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1. Preliminary

The aim of this paper is to address theoretical and practical aspects of high-precision
computation of Maass forms. Namely, we compute to over 1000 decimal places the Lapla-
cian and Hecke eigenvalues for the first few Maass forms on PSL(2, Z)\H, and certify the
Laplacian eigenvalues correct to 100 places. We then use these computations to test certain
algebraicity properties of the coefficients.

The outline of the paper is as follows. In Section 2, we discuss Hejhal’s algorithm for
computation of Maass forms and the details necessary to implement it in high precision.
As this algorithm is heuristic and does not prove the existence of cusp forms, in Section 3
we turn to the question of rigorously verifying the numerical computation. In fact, it will
be quite easy to show (by the “quasi-mode construction”) that the putative eigenfunctions
produced in Section 2 are close, in an appropriate topology, to genuine eigenfunctions. It is
a more subtle point to show that they are close to cusp forms. Indeed, Selberg introduced
the trace formula for the precise purpose of showing there existed cusp forms for PSL(2, Z);
we shall use a trick from [17] to greatly simplify the analysis. The high precision to which
we compute the forms turns out to be essential to our approach; there is an implicit loss
of precision in proving an eigenfunction correct, so it seems important to have a heuristic
method of computing the eigenfunction to higher precision than the desired certifiable
precision.

In Section 4 we test some algebraicity properties of coefficients of Maass forms. It is
generally believed that the Laplacian and Hecke eigenvalues of Maass forms are transcen-
dental; we provide (to our knowledge, the first published) evidence in this direction. For
instance, we show that the first eigenvalue of PSL(2, Z)\H is not the solution of any alge-
braic equation with degree ≤ 10, all of whose coefficients are ≤ 107 in magnitude. This
uses the results of Section 3 to provably verify this eigenvalue to 100 decimal places; if we
assume (and there is a great deal of evidence in this direction) that the computations of
Section 2 are correct to 1000 decimal places, we obtain much stronger results yet.

Moreover, we also test for algebraic relations between coefficients that generalize those
that exist for eigenvalue 1

4
forms or for dihedral forms. Stark has informed us that he tested

for relations of a similar nature in the early 1980s, but the data he had available was less
accurate.
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Related problems and other applications. Farmer and Lemurell have recently found
[7] that Maass forms persist when deforming lattices along certain (special) curves in Te-
ichmüller space. The theoretical aspects of this are not fully understood; in particular,
rigorously proving this persistence seems like an interesting question. The high precision
algorithm which we outline in Section 2 might be a valuable tool when studying this ques-
tion, at least from an experimental perspective: For example, we have used it to refine
some points on the curves of [7] to more than 200 decimal places.

In this vein, it seems natural to propose the following (challenging) problem in rigorous
computation of spectra: Find practical algorithms which for given numbers Λ > 0 and
ε0 > 0 and a given region U in Teichmüller space, determine—with proofs, and to within
an error bounded by ε0—the complete set of submanifolds in U × [0, Λ] described by the
{λ < Λ}-part of the discrete spectra on the hyperbolic surfaces corresponding to the points
in U .

Acknowledgements. We would like to thank Dennis Hejhal, Peter Sarnak, Kannan
Soundararajan, and Fredrik Strömberg for helpful discussions. The first author was sup-
ported by an NSF postdoctoral fellowship. The third author was supported by a CMI
Research Fellowship and NSF Grant DMS-0245606.

2. Computation

The problem of computing Maass waveforms on PSL(2, Z)\H numerically has been con-
sidered by a number of authors, starting in the 1970s; cf. [25] and the references listed
therein. In the present section we will briefly recall the method due to Hejhal [12] for
computation of Maass waveforms, and then describe how we adapt this algorithm in order
to carry out the computations in very high accuracy. Hejhal’s algorithm represents a major
step forward compared to earlier existing methods, regarding both numerical stability and
range of applicability. For example, this algorithm was used by H. Then in [25] to compute
eigenvalues of size λ > 1.6 · 109 on PSL(2, Z)\H, which is the current record.

As stressed in the introduction, the method is (at present) non-rigorous. It seems quite
reasonable to expect that when implemented with sufficiently sharp parameters M0, Q, Y
(see below), the algorithm should succeed in finding correct data for all existing cusp forms,
and that it should never indicate existence of “false” cusp forms—this is also corroborated
by all experiments carried out so far (see [12, 20, 25, 22], as well as sections 2.3, 3.4 below).
However, we do not attempt to prove either of these assertions here.

The algorithm of Hejhal applies to the computation of Maass waveforms on any cofinite
Fuchsian group Γ such that Γ\H has exactly one cusp. It has recently been extended to
the case when Γ\H has several cusps, see [20, 22].

2.1. Hejhal’s algorithm. We start by recalling the algorithm from [12] (cf. also [13] for
more details). Let Γ ⊂ PSL(2, R) be a cofinite Fuchsian group. For simplicity we will
assume that Γ\H has exactly one cusp (the modifications necessary in the case with several
cusps are mentioned very briefly at the end). Without loss of generality we may take this
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cusp to be positioned at ∞, and to have width 1, i.e. we assume that Γ∞, the stabilizer of
∞ in Γ, is generated by ( 1 1

0 1 ). We fix a (closed) fundamental domain F ⊂ H of Γ; since
Γ\H has only one cusp we may assume that Y0 = inf {Im z : z ∈ F} is a positive number.

We also fix an integer D (say D ≥ 10), indicating that we are optimally aiming for a
precision of about D decimal digits in our results.

Let us consider any fixed Maass cusp form f(z) of eigenvalue λ = 1
4
+r2 (r ∈ R) on Γ\H.

Take its Fourier expansion at ∞ to be (see [10] or [14])

f(z) =
∑
n6=0

an
√

y κir(2π|n|y) e(nx), (z = x + iy).(1)

Here we understand κir(u) to mean e
π
2
rKir(u), in line with the numerical convention from

[11, 12]. This ensures that κir(u) is an oscillating function of u when 0 < u . r with
amplitude roughly of order of magnitude ∼ 1, and then decays exponentially for u & r, see
[1].

It is known in general that the coefficients an are bounded by an = O(|n| 13+ε), for all
n, see [2]. We will assume from the start that the cusp form f(z) has been singled out in
the λ-eigenspace by a legitimate normalization an1 = 1, an2 = an3 = . . . = and

= 0 where
d is the dimension of the λ-eigenspace and n1, . . . , nd are some small distinct indices. We
will also assume that this normalization makes an = O(|n| 13+ε) hold with a modest implied
constant.1

Under this assumption, one can choose a sensible (decreasing) function M(y) so that,
for each z = x + iy ∈ H, one has

f(z) =
∑

0<|n|≤M(y)

an
√

y κir(2π|n|y) e(nx) + [[10−D]],(2)

where [[10−D]] is shorthand for a quantity of absolute value less than 10−D. Let us declare
M(y) = M(Y0) := M0 for all y ≥ Y0.

Thus, by (2), for every y > 0 we are now viewing f(x+ iy) as a finite Fourier series in x.
We fix any number Y such that 0 < Y < Y0 and then take an integer Q with Q > M(Y ).
We introduce the following 2Q points, evenly spaced along a closed horocycle:

zj = xj + iY =
1

2Q

(
j − 1

2

)
+ iY ∈ H, 1−Q ≤ j ≤ Q.(3)

1In all experiments known to us it has been possible to find a good an-normalization of this type without
too much effort, although some trial and error might be necessary, especially when d is not known. The
most common case is d = 1 and here the normalization a1 = 1 very often turns out to fulfill our assumptions;
for instance this is certainly true in the case of newforms with d = 1 when Γ is a congruence subgroup of
PSL(2, Z), see [15]. We refer to [22] for a more detailed discussion involving cases with d ≥ 2 and a1 = 0.
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By taking appropriate linear combinations of relation (2) over all these points, we obtain,
for each |n| ≤ M(Y ):

an

√
Y κir(2π|n|Y ) =

1

2Q

Q∑
j=1−Q

f(zj) e
(
−nxj

)
+ [[10−D]].(4)

We will now utilize the fact that f is Γ-automorphic. For each j we compute the F -pullback
of zj, that is, we find a map Tj ∈ Γ such that z∗j = x∗j + iy∗j := Tj(zj) ∈ F . (There is
in general a very quick way to find this map Tj; the natural algorithm to use depends on
whether Γ is a “generic” cofinite subgroup of PSL(2, R), or a congruence or non-congruence
subgroup of PSL(2, Z), see, e.g. [20, 22, 23].) Using the automorphy relations f(zj) = f(z∗j )
in (4) we now have

an

√
Y κir(2π|n|Y ) =

∑
0<|`|≤M0

a`Vn` + 2[[10−D]],(5)

with

Vn` =
1

2Q

Q∑
j=1−Q

√
y∗j κir(2π|`|y∗j ) e(`x∗j − nxj).(6)

Relation (5) holds for all |n| ≤ M(Y ), for any given Maass cusp form f(z) of eigenvalue
λ = 1

4
+r2. Since Im zj = Y < Y0 ≤ Im z∗j we have Tj /∈ Γ∞ for all j, and hence the system

(5) should be far from a tautology.
Restricting (5) to 1 ≤ |n| ≤ M0, we obtain a system of 2M0 linear (homogeneous)

equations for the 2M0 unknowns {an}1≤|n|≤M0 . Of course, the eigenvalue λ = 1
4

+ r2 will
not be known from the start. To get a hold of r the above linear system is repeatedly
solved for two different Y -values, successively adjusting r to make the two solution vectors
{a′n}1≤|n|≤M0 and {a′′n}1≤|n|≤M0 as nearly equal as possible. (In cases of congruence groups
Γ one can instead adjust r so as to satisfy Hecke multiplicative relations among the first
few an.)

