$ so that

$$
\mu \geq \nu:=\sum w_{i} \nu_{i}
$$

where:
(i) Each ν_{i} is a probability measure supported on a single a^{-s}-interval from $\mathcal{P}_{a^{s}}$;
(ii) the w_{i} are non-negative and satisfy $\sum w_{i} \geq \rho-3 \delta$;
(iii) ν_{i} and w_{i} satisfy $\sum_{i} w_{i}\left\|\nu_{i}\left(\mathcal{P}_{a^{s+\ell}}\right)\right\|_{2}^{2}<2 a^{-\ell \delta}$.

This lemma is proved precisely as Lemma 3.6, with Figure 2 substituting for Figure 1. For example, the first displayed equation of Lemma 3.6 should be replaced in the present context by $H_{\mu}=H_{\mu}\left(\mathcal{P}_{a}^{[0, \ell)}\right)+H_{\mu}\left(\mathcal{P}_{a}^{[0,2 \ell)} \mid \mathcal{P}_{a}^{[0, \ell)}\right)+H_{\mu}\left(\mathcal{P}_{a}^{[0,3 \ell)} \mid \mathcal{P}_{a}^{[0,2 \ell)}\right)+$
4.8. Proof of Theorem 1.4

Let $n=\left\lfloor\log _{a} N\right\rfloor$. Then $H_{\mu}\left(\mathcal{P}_{a^{n}}\right) \geq H_{\mu}\left(\mathcal{P}_{N}\right)-\log 2 a \geq(\rho-\delta) n \log a$. Apply Lemma 4.7 with $\rho^{\prime}=\rho-\delta$ and $\ell=\kappa_{12} \log _{a}(\delta n) / 4$ to find s with $\delta n \leq s+\ell \leq n$, probability measures ν_{i} and weights w_{i} as in that lemma; in particular

$$
w:=\sum w_{i} \geq \rho-4 \delta \quad \text { and } \quad \sum w_{i}\left\|\nu_{i}\left(\mathcal{P}_{a^{s+l}}\right)\right\|_{2}^{2} \leq 2 a^{-\ell \delta}
$$

Also by appropriate choice of $N_{0}(a, b)$ we may certainly assume that $\ell<\delta n / 2$.

As in Lemma 4.7 set $\nu=\sum w_{i} \nu_{i} \leq \mu$. Then

$$
\begin{align*}
\frac{1}{\# R_{s}} \sum_{m \in R_{S}}|[m . \nu](f)-w \lambda(f)| & \leq \sum_{i} w_{i}\left(\frac{1}{\# R_{s}} \sum_{m \in R_{S}}\left|\left[m \cdot \nu_{i}\right](f)-\lambda(f)\right|\right) \tag{4.8a}\\
& \leq w^{1 / 2}\left(\sum_{i} w_{i}\left(\frac{1}{\# R_{s}} \sum_{m \in R_{S}}|[m \cdot \nu](f)-\lambda(f)|\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i} w_{i} \frac{1}{\# R_{s}} \sum_{m \in R_{S}}|[m \cdot \nu](f)-\lambda(f)|^{2}\right)^{1 / 2} \\
& \leq \alpha_{3}^{1 / 2} \ell\left\|f^{\prime}\right\|_{2}\left(\sum_{i} w_{i}\left\|\nu_{i}\left(\mathcal{P}_{a^{s+l}}\right)\right\|_{2}^{2}\right)^{1 / 2} \\
& \leq 2 \alpha_{3}^{1 / 2} \ell\left\|f^{\prime}\right\|_{2} a^{-\ell \delta / 2}
\end{align*}
$$

where the inequality $(*)$ follows by applying Lemma 4.6 on each ν_{i}.
As $\ell=\kappa_{12} \log _{a}(\delta n) / 4$

$$
a^{-\ell \delta / 2}=(\delta n)^{-\kappa_{12} \delta / 8} \leq 10 n^{-\kappa_{12} \delta / 8}
$$

obtaining

$$
\frac{1}{\# R_{s}} \sum_{m \in R_{s}} m \cdot \mu(f) \geq w \mu(f)-\kappa_{1} \log \log N(\log N)^{-\kappa_{12} \delta / 8}
$$

for $\kappa_{1}=20 \kappa_{12} \alpha_{3}$.

