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This document is intended as a (slightly expanded) writeup of my (antic-
ipated) talk at the AMS Current Events Bulletin in New Orleans, January
2007. It is a brief report on the work of Einsiedler, Katok and Lindenstrauss
on the Littlewood conjecture [5].

It is not intended in any sense for specialists and is, indeed, aimed at
readers without any specific background either in measure theory, dynamics
or number theory.

Any reader with any background in ergodic theory will be better served
by consulting either the original paper, or one of the surveys written by
those authors: see [7] and [12].

1. The Littlewood conjecture

1.1. For x ∈ R, let ‖x‖ denote distance from x to the nearest integer.
It is not difficult to check that, for any α ∈ R, there exists integers p, q

with 1 ≤ q ≤ Q and |α− p
q | ≤

1
qQ . In other words, ‖qα‖ ≤ 1/Q. The behavior

of ‖qα‖, as q varies through integers, thereby reflects approximation of α by
rational numbers.

The Littlewood conjecture concerns simultaneous approximation of two
numbers α, β by irrationals. It asserts that:

(1) lim inf n.‖nα‖‖nβ‖ = 0,
1



2 THE LITTLEWOOD CONJECTURE

whatever be α, β. In words it asserts (in a somewhat peculiar-seeming way)

(2) α, β may be simultaneously approximated, moderately well,
by rationals with the same denominator

My goal is to discuss, and give some of the context around, the following
theorem of M. Einsiedler, A. Katok and E. Lindenstrauss in [5]:

1.1. Theorem. The set of α, β for which (1) fails, has Hausdorff dimension
0.

The Theorem is proved using ideas from dynamics: namely, by studying
the action of coordinate dilations (e.g. (x, y, z) 7→ (x

2 , 2y, z)) on the space
of lattices in R3. It is not important solely as a result about simultane-
ous Diophantine approximation, but because of the techiques and results in
dynamics that enter into its proof.

Several applications of this type of dynamics are surveyed in [7]. For now
it is worth commenting on two rather different contexts where exactly the
same dynamics arise:

• In the study of analytic behavior of automorphic forms (see [17] for
discussion and historical context)

• In the study of the analytic behavior of ideal classes in number fields,
see [8].

1.2. This document. I will try to stress:
(1) Dynamics arises from a (not immediately visible) symmetry group;

see §1.3; I will then discuss some historical context for this type of
connection (§2, §3).

(2) The dynamics that is needed is similar to the simultaneous action of
x 7→ 2x, x 7→ 3x on R/Z; see §4.3 for a description of these parallels.

(3) A sketch of just one of the beautiful ideas that enters in proving
Theorem 1.1 (see §5), which is to study the picture transverse to the
acting group.

A massive defect of the exposition is that I will make almost no men-
tion of entropy. This is an egregious omission, because the intuition which
comes from the study of entropy underpins much of the recent progress in
the subject. However, any serious discussion of entropy this would require
more space and time and competence than I have, and better references are
available. So, instead, I have given a somewhat ad hoc discussion adapated
to the cases under consideration.

I will not come even close to sketching a proof of the main result.
Let us make two notes before starting any serious discussion:
(1) The Littlewood conjecture, (1), is quite plausible. Here is a naive

line of heuristic reasoning that supports it. A consequence of what
we have said in §1.1 is that there exists a sequence qk → ∞ of pos-
itive integers so that qk‖qkα‖ ≤ 1. Barring some conspiracy to the



THE LITTLEWOOD CONJECTURE 3

contrary, one might expect that ‖qkβ‖ should be small sometimes.
The problem in implementing this argument is that we have rather
little control over the qk.1

(2) Despite all the progress that I shall report on, we do not know that
the statement (1) is true even for α =

√
2, β =

√
3. The question of

removing the exceptional set in Theorem 1.1 is related to celebrated
conjectures (see Conjecture 4.1 and Conjecture 4.2) of Furstenberg
and Margulis.

1.3. Symmetry. The next point is that the question (1) has a symmetry
group that is not immediately apparent. This is responsible for our ability
to apply dynamical techniques to it.

Pass to a general context for a moment. Let f(x1, . . . , xn) be an integral
polynomial in several variables. An important concern of number theory has
been to understand Diophantine equalities: solutions to f(x) = 0 in integers
x ∈ Zn (e.g. does x2 − y2 − z2 = 1 have a solution? Does x3 + y3 = z3 have
a solution?)