As pointed out in [12], it is not evident a priori that the linear system (5) will be well-
conditioned as hoped, and this would indeed be one of the key issues in any attempt to
prove that the above algorithm always achieves its goal.

Our experiments consistently indicate that when solving (5) for a correct r-value, each
coefficient an with 2π|n|Y � r (and |n| ≤ M0) is obtained to an accuracy of, roughly,

[an-precision] ≈
(

D − log+
10

∣∣∣∣ 1√
Y κir(2π|n|Y )

∣∣∣∣) digits.(7)

This is easy to explain heuristically: Note that since
√

uκir(u) is positive and exponentially
decaying for u � r, and y∗j ≥ Y0 > Y for all j, all coefficients in the column corresponding

to an in our system (5) will have absolute size .
√

Y κir(2π|n|Y ).
It follows from (7) that the {an}1≤|n|≤M0 are sufficiently accurate for formula (2) to give

f(x + iy) to ∼ D digits precision whenever y ≥ Y0. Hence the coefficients an may be
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obtained to precision ∼ D, also for |n| > M0, by running a second computation, namely

a(new)
n =

∑
0<|`|≤M0

a`Vn`√
Y ′κir(2π|n|Y ′)

(8)

for some Y ′ < Y such that
√

Y ′κir(2π|n|Y ′) is not extremely small, using Q′ > M(Y ′) in

place of Q in (6) to compute each Vn`. In fact, even if
√

Y ′κir(2π|n|Y ′) is very small we
may still expect (8) to give an to an accuracy as in (7), with Y ′ in place of Y .

Note that in the particular case of Γ = PSL(2, Z) (or more generally if JΓJ = Γ where
J : H 3 z 7→ −z ∈ H) we may assume each eigenfunction f to be either even (viz.,
a−n = an, ∀n) or odd (viz., a−n = −an, ∀n). This of course allows us to reduce the number
of unknowns in our system (5) by a factor 2.

In the case when Γ\H has several cusps, the only approach which has so far been found
to work well in general is to solve simultaneously for the Fourier coefficients at all cusps.

Then for each cusp η one introduces a set of evenly spaced points z
(η)
j around a closed

horocycle encircling η, and forms linear combinations analogous to (4). We refer to [20, 22]
for more details. It should be noted that in many cases, in particular when Γ is a congruence
group, the linear system can be reduced to involve fewer cusps, because of the existence of
Hecke-type symmetries (Fricke involutions) which connect the Fourier expansions at various
cusps. See [22, §2.8] as well as [7].

2.2. Adaptations to computations in high accuracy. We carried out our computa-
tions using the PARI/GP programming language [24], making use of its capacity to do
numerics in any given precision D (decimal digits). As we let D increase, we also need to
increase the size of the system of equations (5), because of M0 = M(Y0) and the definition
of M(Y ) in (2). For example, for Γ = PSL(2, Z) one has Y0 =

√
3/2, and tests on the

size of Kir(u) suggest that for modest r (r ≤ 25, say), the smallest admissible choices of
M0 = M(Y0) in (2) are roughly as follows:

D 50 100 200 525 1050
M0 30 55 95 235 455

(In the case Γ = PSL(2, Z) it would be possible to prove that (2) holds for these choices
of M0 and y ≥ Y0, using e.g. the bounds in [15] and careful estimates of the K-Bessel
function. See footnote 1.) Hence for D = 1050 our system will be of size ∼ 455×455. This
makes both time and memory very serious issues (note that 112 bytes are required to store
a single real number in precision D = 1050).

On Γ0(5) (which has two cusps) one has Y0 =
√

3/10 (see [22]), and for D = 525, r ≤ 10,
we need to take M0 as large as ∼ 1135 (D = 1050 would require M0 ∼ 2240; we have
not carried this out). We remark that due to symmetries the system of equations used for
Γ0(5) need not be of dimension larger than M0 ×M0.

In the second computation, (8), the main problem is time, as the number of terms
involved is often quite large (recall that in (8) we are to use (6) with Q′ > M(Y ′) in place
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of Q). It is useful to note that we may sacrifice accuracy in a controlled way, allowing
for a much larger choice of Y ′. For example, for r ≈ 13.77 on Γ = PSL(2, Z), we may
allow 2π|n|Y ′ to be as large as 315 and still only lose ∼ 130 digits according to (7);
hence for |n| ≤ 455 we may use Y ′ = 0.11 and Q′ = 3540 > M(Y ′), and this should
give all {an}1≤|n|≤455 to more than 900 digits precision. However, if we would only allow
a loss of ∼ 5 digits in (8), then for |n| = 455 we would need to take Y ′ ∼ 0.0097 and
Q′ > M(Y ′) & 40000, and the computation would be more than ten times as long.

When implementing the algorithm outlined in Section 2.1 on a computer, the most time-
consuming task is, by far, that of computing the values of the K-Bessel function Kir(u)
(see [11] and [25]). Our approach to computing Kir(u) (for u, r > 0) to very high accuracy
is quite elementary, and builds on recursive use of Taylor power series.

From (5) and (6) we see that our task will always involve computing Kir(u) for a fixed
r and a large set of different u-values, namely, u = 2π`y∗j with 1 − Q ≤ j ≤ Q and
` = 1, 2, . . . ,M0, as well as for u = 2πnY , n = 1, 2, . . . ,M0. We start by pre-tabulating
all these values in a decreasing list, u1 ≥ u2 ≥ . . . ≥ uN . In practice, with M0 adapted
to high precision D ≥ 500, the number N is well beyond 105, and the vast majority of
gaps um − um+1 are found to be much smaller than 1

10
. We then use the fact that once

Kir(um) together with K ′
ir(um) have been calculated for some m, all the higher derivatives

K
(n)
ir (um), n ≥ 2, can be computed fairly quickly using the differential equation

u2K ′′
ir(u) + uK ′

ir(u) + (r2 − u2)Kir(u) = 0.(9)

Thus we obtain the coefficients of the Taylor expansion of Kir(u) about u = um, and this
can be used to quickly compute Kir(um′) for all points um′ in our list lying sufficiently close
to um.

Specifically, using (9) we find that

unK
(n)
ir (u) = Pn(u)Kir(u) + Qn(u)uK ′

ir(u)(10)

where Pn(u) and Qn(u) are polynomials which satisfy P0(u) = 1, Q0(u) = 0 and the
recursion relations {

Pn+1(u) = uP ′
n(u)− nPn(u) + (u2 − r2)Qn(u)

Qn+1(u) = uQ′
n(u)− nQn(u) + Pn(u).

(11)

In particular, we see that Pn(u) and Qn(u) are polynomials of degree ≤ n (more precisely,
deg Pn = 2[n/2] and deg Qn = 2[(n−1)/2] for n ≥ 2), the coefficients of which only depend
on n and r. Hence the coefficients of these polynomials can be computed explicitly once
and for all as soon as r is given. The Taylor expansion of Kir(u) at u = um is then given
by

Kir(u) =
∞∑

n=0

Pn(um)Kir(um) + Qn(um)umK ′
ir(um)

n!
(u− um)n.(12)
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Note that the coefficients of this series may be computed and stored once um is given (along
with Kir(um), K ′

ir(um)). Our approach now is to truncate (12) at some finite n, and use
this sum to compute Kir(um′) for all m′ > m such that um′ lies sufficiently close to um, say
um−L ≤ um′ ≤ um for some L > 0. When we reach the last m′, i.e. um′+1 < um−L ≤ um′ ,
we use the differentiated version of (12) to compute K ′

ir(um′), and use Kir(um′) and K ′
ir(um′)

to evaluate the Taylor polynomial for Kir(u) about u = um′ , that is, we return to the start
of the above procedure but with m′ in place of m.

Since Kir(u) is exponentially decreasing in u for u � r, it is essential to work with
decreasing u-values, u1 ≥ u2 ≥ . . . ≥ uN as above, in order to make the recursive procedure
numerically stable.