5. Deduction of effective Furstenburg theorem.

5.1. Let $\alpha \in \mathbb{R} / \mathbb{Z}$ be an irrational; set $X_{N}=\left\{n \alpha: n \in \mathcal{S}_{a, b}, n \leq N\right\} \subset \mathbb{R} / \mathbb{Z}$.

We will assume that we are given an increasing function $F: \mathbb{N} \rightarrow \mathbb{R}$ such that $|\alpha-a / q| \geq F(q)^{-1}$ for all $q \in \mathbb{N}$.

We define functions F_{2}, F_{3} in terms of F via:

$$
\begin{align*}
& F_{1}(x)=\exp \left(\exp \left(\left(2 \kappa_{11} x\right)^{1 / \kappa_{12}}\right)\right), F_{2}(N)=3 F_{1}(N) F \circ F_{1}(N) \tag{5.1a}\\
& F_{3}(N)=F_{2}\left(a^{N+1}\right), F_{4}=a^{N} F_{3}(N)
\end{align*}
$$

where κ_{12}, κ_{11} is as in Corollary 4.4.
We prove the following refinement of Theorem 1.8:
5.2. Proposition. Suppose $K \geq F_{4}(M)$. Then X_{K} is $M^{-1 / 200}$-dense in \mathbb{R} / \mathbb{Z} for sufficiently large M ("sufficiently large" depending on a, b).
5.3. Lemma. Let F_{2} be defined as in (5.1a). If $M \geq M_{0}(a, b)$, then

$$
X_{F_{2}(M)}-X_{F_{2}(M)}
$$

is $1 / M$-dense in \mathbb{R} / \mathbb{Z}.
Proof. The set $\left\{n \in \mathcal{S}_{a, b}: n \leq N\right\}$ has cardinality $\geq c_{1}(\log N)^{2}$ for some $c_{1}=$ $c_{1}(a, b)$.

Therefore, for $L \geq L_{0}(a, b)$ the set $X_{L}-X_{L}$ contains an element whose distance d from 0 satisfies $F(L)^{-1} \leq d \leq(\log L)^{-1}$.

It now follows from Corollary 4.4 that if $L \geq L_{1}(a, b)$, then

$$
\begin{equation*}
K \geq 3 . L \cdot F(L) \Longrightarrow X_{K}-X_{K} \text { is } \frac{2 \kappa_{11}}{(\log \log L)^{\kappa_{12}}} \text {-dense; } \tag{5.3a}
\end{equation*}
$$

rephrasing this gives the lemma.
To see (5.3a), note that $d+\mathbb{Z} \in X_{L}-X_{L}$. Let $\mathcal{S}_{a, b}=\left\{a_{1}<a_{2}<\ldots\right\}$ and consider the sequence $a_{n} . d$ for $n_{1} \leq n \leq n_{2}$ with n_{1} the smallest so that $a_{n_{1}}>d^{-1 / 2}$ and n_{2} the largest so that $a_{n_{2}}<d^{-1}$.

Then by (4.4a) for $n_{1} \leq n \leq n_{2}$ we have that

$$
\frac{a_{n+1}}{a_{n}} \leq 1+\frac{2 \kappa_{11}}{(\log d)^{\kappa_{12}}} \leq \frac{2 \kappa_{11}}{(\log \log L)^{\kappa_{12}}}
$$

so there is no gap larger than $2 \kappa_{11}(\log \log L)^{-\kappa_{12}}$ in the sequence $a_{n_{1}} d, \ldots, a_{n_{2}} d$. Also the smallest element $a_{n_{1}} d$ is $\leq d^{-1 / 2} \leq 2 \kappa_{11}(\log \log L)^{-\kappa_{12}}$ if $L \geq L_{1}(a, b)$, and the largest is $\geq 1-2 \kappa_{11}(\log \log L)^{-\kappa_{12}}$.