A variant of this question, somewhat less visible but nonetheless (in my
opinion) difficult and fascinating, concerns Diophantine inequalities: if f
does not have rational coefficients, one may ask about the solvability of an
equation such as |f(x)| < ε for x ∈ Zn (e.g. does |x2 + y2 −

√
2z2| < 10−6

have a solution?)
In the most general context of an arbitrary f , our state of knowledge is

somewhat limited. On the other hand, for special classes of f we know more:
a typical class which is accessible to analytic methods is when the degree of
f is small compared to the number of variables.

Another important class about which we have been able to make progress,
consists of those f possessing symmetry groups. Both the examples x2 −
y2 − z2 = 1 and x2 + y2 −

√
2z2 admit orthogonal groups in three variables

as automorphisms.2 The homogeneous equation x3 + y3 = z3 has symmetry
but not by a linear algebraic group (it defines an elliptic curve inside P2).

The Littlewood conjecture also has symmetry, although not immediately
apparent. To see it, we note that ‖x‖ = infm∈Z |x − m|; consequently, we
may rewrite (1) as the statement:
(3)
|n(nα−m)(nβ − `)| < ε is solvable, with (n, m, `) ∈ Z3, n 6= 0, for all ε > 0

1Amusingly, it is not even clear this heuristic argument will work. It may be shown
that given a sequence qk so that lim inf qk+1/qk > 1, there exists β ∈ R so that ‖qkβ‖ is
bounded away from 0. See [14] for this and more discussion.

2Although unimportant in the context of this paper, there is an important difference:
while x2 + y2 −

√
2z2 admits an action of the real Lie group O(2, 1), the analysis of the

form x2 + y2 + z2 involves studying the action of the much larger adelic Lie group of
automorphisms. In particular, this adelic group is noncompact, even though the real
group O(3) is compact, and this is a point that can be fruitfully exploited; see [2].
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But the function L(n, m, `) = n(nα−m)(nβ− `) is a product of three linear
forms and admits a two-dimensional torus as group of automorphisms.3

2. The Oppenheim conjecture

Here we pause to put the developments that follow into their historical
context. The reader may skip directly to §4.

2.1. Statement of the Oppenheim conjecture. We briefly discussed
above the form x2 + y2 −

√
2z2. This is a particular case of a problem

considered in the 1929: A. Oppenheim conjectured that if Q(x1, . . . , xn) =∑
i,j aijxixj is an indefinite quadratic form in n ≥ 3 variables which is not a

multiple of a rational form, then Q takes values which are arbitrary small,
in absolute value.

In other words – note the analogy with (3) –

(4) |Q(x)| < ε is solvable, with x ∈ Zn, for all ε > 0

When n is sufficiently large his conjecture was solved by Davenport (in
1956) by analytic methods. His paper required n ≥ 74. This is an example of
the fact, noted in §1.3, that purely analytic methods can often handle cases
when the number of variables is sufficiently large relative to the degree.

On the other hand, the complete resolution of the conjecture4 had to wait
until G. Margulis, in the early 1980s, gave a complete proof using dynamical
methods that made critical use of the group of automorphisms of Q.

2.2. Symmetry. Let H = SO(Q), the group of orientation-preserving lin-
ear transformations of Rn preserving Q. By definition Q(x) = Q(h.x). We
wish to exploit5 the fact that H is large.

In particular, in order to show (4), it suffices to show that Q takes values
in (−ε, ε) at a point of the form h.x (h ∈ H,x ∈ Zn). A priori, this set
might be much larger than Zn; certainly, if it were dense in Rn, this would
be enough to show (4).

For instance, if we could prove that

(5) The set h.x : h ∈ H, x ∈ Zn contains 0 in its closure

then (4) would follow immediately.

3The n-dimensional version of the Littlewood conjecture takes n linear forms `1, . . . , `n

and asks: is the equation 0 < |`1(x) . . . `n(x)| < ε solvable? Conjecturally, this is so if
n ≥ 3 and `1 . . . `n is not a multiple of a rational polynomial. It is false for n = 2, see
footnote 4.

4The analogous statement is false for n = 2: take, e.g. Q(x, y) = (x −
√

2y)y. To see

that, write Q(x, y) = (x2−2y2)y

(x+
√

2y)
.