In order to compute Kir(u), K ′
ir(u) at some initial point u = um as well as for small u,

we use the power series about the point u = 0, viz.

Kir(u) =
−π Im Iir(u)

sinh(πr)
= − π

sinh(πr)
· Im

( ∞∑
n=0

(u/2)ir+2n

n! Γ(n + ir + 1)

)
.(13)

When using this formula one encounters a catastrophic cancellation of significant digits un-
less u is quite small. To remedy for this fact we compute the sum using an internal precision
much larger than D. For example, for r ≈ 13.77 (the first even eigenvalue on PSL(2, Z))

and u = 3400, the maximum absolute value of an individual term in
∑∞

n=0
(u/2)ir+2n

n! Γ(n+ir+1)
is

slightly larger than 3.9·101472 (attained for n = 1699), whereas the total sum has imaginary
part ≈ −5.3 · 10−1461; to achieve the final precision D = 1050 for 3 ≤ r ≤ 25 and u in the
range 1000 ≤ u ≤ 3400, we added the terms using an internal precision of 5000 digits, and
cutting the sum off at n = 8500. Of course this computation is rather time-consuming; for
large u it takes several minutes to compute one single Kir(u)-value using (13) (on a 1.5
GHz PC).

We refer to [4] for information on our precise choices of parameters such as the maximum
interval length L and n-cutoff to use in (12), and the cutoff and internal precision in (13).
These choices were made using trial and error, and tested by computing long series of K-
Bessel values and checking against the result obtained using (13) with extra precision and
longer cutoff. Note that it would in principle not be difficult to work out more rigorous
error estimates for our K-Bessel values, but this would be a bit beside the point since the
computation of Maass forms using (5) is heuristic anyway.

We also compared our method for Kir(u) with the PARI (version 2.1.5) built-in function
besselk (which treats Kir(u) as a special case of the confluent hypergeometric function,
computed using a recursion relation combined with an asymptotic expansion for large z).
In precision D = 50 our approach was found to be more than 5 times as fast as the built-in
function (when considering the total time for a whole series u1 ≥ . . . ≥ uN from (5)). For
D = 200 the corresponding speed gain was a factor > 20, and for larger values of D we ran
into cases where the built-in function seems to enter an infinite loop.

2.3. Results. Using the algorithm described above we have obtained the following main
results. Our data files with eigenvalues and Fourier coefficients are available on [4], where
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each value is printed only to the number of decimals which we are certain (empirically) are
correct.

(A) We have computed the first ten eigenvalues on PSL(2, Z)\H (viz., r ≈ 9.5337,
12.1730, 13.7798, 14.3585, 16.1381, 16.6443, 17.7386, 18.1809, 19.4235, 19.4847) to a pre-
cision of more than 1000 decimal digits, together with the first 455 Fourier coefficients
a1, . . . , a455 to 900 digits (at least the first 50 of these were actually obtained to more than
1000 digits).

(B) We have computed a few examples of (newform) eigenvalues on congruence subgroups
of low level, namely

• the first eigenvalue on Γ0(5)\H: r ≈ 5.4362;

• the first two eigenvalues for Γ0(5) with nontrivial nebentypus
character χ = (5/·): r ≈ 3.2643 (a CM-form) and r ≈ 4.8938 (a
double eigenvalue);

• the first eigenvalue on Γ0(6)\H: r ≈ 2.5924.

In each case the eigenvalue and the first 50 Fourier coefficients were obtained to a precision
of more than 480 digits, and all the first 1050 Fourier coefficients were obtained to a
precision decaying with the index roughly as suggested by (7) (with Y = 0.171 for Γ0(5),
Y = 0.143 for Γ0(6), and D = 525). As initial data for the eigenvalues we used data from
the work of Fredrik Strömberg, [22].

(C) We have studied a few examples from Farmer and Lemurell [7] of (what appear to
be) Maass cusp form eigenvalues on deformations of an arithmetic surface, and refined the
precision from about 8 decimal digits as given in [7] to more than 200 digits (for both the
eigenvalue r and the deformation parameters). More specifically, our examples lie along
the curves in the 2-dimensional Teichmüller space T (Γ0(5)) which were found in [7] when
deforming the Maass forms with eigenvalues r ≈ 4.1324, 5.4362 and 6.8235 on Γ0(5)\H.

The computer time required was between one and three weeks per example in (A) and
(B) (on a 1.5 GHz PC).

In each of these cases, we have performed a number of tests to make certain (empirically)
that the data obtained is correct to the expected accuracy. Specifically, in all cases the
system of equations (5) was solved twice, using different Y -values, and the eigenvalues and
the coefficients were consistently seen to agree to the expected accuracy (i.e. in accordance
with (7)). In cases (A) and (C) we also used (8) to obtain the higher coefficients to better
precision, each time using two different Y ′-values, and in cases (A) and (B) all Hecke
multiplicativity relations involving the calculated coefficients were tested; all these tests
consistently indicated agreement to the expected accuracy. (See [4] for more details.)

Furthermore the eigenvalues and the Fourier coefficients of the CM-form in (B) are in
fact known explicitly (see Section 4.1; in particular r = π/ log((3 +

√
5)/2) ≈ 3.2643) and

hence this provides an excellent test of the computational algorithm; we verified that the
calculated eigenvalue and all the Fourier coefficients agreed with the known explicit values
to the expected accuracy.
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Regarding the examples in (C) we note that it is an open problem to prove that Maass
forms can truly be deformed along submanifolds in Teichmüller space, as suggested in [7].
The computations carried out in [7] provide strong evidence for this, however, and the fact
found here that these examples could be refined (in each case tried) to more than 200 digits’
precision, fulfulling tests as mentioned above, adds to this evidence.

3. Verification

In this section we prove the following proposition.

Proposition 1. Let λ̃ = 1
4

+ r̃2 and {ãn} be the Laplacian and Hecke eigenvalues of a
Maass cusp form on PSL(2, Z)\H. There is an algorithm with the following properties:

For any ε > 0 there is a number D0 = D0(ε) �ε,η λ̃1+η ∀η > 0 such that whenever λ ≥ 1
4

and {an}M
n=1 are numbers approximating λ̃ and ãn to D decimal places, i.e.

(14)
∣∣λ− λ̃

∣∣ < 10−D and
∣∣an − ãn

∣∣ < 10−D for all n ≤ M,

with D0 ≤ D ≤ M , the algorithm certifies in polynomial time O
(
DA
)

(with both the

implied constant and A > 0 absolute) the existence of a cusp form of eigenvalue λ̃′ such

that
∣∣λ− λ̃′

∣∣ < 10−(1−ε)D.

Remarks.

(1) The existence of an algorithm to certify the eigenvalue of a Maass form to any given
number of digits is not surprising; one could, after all, use the trace formula for
this purpose. (In fact, low precision eigenvalue computations have been rigorously
carried out using the trace formula for congruence subgroups; see [3].) The key
feature of Proposition 1 is the polynomial running time in the eigenvalue and number
of digits.

(2) The algorithm does not guarantee the uniqueness of the eigenvalue, i.e. that λ̃ = λ̃′.
To do that would require checking the Hecke eigenvalues as well, which could be
done by generalizing the results below using Hecke operators; see Lemma 1 for the
first steps in this direction. Certification of the Hecke eigenvalues is computationally
more difficult (although still polynomial) for reasons that are explained below; see
the remarks after Lemma 3. We give full details only for the Laplacian eigenvalue.

(3) Proposition 1 may also be extended to congruence subgroups, with the running time
depending polynomially on the level. However, there are many technical consider-
ations in doing so. To avoid these complications, we restrict to the case of level
1.

An interesting question (cf. discussion of [7], end of Section 1) is whether there is
an effective method to determine the discrete spectrum for a non-arithmetic lattice
Γ\SL(2, R). (See also [13, §5(i)]).

(4) There is an implicit loss of precision: that is, to prove correct (1 − ε)D decimal
places we need a heuristic method of finding a cusp form to D decimal places. Thus,
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even to verify the first few digits of a cusp form, it is necessary to work to higher
precision.

The proof will be achieved in several steps. First, in Section 3.1 we give an effective
result (Proposition 2) that reduces the problem to checking approximate automorphy of the
conjectured form in a small neighborhood of the boundary of the fundamental domain, and
is well suited to implementation on a computer. We provide details of the implementation
in Section 3.2 and complete the proof of Proposition 1 in Section 3.3. In Section 3.4 we
discuss in more detail the complexity of the algorithm and some numerical results.