Thus, for $L \geq L_{1}(a, b)$, the set $X_{3 . d^{-1} . L}-X_{3 . d^{-1} . L}$ is $2 \kappa_{11}(\log \log L)^{-\kappa_{12}}$-dense. Note that $3 d^{-1} L \leq 3 F(L) L$.
5.4. Lemma. For $N \geq N_{0}(a, b)$ the set $X_{F_{3}(N)}$ intersects at least $\frac{1}{2} a^{N / 2}$ atoms of the partition $\mathcal{P}_{a^{N}}$.

Proof. By the previous lemma (recalling that $\left.F_{3}(N)=F_{2}\left(a^{N+1}\right)\right) X_{F_{3}(N)}-X_{F_{3}(N)}$ is a^{-N-1}-dense in \mathbb{R} / \mathbb{Z} if N is sufficiently large (in terms of a, b). This means that $X_{F_{3}(N)}-X_{F_{3}(N)}$ intersects every atom of the partition $\mathcal{P}_{a^{N}}$.

If P_{1}, P_{2} are two atoms of $\mathcal{P}_{a^{N}}$, then $P_{1}-P_{2}:=\left\{\alpha_{1}-\alpha_{2}: \alpha_{j} \in P_{j}\right\}$ is covered by at most two atoms of $\mathcal{P}_{a^{N}}$. Therefore, $X_{F_{3}(N)}$ must intersect $\geq \frac{1}{2} a^{N / 2}$ atoms of $\mathcal{P}_{a^{N}}$.
5.5. Proof of Proposition 5.2. By Lemma 5.4, the set $X_{F_{3}(N)}$ intersects at least $\frac{1}{2} a^{N / 2}$ atoms of $\mathcal{P}_{a_{N}}$.

Let

$$
\mathcal{C}=\left\{P \in \mathcal{P}_{a_{N}}: P \cap X_{F_{3}(N)} \neq \emptyset\right\}
$$

and for every $P \in \mathcal{C}$ let x_{P} be a single point in $P \cap X_{F_{3}(N)}$. Let $\mu=\frac{1}{|\mathcal{C}|} \sum_{p \in \mathcal{C}} \delta_{x_{P}}$.
Then $H_{\mu}\left(\mathcal{P}_{a^{N}}\right) \geq N \log a / 2-\log 2$. Applying Theorem 1.4 with $\rho=0.49, \delta=0.1$ and f a suitable test function supported on an arbitrary interval J of size $N^{-\kappa_{2} / 100}$ we get an $m \leq a^{N}$ in $\mathcal{S}_{a, b}$ so that $m . \mu(J)>0$ hence $X_{F_{4}(N)}$ is $N^{-\kappa_{2} / 100}$-dense for $N \geq N_{2}(a, b)$.
5.6. The proof of Theorem 1.10 about density of $\left\{a^{k} b^{l} \cdot \frac{m}{N}: 0<k, l<\kappa_{6} \log N\right\}$ is very similar:
Proof of Theorem 1.10
Step 1: Set for any M

$$
\begin{equation*}
X_{M}=\left\{a^{k} b^{\ell} \cdot \frac{m}{N}: a^{k} b^{\ell}<M\right\} \tag{5.6a}
\end{equation*}
$$

Then there is a $d \in X_{N}-X_{N}$ with

$$
\frac{1}{N} \leq d<\alpha_{1}^{-1}(\log N)^{-2}
$$

Step 2: The set

$$
Y=\left\{a^{k} b^{\ell} . d: a^{k} b^{\ell}<d^{-1}\right\} \subset X_{N^{2}}-X_{N^{2}}
$$

is $2 \kappa_{11}(\log d)^{-\kappa_{12}}$-dense.
Hence if $M=(\log d)^{\kappa_{12}} / 4 \kappa_{11}$, we can find a probability measure μ (constructed similarly to the measure μ in §5.5) supported on $X_{N^{2}}$ with $H_{\mu}\left(\mathcal{P}_{M}\right) \geq \frac{1}{2} \log M-$ $\log 2$.
Step 3: Applying Theorem 1.4, we conclude that the set

$$
X_{M N^{2}}=\left\{m . x: m=a^{s} b^{t}<M, x \in X_{N^{2}}\right\}
$$

is $\alpha_{2}(\log M)^{-\kappa_{2} / 100}$-dense. If N is sufficiently large $X_{N^{2} M} \subset X_{N^{3}}$ and moreover by definition of M it follows that

$$
\begin{equation*}
\alpha_{2}(\log M)^{-\kappa_{2} / 100}=\alpha_{3}(\log \log d)^{-\kappa_{2} / 100} \leq \alpha_{4}(\log \log \log N)^{-\kappa_{2} / 100} \tag{5.6b}
\end{equation*}
$$