5The idea that this should be exploitable was suggested by M. Raghunathan. It is also
implicitly used in a paper of Cassels and Swinnerton-Dyer from the 1950s.
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2.3. Lattices. (5) is rather nice, but a little unwieldy. We would rather
deal with the H-orbit of a single point rather than an infinite collection.
This can be done by “packaging” all x ∈ Zn into a single object: a lattice.

A lattice in Rn is simply a “grid containing the origin”, i.e. a set of all
integral combinations of n linearly independent vectors v1, . . . ,vn. Every
such lattice is of the form g.Zn for some g ∈ GL(n, R).

Let L̃n be the set of lattices6 and let L̃n[ε] be the set of lattices that
contain v ∈ Rn with Euclidean length ‖v‖ ≤ ε. So Zn can be thought of as
a point [Zn] ∈ L̃n.

Then (5) would follow if:

(6) H.[Zn] ∩ L̃n[ε] 6= ∅, for all ε > 0

This is a statement that fits cleanly into the context of dynamics: does the
orbit of the point Zn ∈ L̃n, under the group H, intersect the subset L̃n[ε]?
It is (6) which was proven by Margulis.

2.4. Background on the space of lattices. To each lattice we can as-
sign a natural invariant, its covolume. This is the absolute value of the
determinant of the matrix with rows v1, . . . ,vn; that is to say, the volume
of a fundamental parallelpiped

∑
λivi : λi ∈ [0, 1). For g ∈ GL(n, R) and

L ∈ L̃n, we observe that covol(g.L) = |det g|covol(L). In particular, because
all h ∈ H have determinant 1, all elements in H.Zn have covolume 1. So
H.Zn belongs to the subset

(7) Ln = {L ∈ L̃n : L has covolume 1.}

The space Ln is more pleasant to work with than L̃n. The map g 7→ g.[Zn]
identifies L̃n with the quotient GL(n, R)/GL(n, Z) and Ln with the quotient
SL(n, R)/SL(n, Z). These identifications give rise to topologies on L̃n and
Ln; indeed, they are given the structure of manifolds.

Although Ln is not compact, it admits a natural SL(n, R)-invariant mea-
sure which has finite volume, which is a reasonable substitute for compact-
ness. Moreover, Mahler’s criterion gives a precise description of in what way
Ln fails to be compact:

2.1. Theorem. A subset K ⊂ Ln is bounded (=precompact) if and only if
it does not intersect Ln[ε], some ε > 0.

In words, it asserts that the only way that a sequence of lattices L1, L2, . . .
in Ln can degenerate (leave any compact set in Ln) is if there exist vectors
v1 ∈ L1,v2 ∈ L2, . . . so that ‖vi‖ → 0.

We may therefore rephrase (6): The Oppenheim conjecture would follow
if

(8) H.[Zn] is unbounded in Ln.

6We will later work almost exclusively with the subset of L ⊂ eLn consisting of lattices
of volume 1; therefore, for notational simplicity, we prefer to put a tilde for the whole
space of lattices and omit it for the subset Ln.
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3. Unipotents acting on lattices.

Obviously, the statement (4) is false for Q positive definite, and, as ob-
served in footnote 4, (less obviously) false for Q in two variables. How are we
to detect this difference when considering the problem from the dynamical
viewpoint of (6) or (8)?

3.1. Unipotents from Margulis to Ratner. An important difference is
that the group H is isomorphic to SO(n) ⊂ GL(n, R) in the first case, and
SO(1, 1) ⊂ GL(2, R) in the second case. In either case, the group H consists
entirely of semisimple elements. Margulis’ idea was to exploit the fact that,
if Q is indefinite in n ≥ 3 variables, the group H contains unipotent elements,
i.e. g ∈ GL(n, R) for which all of the (generalized) eigenvalues of g are equal
to 1.

At a vague level, the reason why these might be helpful is quite easy
to state: if u ∈ GL(n, R) is unipotent, the matrix entries of un grow only
polynomially in n. This contrasts sharply with the behavior of a “typical”
element g ∈ GL(n, R), when these entries will grow expontially. This means
that, when studying the trajectory ux0, u

2x0, u
3x0, . . . , we are able to “re-

tain information” about it for much longer.

3.2. Ratner’s theorem. We will not say anything about the specifics of
Margulis’ proof; see [1] for an elementary presentation. A far-reaching gen-
eralization of Margulis’ result, which has been of fundamental importance
for later work, is the following (special case of a) theorem of Ratner, see [15]
and [16]: 7

3.1. Theorem. Let H ⊂ SL(n, R) be generated by one-parameter unipotent
subgroups.8 The closure of the orbit H.[Zn] inside Ln is of the form H ′.[Zn]
for a closed subgroup H ′ > H. Moreover, there exists an H ′-invariant prob-
ability measure on H ′.[Zn].