First, we set some notation to be used in this section. Let Wν(y) :=
√

yKν(y); this
shorthand will be useful when it comes to taking derivatives with respect to y. Since we
work with Γ = PSL(2, Z) throughout, we may assume from the outset that all forms are
eigenfunctions of J : z 7→ −z, i.e. we consider Fourier expansions of the form

(15) f(z) =
M∑

n=1

an√
n

Wir(2πny) cos(ε)(2πnx),

where f has eigenvalue λ := 1/4 + r2, ε ∈ {0, 1} indicates the parity and cos(ε)(t) is the εth

derivative of cos(t), i.e. it equals cos(t) for ε = 0 and − sin(t) for ε = 1. We shall moreover
normalize f so that a1 = 1. (Thus the normalization of the coefficients coincides with that
of the Section 2.1, but that of f itself is somewhat different, owing to the slightly different
normalization of the Bessel function. This is done for convenience in stating the estimates
in Lemma 6 and (75); note that since Proposition 1 is stated in terms of Hecke eigenvalues,
any constant scaling factor cancels out in the end and does not influence the result.)

Let F =
{
z ∈ H : |z| ≥ 1, |Re z| ≤ 1

2

}
be the (closure of) the “standard” fundamental

domain for Γ. For z, w ∈ H, set u(z, w) := |z−w|2
4Im z Im w

. Recall that, if d denotes the
hyperbolic distance, then cosh(d(z, w)) = 1 + 2u(z, w) [14, Section 1.3]. If for z ∈ H we
define uz := u(z, i) and ϕz ∈ [0, π) to be the hyperbolic angle of z (loc. cit.) then the
measure dµ(z) := dx dy

y2 on H may be expressed in “polar coordinates” as 4 duz dϕz.

Let φ be a non-negative, twice differentiable function on [0,∞), with support contained
in [0, 1], such that

∫∞
0

φ(x) dx = 1. Let δ > 0 be given, and assume that Y is such that the

point-pair invariant k(z, w) = φ(u(z, w)Y ) vanishes for d(z, w) ≥ δ. We denote by k̂(r) the
scalar by which k acts on any Laplacian eigenfunction of eigenvalue 1

4
+ r2 [14, Theorem

1.14], that is

(16) k̂(r) =

∫
H

k(z, i)y1/2+irdµ(z).

Let f̃ , f̃S be (respectively) the Γ-periodic extension of f from F to H and the Γ-periodic

smoothed extension, defined via f̃S = f̃ ? k. Note that f̃S(z) = k̂(r)f̃(z) for Im z ≥ eδ.

Evidently there is an issue (at least for odd f) regarding the definition of f̃(z) for those
z ∈ H that are in the Γ-orbit of the boundary of F . However, in all our bounds below, it is
only necessary for f̃ to be defined off a set of measure 0. In particular, one should interpret
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L∞ bounds as referring to the essential supremum of a function. Thus this ambiguity is
irrelevant to our proceedings.

3.1. An effective bound. The eventual aim of this section is to prove Proposition 2 (see
p. 14). In words, it states that given a finite series of the type (15), we can bound how
close it is to a cusp form by checking that it is “almost automorphic”, i.e. almost invariant
by certain fixed generators of PSL(2, Z). Moreover, to measure closeness of the eigenvalue,
the “almost invariance” need only be checked on a very small region around the boundary
of the standard fundamental domain.

The idea is the usual “quasimode construction.” In a slightly more general setting, let
M be a finite-volume Riemannian manifold and f a smooth function on M . Let ∆ be
the Laplacian operator on M , and suppose that (∆ − λ)f has small L2 norm. Then by
making a spectral expansion, we conclude at once that f is close to a genuine Laplacian
eigenfunction, whose eigenvalue is near λ. However, in our context, we must implement
this type of idea in a computationally efficient way. Moreover, we must show not only that
f is near a Laplacian eigenfunction, but that it is near a cusp form.

For p a prime number, we define the pth Hecke operator Tp as the endomorphism of
C∞(Γ\H) defined by

(17) Tpf(z) =
1
√

p

(
f(pz) +

p−1∑
b=0

f

(
z + b

p

))
.

The notation ‖ · ‖q will mean, unless otherwise indicated, the Lq norm on Γ\H.

Lemma 1. Put

(18) Cf,p =
2(p1/2 + p−1/2)

|pir + p−ir − ap|
for p prime, Cf,1 = 1.

Let p be a prime number if f is even, and 1 if f is odd. Let S be a finite set of places of
Q, and let numbers λv be given for each v ∈ S. Let Tv be the Hecke operator for each finite
place v, and set T∞ = ∆. Then there exists a cusp form on Γ\H with Tv-eigenvalues λ̃v

satisfying

(19)
∑
v∈S

∣∣λ̃v − λv

∣∣2 ≤ 2C2
f,p

∑
v∈S

∥∥(Tv − λv)f̃S

∥∥2

2∣∣k̂(r)
∣∣2 ∫∞

peδ Wir(2πy)2 dy
y2

.

Proof. Let ♦ be the identity endomorphism of C∞(Γ\H) if p = 1, and set

(20) ♦ = 2 cos

(
log p

√
∆− 1

4

)
− Tp

in the general case. Here ♣ := cos
(
log p

√
∆− 1

4

)
may be given a rigorous interpretation,

either by using the spectral decomposition of ∆, or by regarding it as the operation of
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convolution with a certain compactly supported distributional point-pair invariant L(z, w),
that is to say

(21) ♣f(z) =

∫
H
L(z, w)f(w)dµ(w).

Moreover, L(z, w) is supported in the region d(z, w) ≤ log(p). The operator ♦ has norm
≤ 2(p1/2 + p−1/2) w.r.t. the L2 norm on C∞(Γ\H), and commutes with Tv for all v. We
refer to [17] for a further discussion.

For p > 1, ♦ maps into the space of cusp forms, by [17]. In any case, we see that

g = ♦
(
f̃S

)
is cuspidal. Assume now that p > 1, the case p = 1 following similarly.

Since ♦ commutes with Tv −λv for each v ∈ S, and in view of the bound on its operator
norm, we have

(22) ‖(Tv − λv)g‖2 ≤ 2
(
p1/2 + p−1/2

)∥∥(Tv − λv)f̃S

∥∥
2
.

Next, let {fj}∞j=1 be an L2-basis of eigenforms for the cuspidal spectrum, with Tv-
eigenvalues λj,v, and put g =

∑∞
j=1 εjfj. Let PrH denote the orthogonal projection onto

the span of fj such that
∑

v∈S |λj,v − λv|2 ≤ H. Then

(23)

‖PrHg‖2
2 = ‖g‖2

2 −
∑

j:
P

v∈S |λj,v−λ|2>H

|εj|2 ≥ ‖g‖2
2 −

∞∑
j=1

|εj|2
∑

v∈S |λj,v − λv|2

H

= ‖g‖2
2 −H−1

∑
v∈S

‖(Tv − λv)g‖2
2.

Consequently, there is a j such that
∑

v∈S |λj,v − λ|2 ≤ H as long as

(24) H ≥
∑

v∈S ‖(Tv − λv)g‖2
2

‖g‖2
2

By (22), this will always be the case if

(25) H ≥ 4
(
p1/2 + p−1/2

)2 ∑v∈S

∥∥(Tv − λv)f̃S

∥∥2

2

‖g‖2
2

.

Now, for Im z ≥ peδ we have g(z) =
∑∞

n=1
cn√

n
Wir(2πny) cos(ε)(2πnx), with c1 = k̂(r)

(
pir +

p−ir − ap

)
. (To see this, use (17) and the comments after (21).) We thus have the lower

bound

(26) ‖g‖2
2 ≥

|c1|2

2

∫ ∞

peδ

Wir(2πy)2dy

y2
.

The conclusion follows. �

Lemma 2.

(27)
∣∣k̂(r)

∣∣ > 4π

Y

(
1− 4

√
λ

Y

)
.
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Proof. Recall that k̂(r) =
∫

H y1/2+irk(z, i) dµ(z). In view of the “polar coordinates” expres-
sion of dµ, we obtain

(28)

∫
z∈H

k(z, i) dµ(z) =
4π

Y
.

Hence

(29)

∣∣∣∣k̂(r)− 4π

Y

∣∣∣∣ ≤ 4π

Y
sup

u(z,i)≤1/Y

∣∣y1/2+ir − 1
∣∣.

Now for z = x + iy, if u(z, i) ≤ 1/Y then |z − i|2 ≤ 4y/Y . Thus

(30)

∣∣y1/2+ir − 1
∣∣ =

∣∣∣∣∫ y

1

(
1

2
+ ir

)
t−1/2+ir dt

∣∣∣∣ ≤ 2
√

λ
∣∣y1/2 − 1

∣∣
≤ 4

√
λ

Y

y1/2

y1/2 + 1
< 4

√
λ

Y
.

�

Lemma 3. Put A =
∫

H

∣∣(∆− λ)k(z, i)
∣∣ dµ(z), and let B(δ) be a hyperbolic δ-neighborhood

of the arc
{
z ∈ H : |z| = 1, |Re z| ≤ 1

2

}
. Then

(31)
∥∥(∆− λ)f̃S

∥∥
2
≤ A

√
vol(B(δ) ∩ F) ess.supz∈B(δ)

∣∣f̃(z)− f(z)
∣∣.