5.7. Note that if $X_{N}-X_{N}$ contained an element d of size $O(1 / N)$ (e.g. if $m=1$) in the proof outlined above in $\S 5.6$ one \log can be dropped in (5.6 b), yielding a substantially improved estimate.

References

[1] A. Baker and G. Wüstholz. Logarithmic forms and group varieties. J. Reine Angew. Math., 442:19-62, 1993.
[2] J. Bourgain, A. Glibichuk, and S. Konyagin. Estimate for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc.
[3] Jean Bourgain. Sum-product theorems and exponential sum bounds in residue classes for general modulus. C. R. Math. Acad. Sci. Paris, 344(6):349-352, 2007.
[4] Manfred Einsiedler, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh. The distribution of periodic torus orbits on homogeneous spaces, 2006. submitted (42 pages).
[5] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory, 1:1-49, 1967.
[6] Bernard Host. Nombres normaux, entropie, translations. Israel J. Math., 91(1-3):419-428, 1995.
[7] Aimee S. A. Johnson. Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. Israel J. Math., 77(1-2):211-240, 1992.
[8] William Parry. Squaring and cubing the circle-Rudolph's theorem. In Ergodic theory of \mathbf{Z}^{d} actions (Warwick, 1993-1994), volume 228 of London Math. Soc. Lecture Note Ser., pages 177-183. Cambridge Univ. Press, Cambridge, 1996.
[9] Daniel J. Rudolph. $\times 2$ and $\times 3$ invariant measures and entropy. Ergodic Theory Dynam. Systems, 10(2):395-406, 1990.

[^0]: ${ }^{(3)}$ Also known as the Kolmogorov-Sinai entropy or (somewhat confusingly) the metric entropy.

[^1]: ${ }^{(4)}$ For this reason it is sometimes convenient to extend the definition of H_{μ}^{p} also to $p=1$ by setting $H_{\mu}^{1}(\mathcal{P})=H_{\mu}(\mathcal{P})$.
 ${ }^{(5)}$ Indeed, the same equality holds for H_{μ}^{p} for every p, with equality if and only if all the parts of \mathcal{P} are assigned equal measure.

[^2]: ${ }^{(6)} \nu_{1}$ is a measure supported on at most N elements, hence $H_{\nu_{1}} \leq \log N ; \nu_{2}$ is supported on at most $N^{\delta} / 2$ elements and $H_{\nu_{2}} \leq \delta \log N-\log 2$; finally, $H_{\mu}\left(\left\{S_{1}, S_{2}\right\}\right) \leq \log 2$.

[^3]: ${ }^{(7)}$ To see $\ell \leq \delta n$, note that by the upper bound on T given by (3.8a), if $\delta n<\ell$ (hence $\left.\delta n<\log _{a} T\right), e^{\bar{\delta} n \log a} \leq \frac{\delta n \log a}{4 \log b}$ and by $e^{x}>x^{2} / 2$ this would imply $\delta n<(2 \log a \log b)^{-1}$ in contradiction to $\alpha_{3} \delta n \geq T \geq 2^{20 / \delta}$.

[^4]: ${ }^{(8)}$ Take, for example, $h=1 / M \max (1-d(m) / M)$, where $d(m)$ is the distance of m to the set $[0, M-1]$, i.e. $d(m)=\min _{0 \leq i \leq M-1}|i-m|$. If we took naively $h(m)$ to be the characteristic function of $[0, M-1]$, this would lead to a similar result but with an extra factor of $\log M$; this would not affect our argument in any substantive way.