This is a difficult theorem, which settled a conjecture of M. Raghunathan.
The orbit H.[Zn] can be extremely complicated. Ratner’s theorem asserts
that its closure is determined by a very simple piece of algebraic data: a
subgroup intermediate between H and SL(n, R).

Let us see how this implies (6). The group H = SO(Q) is maximal inside
SL(n, R). So Theorem 3.1 means that either H.[Zn] is closed or H.[Zn]
is dense in Ln. It may be seen that H.[Zn] is closed only if the form Q
is a multiple of a rational form. In this fashion, Theorem 3.1 implies the
Oppenheim conjecture.

7Ratner’s theorem is phrased not just about spaces like Ln = SL(n, R)/SL(n, Z), but
more general quotients of Lie groups by discrete subgroups.

8i.e. of the form exp(tX) where X is a nilpotent matrix.
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3.3. An idea from the proof of Theorem 3.1: Measures not sets.
Because our concern is not with unipotent dynamics here, we will not try
to indicate any of the ideas of the proof of Theorem 3.1 that are specific to
properties of the unipotent flows.

Instead, we will emphasize a more philosophical point from the proof of
Theorem 3.1 that has been indispensable in later work.

(9) Measures are often easier to work with than sets.

To be a little more specific, let us comment on how Ratner’s proof of
Theorem 3.1 works. Let us take the simple case when H consists entirely
of unipotent elements. (A comprehensive exposition of the proof is to be
found in [18]).

Ratner begins by classifying the probability measures on Ln that are in-
variant under H. The topological statement of Theorem 3.1 is then deduced
from the classification of H-invariant probability measures.

The relation between probability measures and invariant sets is quite
simple: an invariant probability measure has a support, which is a closed
H-invariant set. Conversely, Y ⊂ Ln is an H-invariant closed set, it must
support an H-invariant probability measure (average your favorite measure
under H – note that this requires H to be amenable.) This relation is a
good deal more tenuous than one would like – the support of the measure
constructed this way may be strictly smaller than Y – and the deduction
of statements concerning invariant sets from statements about probability
measures is not formal.

Nonetheless, what is gained by going through measures? Measures have
much better formal properties than sets. A particularly important difference
is that an H-invariant probability measure can be decomposed into “min-
imal” invariant measures (ergodic decomposition). 9 That property does
not seem to have a clean analogy at the level of H-invariant closed sets. In
particular, an H-invariant closed set always contains a minimal H-invariant
closed set, but cannot be decomposed into minimal H-invariant closed sets
in any obvious way.

This is not to say that it is necessarily impossible to prove Theorem 3.1
by purely topological methods. Indeed, Margulis’ original proof of (6) was
purely topological (and utilized a study of minimal H-invariant closed sets).
But, to my knowledge, no such proof has been carried out in the general
case.

9The set of H-invariant probability measures forms, clearly, a convex set in the space
of all probability measures. Any point in this convex set can be expressed as a convex
linear combination of extreme points. These extreme points are called ergodic measures
for H and are “minimal”, in the sense that they cannot be expressed nontrivially as an
average of two other H-invariant probability measures.
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4. The dynamics of coordinate dilations on lattices, I:
conjectures and analogies.

.
We have seen that the assertion (4) about the values of the quadratic

form x2 + y2 −
√

2z2 can be converted to the assertion (6) about the orbit
of [Zn] under the group H = SO(Q). We now briefly carry through the
corresponding reasoning in the case of the Littlewood conjecture. This will
lead us to study the action of the diagonal group A3 inside GL(3, R), on L3.

4.1. Reduction to dynamics. Let P (x1, x2, x3) = x1(αx1−x2)(βx1−x3).
We have seen (see (3)) that the Littlewood conjecture is (almost, with a
constraint x1 6= 0) equivalent to the assertion that |P (x)| < ε is solvable.
Let T be the automorphism group of P , that is to say, the set of g ∈ GL(3, R)
such that P (g.x) = P (x). T contains a conjugated copy of the group of
diagonal matrices. 10

So P (a.x) = P (x) for a ∈ T . It would appear to be enough to show that
{a.x : a ∈ T,x ∈ Zn} approaches arbitrarily close to 0; or, repeating the
line of implications (4) ⇐= (6) ⇐= (8), it seems to be enough to show
that T.[Zn] is unbounded in Ln.