Proof. Note that on F , f̃S agrees with k̂(r)f̃ except on B(δ). Consequently, (∆ − λ)f̃S

vanishes away from B(δ). One has

(32) (∆− λ)f̃S = f̃ ? (∆− λ)k − f ? (∆− λ)k = (f̃ − f) ? (∆− λ)k.

From this we see that

(33)

∥∥(∆− λ)f̃S

∥∥2

2
≤ vol(B(δ) ∩ F)

∥∥(∆− λ)f̃S

∥∥2

∞

≤ vol(B(δ) ∩ F)

(∥∥f − f̃
∥∥
∞,B(δ)

∫
H
|(∆− λ)k(z, i)| dµ(z)

)2

.

The last inequality holds since z ∈ F ∩B(δ) and d(z, w) < δ imply that one of the points w

or w± 1 belongs to F ∪B(δ), while f − f̃ is invariant under translation by Z and vanishes
on F . �

Remark. Lemma 3 reduces the estimation of
∥∥(∆−λ)f̃S

∥∥
2

to bounding f̃−f in a “thin” set
around the arc at the bottom of the fundamental domain. A similar technique may be used
to estimate

∥∥(Tp − ap)f̃S

∥∥
2
, but will involve f̃ − f on the larger (genuinely 2-dimensional)

set
{
z ∈ H : |Re z| ≤ 1

2
, Im z ≥

√
3

2p

}
; thus, this is computationally more complex, and

becomes increasingly difficult as p increases.

Lemma 4. Let A be as in Lemma 3.

(34) A ≤ 4π

[∫ 1

0

∣∣xφ′′(x) + φ′(x)
∣∣ dx +

1

Y

(
λ +

∫ 1

0

∣∣x2φ′′(x) + 2xφ′(x)
∣∣ dx

)]
.
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Proof. [14, 1.21] shows that ∆ corresponds, in (u, ϕ) coordinates, to the operator u(u +

1) ∂2

∂u2 + (2u + 1) ∂
∂u

+ 1
16u(u+1)

∂2

∂ϕ2 . The result follows by direct computation. �

Lemma 5.

(35) vol(B(δ) ∩ F) <
2√
3
δ.

Proof. Note that B(δ) ⊂
{
z ∈ H : |z| < eδ

}
. Thus,

(36) B(δ) ∩ F ⊂ F \ eδF =
{
z ∈ F : 1 ≤ |z| < eδ

}
.

By the invariance of the hyperbolic measure under scaling, this set has the same volume as

(37) eδF \ F ⊂

{
x + iy :

1

2
< |x| ≤ eδ

2
, y ≥

√
3

2
eδ

}
.

The volume is therefore bounded by eδ−1√
3

2
eδ

< 2√
3
δ. �

We can now prove our first main result, which gives an effective bound on how far the
eigenvalue of a putative cusp form is to that of a genuine cusp form.

Proposition 2. Suppose δ ≤ 1
4
√

λ
, and let notations be as above. Then there exists a cusp

form on Γ\H with Laplacian eigenvalue λ̃ satisfying

(38)
∣∣λ̃− λ

∣∣ < 40δ−3/2Cf,p

ess.supz∈B(δ)

∣∣f̃(z)− f(z)
∣∣(∫∞

peδ Wir(2πy)2 dy
y2

)1/2
,

where Cf,p is as in Lemma 1.

Proof. The point-pair invariant k(z, i) vanishes when u(z, i) ≥ 1/Y , i.e. for d(z, i) ≥
cosh−1(1+2/Y ). Taking Y = 4δ−2, we see that k(z, i) is supported within a δ-neighborhood
of i.

We choose the point-pair invariant given by

(39) φ(x) =

{
3(1− x)2 if x ≤ 1,

0 else.

Then, by Lemma 4,

(40) A ≤ 12π + πδ2

(
λ +

16

9

)
.

The hypothesis on δ, together with the bound λ ≥ 1
4
, yields A ≤ 12π + π

(
1
16

+ 4
9

)
.

Next, by Lemma 2 we have

(41)
1∣∣k̂(r)
∣∣ <

1

πδ2
· 1

1− 2δ
√

λ
≤ 2

πδ2
.

Combining these estimates with Lemmas 3 and 5, we apply Lemma 1 with the set S = {∞}.
The proposition follows. �
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3.2. Implementation. Proposition 2 reduces our problem to bounding (in L∞ norm)∣∣f − f̃
∣∣ on a hyperbolic δ-neighborhood of the arc

{
z ∈ H : |z| = 1, |Re z| ≤ 1

2

}
. Because

of the symmetry of f in the x variable, it suffices to do this for x ≥ 0. If δ is sufficiently
small then the only Γ-translates of the fundamental domain intersecting the neighborhood
for x ≥ 0 are γF for γ ∈ {1, T, S, ST−1, TS, TST}, where S = ( 0 1

−1 0 ) and T = ( 1 1
0 1 ). For

z ∈ F ∪ TF we evidently have f(z)− f̃(z) = 0. For the others we have:

(42)

z ∈ SF : f(z)− f̃(z) = f(z)− f(Sz);

z ∈ ST−1F : f(z)− f̃(z) = f(z)− f(TSz) = f(z)− f(Sz);

z ∈ TSF : f(z)− f̃(z) = f(z)− f(ST−1z) = f(T−1z)− f(ST−1z);

z ∈ TSTF : f(z)− f̃(z) = f(z)− f(T−1ST−1z) = f(T−1z)− f(ST−1z).

Thus it suffices to bound simply |f(z)− f(Sz)| for z in the set

(43)
(
B(δ) ∩ (SF ∪ ST−1F)

)
∪ T−1

(
B(δ) ∩ (TSF ∪ TSTF)

)
.

Again by parity, we may replace this by (recall J(z) := −z)

(44)
(
B(δ) ∩ (SF ∪ ST−1F)

)
∪ JT−1

(
B(δ) ∩ (TSF ∪ TSTF)

)
.

In words, this amounts to reflecting the portion of B(δ) contained in TSF ∪ TSTF across
the line x = 1

2
. Note that in this region, the outer edge of B(δ) is not a sharp corner, but

rather a hyperbolic circle around the point 1
2
+ i

√
3

2
. The reflection of the circle across x = 1

2

is itself, and hence it suffices to obtain a bound just on B(δ)∩ (SF ∪ST−1F). The part of
this for x ≥ 0 is contained in the Euclidean δ-neighborhood of the arc {eiθ : π

3
≤ θ ≤ π

2
}.

It is convenient to introduce polar coordinates x = et cos θ, y = et sin θ. Then the function
we want to bound is

(45)
f(z)− f(−1/z) = f(et cos θ, et sin θ)− f(e−t cos(π − θ), e−t sin(π − θ))

= f(et cos θ, et sin θ)− (−1)εf(e−t cos θ, e−t sin θ).

We write E(t, θ) for this final expression. By abuse of notation, we may also write f(t, θ)
for f(et cos θ, et sin θ); the choice of coordinates will be clear from context.

We bound E(t, θ) by computing derivatives with respect to t and θ and using Taylor’s
theorem. Suppose that we compute derivatives of E at some reference point (t0, θ0) and
we wish to bound it at (t1, θ1). Set F (u) = E(t0 + (t1 − t0)u, θ0 + (θ1 − θ0)u). Then

(46)
F (i)(u)

i!
=
∑

r+s=i

(t1 − t0)
r

r!

(θ1 − θ0)
s

s!

∂r+sE

∂tr∂θs
(t0 + (t1 − t0)u, θ0 + (θ1 − θ0)u).

Note that in the case t0 = 0 this simplifies to

(47) 2
∑

r+s=i
r≡ε+1 (mod 2)

tr1
r!

(θ1 − θ0)
s

s!

∂r+sf

∂tr∂θs
(t1u, θ0 + (θ1 − θ0)u).
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Now Taylor’s theorem says that for any d ≥ 0,

(48) E(t1, θ1) = F (1) =
d−1∑
i=0

F (i)(0)

i!
+

F (d)(u∗)

d!
,

for some u∗ ∈ [0, 1].
We choose N +1 equally spaced sample points along the arc, i.e. t0 = 0, θ0 = π

3
+ π

6
j
N

, for
j = 0, 1, . . . , N . We choose δ in Proposition 2 so that the maximum displacement from a
sample point is at most π

12N
in each variable. This means taking δ proportional to N−1, so

the constant on the right-hand side of (38) will be large. However, it is only polynomially

large in N ; this is an acceptable error since eventually the other factors will be of size e−
√

N .
We bound each term of (47) individually assuming the maximum displacement. Under

the hypotheses of the theorem, the terms of (47) will be miraculously small for u = 0, and
the main contribution to (48) will come from a trivial bound for F (d)(u∗)/d!. Taking d and
N sufficiently large, we may control this term as well.

The form of f makes it convenient to compute derivatives in rectangular coordinates.
To compute the derivatives in (47), we therefore have to convert. The conversion takes the
general form

(49)
∂r+sf

∂tr∂θs
(x, y) =

∑
k+`≤r+s

P (x, y; r, s, k, `)
∂k+`f

∂xk∂y`
(x, y),

where P (x, y; r, s, k, `) is a homogeneous polynomial with integer coefficients, of degree k+`
in x and y. Using the formulas

(50)
∂

∂t
= x

∂

∂x
+ y

∂

∂y
,

∂

∂θ
= x

∂

∂y
− y

∂

∂x
,

we see that P satisfies the recurrence relations

(51)

P (x, y; r + 1, s, k, `) = x
∂P

∂x
(x, y; r, s, k, `) + y

∂P

∂y
(x, y; r, s, k, `)

+ xP (x, y; r, s, k − 1, `) + yP (x, y; r, s, k, `− 1),

P (x, y; r, s + 1, k, `) = x
∂P

∂y
(x, y; r, s, k, `)− y

∂P

∂x
(x, y; r, s, k, `)

+ xP (x, y; r, s, k, `− 1)− yP (x, y; r, s, k − 1, `).

We compute P recursively from these formulas as we compute the derivatives.

We have now reduced everything to the computation of ∂k+`f
∂xk∂y` (x, y) at or near each of

the sample points. Note that

(52)
∂k+`f

∂xk∂y`
(x, y) =

M∑
n=1

an√
n

∂`

∂y`
Wir(2πny)

∂k

∂xk
cos(ε)(2πnx).
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The difficult part of that is the computation of W
(`)
ir (2πny), for each ` and each n =

1, 2, . . . ,M . In practical terms, we may use any method for ` = 0, 1 since the number of
evaluations is limited. For example, in our implementation we used the power series (13);
this has the advantage that the error is easy to control, e.g. for n ≥ u/

√
2, the tail of the

series (from term n + 1 onward) is bounded by the magnitude of the nth term.
Computing the higher derivatives is another simple recursion: For ` ≥ 2 we have

(53) W
(`)
ir (y) = W

(`−2)
ir (y) + λ

`−2∑
j=0

c`jy
j−`W

(j)
ir (y),

for certain integer coefficients c`j, defined by the recurrence

(54) c`+1,j =

{
(j − `)c`j + c`,j−1, j ≤ `− 2

−1, j = `− 1.

(Note that this is essentially the same as the expansion (10) for K(n).)
Since the coefficients c`j and those of P (x, y; r, s, k, `) grow quite large, some care must

be taken to ensure that the computations are accurate. To that end, one could determine a
sufficient fixed point precision (roughly proportional to D log D), using the bounds for c`j

and P (x, y; r, s, k, `) given in the next section. In practice, it is much easier and more effi-
cient to work with, say, 3D/2 digits of floating point precision, and use interval arithmetic.
(Also note that we only need to know the final bound to leading order to see that it is small,
i.e. significant precision loss is both acceptable and expected.) For our implementation we
used the MPFI package [18] for arbitrary precision interval arithmetic, based on the MPFR
and GMP libraries [19, 8].

For the final term of (48) we must produce a bound for W
(`)
ir (2πny), for each n and `,

and y in a neighborhood of a given sample point. This could in principle be done very
accurately, i.e. with bounds very close to the truth, in polynomial time. However, as will
be clear from the next section, such precision is not necessary; any bound correct up to
an exponential factor in ` will do. We again relied on the recurrence (53) and interval
arithmetic.

3.3. Proof of Proposition 1. The algorithm described above derives an upper bound for
the distance from a number λ to the nearest eigenvalue of a Maass form on Γ\H, based
on the parameters d, M and N . The essence of the proof in this section is to show that if
λ and an are close to the true data for a Maass form then there is a choice of parameters
(that one could in principle write down in advance) for which the upper bound is good.
The proof ultimately relies on the bounds for Bessel functions given in Lemma 6 below.
(Note that these estimates are only needed in the proof; in practice one uses trial and error
combined with the more direct computational methods described above. See Section 3.4
below for further remarks.)
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Lemma 6. Let ε > 0. There is a number C = C(ε) > 0 such that, for all ` ≥ 0 and r ∈ R,

(1) W
(`)
ir (y) �ε

[
C(1 + `)

]` ∀y ≥ ε;

(2) d
dλ

W
(`)
ir (y) �ε

[
C(1 + `)

]` ∀y ≥ ε;

(3) W
(`)
ir (y) � C`e−y ∀y ≥ max(`, λ).

Here, as usual, λ = 1
4

+ r2.

Proof. 1. We have the integral representation (apply Mellin inversion to the equations
preceding B.37 in [14])
(55)

W
(`)
ir (y) =

1

2πi

∫
Re s=1

2s−2Γ

(
s + ir

2

)
Γ

(
s− ir

2

)
(1/2− s) · · · (1/2− s− (`− 1))y1/2−s−` ds.

Applying Stirling’s formula, we have for s = 1 + it,

(56) Γ

(
s + ir

2

)
Γ

(
s− ir

2

)
� e−

π
4
|t+r|e−

π
4
|t−r|.

Using the elementary inequality |t + r|+ |t− r| ≥ 2|t|, we get the estimate

(57)

W
(`)
ir (y) �

∫ ∞

−∞
e−π|t|/2(1/2 + |t|) · · · (`− 1/2 + |t|)y−(`+1/2) dt

�ε ε−`

∫ ∞

0

e−πt/2(t + 1 + `)` dt.

Next note that

(58) (t + 1 + `)` ≤ 2`
(
t` + (1 + `)`

)
.

Substituting this into the above, we get the bound

(59)
(
2ε−1

)` ∫ ∞

0

e−πt/2
(
t` + (1 + `)`

)
dt �

(
2ε−1

)`
(1 + `)`.

2. We repeat the above argument with the Γ factors replaced by
(60)

1

2r

d

dr
Γ

(
s + ir

2

)
Γ

(
s− ir

2

)
=

i

4r

[
Γ′
(

s + ir

2

)
Γ

(
s− ir

2

)
− Γ

(
s + ir

2

)
Γ′
(

s− ir

2

)]
� log2(2 + |t|)e−

π
4
|t+r|e−

π
4
|t−r|.

The extra factor of log2(2 + |t|) does not affect the quality of the final bound.
3. The result for ` = 0 follows from the asymptotic [14, B.36]

(61) Kν(y) =

√
π

2y
e−y

[
1 + O

(
1 + |ν|2

y

)]
.

The case ` = 1 follows from (61) and the recurrence −2K ′
ν(y) = Kν+1(y) + Kν−1(y). (In

fact, by a different method one can see that the result holds without the restriction y ≥ λ;
we will not make use of this.)
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Note that |c`j| ≤ (`− 1)!/j!, by induction from (54). Hence, for ` ≥ 2,

(62)
∣∣W (`)

ir (y)
∣∣ ≤ ∣∣W (`−2)

ir (y)
∣∣+ λ

`−2∑
j=0

(`− 1)!

j!
yj−`

∣∣W (j)
ir (y)

∣∣.
Suppose that

∣∣W (j)
ir (y)

∣∣ ≤ ACje−y for j < ` and y ≥ max(j, λ). Then, for y ≥ max(`, λ)
the above becomes

(63)
∣∣W (`)

ir (y)
∣∣ ≤ AC`−2e−y + λ

`−2∑
j=0

(`− 1)!

j!
yj−`ACje−y.

The final term (with j = `− 2) is λ(`− 1)y−2AC`−2e−y, and to pass from term j to term
j− 1 we multiply by j/Cy. Assume C ≥ 2, so that Cy ≥ 2`; then the sum is majorized by

(64) λ`y−2AC`−2e−y

∞∑
n=0

2−n = 2λ`y−2AC`−2e−y.

Altogether we get

(65)
∣∣W (`)

ir (y)
∣∣ ≤ AC`−2e−y

(
1 + 2λ`y−2

)
≤ AC`e−y.

�

Lemma 7. For r + s ≤ d,

(66) |P (x, y; r, s, k, `)| ≤ (d + 4)!
[
1 + max(|x|, |y|)

]d
.

Proof. From (51), we see by induction that the coefficients of P (x, y; r, s, k, `) are bounded
by (r + s + 3)!. The result follows by homogeneity of P . �

With these estimates in hand, we may complete the proof. Let notation be as in section
3.2. For convenience, we introduce the notation x ≺d y to mean there exist absolute positive
constants A and B such that |x| ≤ ABdy.

We treat first the final term F (d)(u∗)/d! of (48). From (47) we must estimate ∂r+sf
∂tr∂θs (t

∗, θ∗)
for r + s = d, where (t∗, θ∗) lies on the line segment between (t0, θ0) and (t1, θ1). These are

handled, using (49), by estimates for ∂k+`f
∂xk∂y` (x

∗, y∗) at the corresponding point (x∗, y∗). We

have

(67)
∂k+`f

∂xk∂y`
(x∗, y∗) =

M∑
n=1

an√
n

(2πn)k+`W
(`)
ir (2πny∗) cos(k+ε)(2πnx∗).

Since the an are close to Hecke eigenvalues of a Maass form, we have that an/
√

n � 1,
with implied constant universal. Since y∗ is bounded away from 0, Lemma 6 part 1 yields

(68)
∂k+`f

∂xk∂y`
(x∗, y∗) ≺d M

[
M(1 + d)

]d
.
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Since x∗ and y∗ are bounded, Lemma 7 says that P (x∗, y∗; r, s, k, `) ≺d (1+d)d. Combining
this with (49), we get

(69)
∂r+sf

∂tr∂θs
(t∗, θ∗) ≺d M

[
M(1 + d)2

]d
.

Finally, from (47) and the bounds t1, θ1 − θ0 � N−1, we have

(70)
F (d)(u∗)

d!
≺d M

[
N−1M(1 + d)

]d
.

Next we estimate the terms of (48) for i < d. For that we compare f to the true Maass
form f ∗, with coefficients ãn, for which the analogous expression vanishes. In other words,
we replace f by f − f ∗ and compute (46). There are two parts to consider, corresponding
to the terms n ≤ M and n > M , respectively. (The latter terms are introduced when we
pass from f to f − f ∗.) First, from (14), Lemma 6 parts 1 and 2, and the mean value
theorem, we have, for (x0, y0) a point on the arc

{
z ∈ H : |z| = 1, |Re z| ≤ 1

2

}
,

(71)

an√
n

W
(`)
ir (2πny0)−

ãn√
n

W
(`)
ir̃ (2πny0)

=

(
an√
n
− ãn√

n

)
W

(`)
ir (2πny0) +

ãn√
n

(
W

(`)
ir (2πny0)−W

(`)
ir̃ (2πny0)

)
≺` 10−D(1 + `)`.

Proceeding as above, we see that the contribution of the terms n ≤ M to F (i)(0)/i! is

(72) ≺i 10−DM
[
N−1M(1 + i)

]i
.

For the terms n > M we apply Lemma 6 part 3 to obtain the estimate

(73)
∑
n>M

ãn√
n

(2πn)k+`W
(`)
ir̃ (2πny0) cos(k+ε)(2πnx0) ≺k+`

∑
n>M

nk+`e−2πny0 ,

valid provided that M ≥ C1 max(k + `, λ), for some absolute constant C1 < 1. Since
y0 ≥

√
3/2, the above is ≺k+` Mk+`10−M . We deduce in the same manner as the foregoing

computations that the contribution of the terms n > M to F (i)(0)/i! is ≺i
[
N−1M

]i
10−M .

Combining the estimates (70), (72) and (73), we have finally
(74)

E(t1, θ1) � M
[
AN−1M(1 + d)

]d
+ 10−DM

d−1∑
i=0

[
BN−1M(1 + i)

]i
+ 10−M

d−1∑
i=0

[
CN−1M

]i
,

for appropriate constants A, B and C. We assume for simplicity that D ≥ λ and take
d = M = D. We take N so that C2D

2 ≤ N ≤ 2C2D
2, for a sufficiently large, absolute

constant C2. Thus, altogether we have E(t1, θ1) � 10−DD.



EFFECTIVE COMPUTATION OF MAASS CUSP FORMS 21

Finally, we combine this bound with Proposition 2. Recall that δ was of size N−1; thus
δ−3/2 � D3. From (61) we have a bound of the form

(75) Wir(y) � e−y for y � 1 + r2.

Thus, for large p, we get

(76)

∫ ∞

peδ

Wir(2πy)2dy

y2
� p−2 exp

(
−4πpeδ

)
.

By Proposition 2, there is a form of eigenvalue λ̃′ such that

(77)
∣∣λ− λ̃′

∣∣� D410−Dp exp
(
2πpeδ

)
Cf,p.

To conclude, we need to show that for even forms f we may always find a p for which Cf,p

is not too large. (Note that in practice this is not an issue, as we can almost always take
p = 2.) This is an application of the Rankin-Selberg method; an argument similar to that of
[21] for holomorphic forms shows that there is a p �ε λ1+ε such that |pir+p−ir−ap| �ε λ−ε.
(In fact, [21] shows a corresponding result but without the restriction “p prime”; however,
it is simple to see that one can restrict from general integers to primes at the cost of a
factor λε.)

Hence, as long as M = D � λ1+η for fixed η > 0, we have

(78)
∣∣λ− λ̃′

∣∣ < 10−(1+o(1))D,

as required.

3.4. Complexity and results. Our algorithm works by first computing and storing the

values of ∂k+`f
∂xk∂y` (x0, y0) for all k, ` and all sample points (x0, y0). If the Bessel function

computations are done efficiently then the bulk of the time is spent computing (49) for
each r and s and each sample point from the tabulated data. That amounts to about
Nd5 arithmetic operations. The proof above shows that it suffices to take d = D = M
and N of size about D2, for a total running time of Oε(D

8+ε), assuming arithmetic of
D-digit numbers takes time Oε(D

1+ε). Note, however, that the estimates in Lemma 6 are
quite crude; in practice one may obtain much better bounds using interval arithmetic, and
measure the performance of the algorithm in real time. Numerical tests indicate that the
resulting bound for E(t1, θ1) is roughly of size N−d; using this as a rule of thumb, one may
choose N and d to obtain the desired result in optimal time.

We implemented the above algorithm using the MPFI library on a 1.5 GHz PC. The re-
sults for the first few eigenvalues on PSL(2, Z)\H are summarized below. The running time
for each was approximately one day. (To prove that there are no other small eigenvalues
requires a computation with the trace formula; see [3].)

Theorem 1. The first ten cuspidal eigenvalues on PSL(2, Z)\H are as given in Table 1,
correct to 100 decimal places.
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λ1 91.14134533635527808180977380712054599169397081569090
24779657001959542423895651247275628962288096291166 . . .

λ2 148.43213167272073721634630026099613950074024730230597
18429528711664752493611551782064774884270840759058 . . .

λ3 190.13154731993464754245355701518494068113589428312883
85576731615371323200677917820840283441119667596429 . . .

λ4 206.41679558595764086930256998274121408698217444408924
57353424774780566562633717682316760582937054960721 . . .

λ5 260.68740568936685449640878661876843428670512980543410
25160896652698127129961088063918703474378409525572 . . .

λ6 277.28136438002683115037066737081556475641461871642721
10389795051170027636925268679261948599959882451968 . . .

λ7 314.90663082378975395201087956594111981400929643683543
24577475933753113883450789890543230665313679076946 . . .

λ8 330.79577330595661811354919800716770713227919058116130
90838441757780526911223164841141432001520297756449 . . .

λ9 377.52163244760855963494607025104782105738237467084493
35117196084788698571774187390792935770199066442588 . . .

λ10 379.90407400113640004061759185737660211892670229631256
52341784484968001450252766577139865937140147593072 . . .

Table 1. First ten eigenvalues on PSL(2, Z)\H

4. Testing algebraicity

We shall now use these results to test for certain algebraicity properties of the coefficients
of Maass forms. It is generally believed that the Laplacian eigenvalue and Hecke eigenvalues
of the general Maass form are transcendental; we provide a significant amount of evidence
for this below.

We have also tested more refined algebraicity questions that amount to asking: do any of
the algebraic properties of dihedral forms generalize to general Maass forms? We formulate
this question a little more precisely in Section 4.1; but in any case, we do not find any
evidence that even this (much weaker) form of algebraicity extends to general Maass forms.
It seems that this type of question was first considered and tested (but with much less
accurate data) by H. Stark.

To be precise, recall that dihedral Maass forms are those associated to a Grössencharacter
of a real quadratic field. The eigenvalue of such a form is essentially of the shape 1

4
+ π2k2

R2 ,
where k ∈ Z and R is the regulator of the real quadratic field. Although there is no reason
to believe that this is algebraic, what is still true is that, given the eigenvalue, the Hecke
eigenvalues of a dihedral form are specified by a finite amount of algebraic data. A similar
comment applies to eigenvalue 1

4
Maass forms: it is believed ([16, p. 2] and discussion

of (T3) therein) that any Maass form for Γ0(N)\H with eigenvalue 1
4

is associated to a
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2-dimensional even Galois representation. In particular, it has algebraic coefficients. We
therefore might ask: is it possible that, in a more general setting, the eigenvalue λ of a
Maass form controls the algebraicity of its coefficients? Although we know of no theoretical
justification for such a question, it seems to be a natural one; we explain in Section 4.1
a more precise formulation, based on “interpolating” between the properties of Eisenstein
series, eigenvalue 1

4
forms, dihedral forms and holomorphic forms.

4.1. Looking for algebraic relations between coefficients–a precise formulation.
Let f be a (Hecke or Maass) newform—not necessarily cuspidal—on H with Nebentypus
χf . Let t ∈ R ∪ iR be so that the Casimir eigenvalue on the representation underlying f
is 1

4
− t2, i.e. t = (k − 1)/2 if f is a holomorphic form of weight k, and t = ir if f is a

Maass form of eigenvalue 1
4
+ r2. Let p be a prime number at which f does not ramify, and

let λp(f) be the pth Hecke eigenvalue of f ; we normalize matters so that the Ramanujan
conjecture corresponds to |λp(f)| ≤ 2.

Question. Do there exist roots of unity ζ, ζ ′ with ζζ ′ = χf (p), and a p-integral algebraic

number α ∈ Q so that

(79) λp(f) = ζαt + ζ ′α−t?

Here, if α is not real, there is clearly some ambiguity as to the meaning of αt. We shall
interpret it (in the most optimistic way) to mean any tth power of α: that is to say, any
element of the form exp(tx) when exp(x) = α.

We note that that ζ, ζ ′, α are often by no means uniquely determined. We now show that,
in every case when the λp(f) may be written down explicitly, the answer to the question is
YES.

(1) If f is a holomorphic form of weight k, the fact that λp(f) has the form (79) follows
from the existence of the associated Galois representation. Indeed, by [6], there are
algebraic integers β1, β2 ∈ Q such that all conjugates of β1 and β2 have absolute
value p(k−1)/2, β1β2 = χf (p)pk−1, and λp(f) = β1+β2

p(k−1)/2 . In this case, (79) is satisfied

if we take (e.g.) α = β
2/(k−1)
1 p−1, ζ = 1, ζ ′ = χf (p).

(2) If f is a CM-form, i.e. so that L(s, f) = L(s, K, χ) for some quadratic extension K/Q
and some unitary Grössencharacter χ : A×

K/K× → C×, then a simple computation
verifies (79).

Indeed, we may assume that K is a real quadratic field. (If K is imaginary, then
f is holomorphic.) Now λp(f) = 0 if p does not split in K, and (79) is trivially
satisfied. (Take, e.g. α = 1 and ζ, ζ ′ to solve ζ = −ζ ′, ζζ ′ = χf (p).) On the other
hand, suppose p splits as p1p2, and let be ω1, ω2 uniformizers at p1, p2 respectively;
we regard ω1, ω2 as belonging to A×

K , the ring of adeles of K. Then

(80) λp(f) = χ(ω1) + χ(ω2).

Let AK,f be the ring of finite adeles of K, and let U ⊂ A×
K,f be an open compact

subgroup such that χ|U is trivial. The quotient A×
K/K×K×

∞U is finite; thus there is
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M ≥ 1 such that ωM
1 and ωM

2 belong to K×K×
∞U . Here K∞ := K ⊗ R ∼= R × R.

Write ωM
1 = z−1z∞u with z ∈ K×, z∞ ∈ K×

∞, u ∈ U . If σ1, σ2 are the two distinct
isomorphisms of K into R, then we can identify K∞ with R×R in such a way that
z∞ corresponds to (σ1(z), σ2(z)).

With this identification, the restriction of χ to K×
∞ takes the form

(81) (x, y) 7→ (x/|x|)ε1(y/|y|)ε2|x|ir|y|−ir,

for some εi ∈ {0, 1} and r ∈ R. Then an easy computation shows that t = ir (i.e.
the Casimir eigenvalue of f is 1

4
+ r2). It follows that χ(ωM

1 ) = ±(σ1(z)/σ2(z))ir. It

is now easy to see that (79) holds with α =
(

σ1(z)
σ2(z)

)1/M

and an appropriate choice

of ζ, ζ ′.
We also note in passing that if η is the fundamental unit for the ring of integers

of K, then the finite part of η lies in the maximal compact subgroup of A×
K,f , hence

(η∞/η)M ∈ U for some M ≥ 1. Since χ(η) = 1 and σ1(η)/σ2(η) = σ1(η
2), this

implies

r =
2πq

log σ1(η2)
, for some q ∈ 1

M
Z +

1

2
Z ⊂ Q.(82)

(3) Let χ be a Dirichlet character of Q, and let f be the Eisenstein series satisfying
L(s, f) = L(s+ ir, χ)L(s− ir, χ); then λp(f) = χ(p)pir +χ(p)−1p−ir visibly satisfies
(79), with ζ = χ(p), ζ ′ = χ(p)−1, α = p.

(4) Suppose r = 0. Then f corresponds to either a form of weight 1 (where (79) follows
from a result of Deligne-Serre) or a Maass form of eigenvalue 1

4
, which are believed

to all arise from Galois representations Gal(Q/Q) → GL(2, C). If this is indeed the
case, (79) follows.

4.2. Transcendence of coefficients–numerical results. We performed various tests to
search for algebraic relations. In order to have control on exactly what negative result was
proved we used the PARI routine lllint(A), which performs LLL-reduction on a lattice
basis given by the columns of an integral matrix A, using only integer operations. For this
routine, precise lower bounds are available on the shortest vector in the given lattice, and
it is easy to derive from these the non-existence of integer algebraic relations with certain
bounds on the coefficients. See [5, 2.6.3 and 2.7.2].

Let us say a number α is [d,H]-algebraic if it satisfies some relation

mdα
d + md−1α

d−1 + . . . + m0 = 0,(83)

where m0, m1, . . . ,md are integers, not all zero, with |mj| ≤ H for j = 0, 1, . . . , d.
In short, we found no unexpected algebraic relation. In particular, from the fact that we

know the first ten eigenvalues provably to 100 decimal places (Theorem 1), we obtain using
lattice reduction:

Proposition 3. If λ is one of the first ten eigenvalues on PSL(2, Z)\H (cf. Table 1), then
λ is not [2, 1030]-algebraic; nor is λ [5, 1014]- or [10, 107]-algebraic.
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However, most of our searches were performed assuming that our values for the eigenvalue
λ and the Fourier coefficients λ2(f), λ3(f), λ5(f), λ7(f) are correct to 1020 decimal digits
(see Section 2). Under this assumption, we found that for each of the first ten eigenvalues
λ on PSL(2, Z)\H, λ is not [2, 10331]-algebraic; nor is λ [10, 1089]-, [30, 1030]- or [50, 1017]-

algebraic. Exactly the same assertions hold for r =
√

λ− 1
4

and for each of the Hecke

eigenvalues λ2(f), λ3(f), λ5(f), λ7(f).
We also checked that for each r as above, there does not exist any relation of the form

r = 2πq/ log α where α > 0 is [2, 10104]- or [10, 1066]-algebraic and q is rational with |q| ≤ 10
and denominator d(q) ≤ 30. (Recall that a relation of the form r = 2πq/ log α with α a
unit in a real quadratic field holds whenever f is a CM-form, see (82) above.)

4.3. Algebraic relations between coefficients–numerical results. Furthermore, we
searched for joint relations of the form (79) between r and λp(f), using various parameters,
and found the following: For each of the first ten eigenfunctions f on PSL(2, Z)\H, there
does not exist any relation

λp(f) = ei(2πq+r log α) + e−i(2πq+r log α)(84)

with p ∈ {2, 3, 5}, α > 0,
∣∣2πq + r log α

∣∣ ≤ π, q rational with denominator d(q) ∈ Z+, and
α, q satisfying the conditions in any one line of the following table:

α [2, 10100]-algebraic |q| ≤ 30 d(q) ≤ 100
α [10, 1066]-algebraic |q| ≤ 30 d(q) ≤ 10
α [30, 1022]-algebraic |q| ≤ 4 d(q) ≤ 10

For comparison we note that for the Ramanujan Delta function, ∆(z) = e2πiz
∏∞

n=1(1−
e2πinz)24 =

∑∞
n=1 τne

2πinz, which is the holomorphic cusp form of level 1 and lowest weight
(k = 12), the Hecke eigenvalue λ2(∆) = τ2/2

11/2 = −24/211/2 satisfies the relation (79)
with ζ = ζ ′ = 1 and α algebraic with 32α22 + 55α11 + 32 = 0, i.e. α is [22, 100]-algebraic.

All transcendence tests described above were carried out also for the three non-CM
Maass forms on Γ0(5)\H and Γ0(6)\H listed in Section 2.3(B). We refer to [4] for the
precise statements of our (negative) results in these cases.

4.4. Comments. The tests above are clearly not comprehensive. We invite the reader to
carry out their own tests using the numbers from [4]!

References

[1] Charles B. Balogh. Asymptotic expansions of the modified Bessel function of the third kind of imagi-
nary order. SIAM J. Appl. Math., 15:1315–1323, 1967.

[2] Joseph Bernstein and Andre Reznikov. Analytic continuation of representations and estimates of
automorphic forms. Ann. of Math. (2), 150(1):329–352, 1999.
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