This is not quite right, though: T.[Zn] being unbounded in Ln indeed
would produce solutions to |x1(x1α − x2)(x1β − x3)| < ε, but, regrettably,
provides no guarantee that x1 6= 0.

However, this can be avoided by replacing T with a certain subsemigroup
T+ ⊂ T engineered specifically to avoid this. Moreover, T contains a con-
jugate copy of A3 as a finite index subgroup, we can rephrase this assertion
in terms of the dynamics of A3, not of T .

We will not go through the details, but rather will explicate the re-
sult of going through this process: if Lα,β ⊂ R3 is the lattice spanned by
(1, α, β), (0, 1, 0) and (0, 0, 1), the Littlewood conjecture for (α, β) is equiv-
alent to:
(10)

A+
3 .Lα,β is unbounded in Ln, A+

3 = {

 x 0 0
0 y 0
0 0 z

 : x ≤ 1, y ≥ 1, z ≥ 1}

The reader can easily verify (10) directly.
We are led to study the action of An on Ln, and in particular, to seek an

analogue of Theorem 3.1. The obstacle will be that the analogue of The-
orem 3.1 totally fails for (conjugates of) A2 acting on L2. There exists a
plethora of orbit closures that do not correspond to closed orbits of interme-
diate subgroups A2 6 H 6 SL(2, R). (This corresponds roughly to the fact

10In a suitable coordinate system, P becomes P (x1, x2, x3) = x1x2x3. But the set
of linear transformations that preserve (x1, x2, x3) 7→ x1x2x3 consist of all permutation
matrices whose determinant is ±1, according to the sign of the permutation.
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that there are many α for which lim inf n‖nα‖ > 0, i.e. the “one variable”
Littlewood conjecture is false.)

4.2. An analogy with ×2× 3 on S1. Let us reprise: we are studying the
action of the group An (diagonal matrices of size n, with determinant 1) on
the space Ln = SL(n, R)/SL(n, Z); or, geometrically, we are studying the
action of coordinate dilations on grids in Rn.

A very helpful analogy in studying the action of An on Ln is the following:

Action of A2 on L2 behaves like x 7→ 2x on R/Z;(11)
Action of A3 on L3 behaves like x 7→ 2x, x 7→ 3x on R/Z(12)

Note that A3 is a two-parameter (continuous) group, whereas x 7→ 2x, x 7→
3x generate a two-parameter (discrete) semigroup.

These analogies appear to be quite strong, although I do not know of any
entirely satisfying “reason” for them. The analogy between (A2,L2) and
(×2, R/Z) is particularly strong: in a fairly precise sense11, the action of a
suitable element a ∈ A2 on L2 behaves like a shift on {0, 1}Z, whereas the
action of x 7→ 2x behaves like a shift on {0, 1}N. We will list in the next
section some results and questions in both the L and R/Z cases and see they
are quite analogous.

For the moment, let us just observe that the action of x 7→ 2x on R/Z
is fundamentally different to the simultaneous action of x 7→ 2x, x 7→ 3x.
Indeed, the trajectory {2nx} of a point under x 7→ 2x essentially encodes
the binary expansion of x, which can be arbitrarily strange (cf. Lemma
4.1). For instance, there exist uncountably many possibilities for the closure
{2nx}. On the other hand, it is much more difficult to arrange that the
binary and ternary expansions of a given x be simultaneously strange. This
means it is much harder to arrange that the orbit of x under x 7→ 2n3mx be
strange, and indeed it is known that the possibilities for the closure {2n3mx}
are very simple (see Theorem 4.1).

Correspondingly, one might hope that the fact that Theorem 3.1 fails for
(A2,L2), as commented at the end of §4.1, might be a phenomenon that
vanishes when one passes to (An,Ln) for n ≥ 3. Indeed, this is believed to
be largely the case.

4.3. Conjectures and results for ×2 × 3 and for An. Recall that a
probability measure ν invariant under a group G is said to be G-ergodic if
any G-invariant measurable subset S has either ν(S) = 1 or ν(S) = 0. An
equivalent definition is found in footnote 9. We observe that a classification
of G-invariant ergodic probability measures is as good as a classification of
G-invariant probability measures, for any G-invariant probability measure
can be expressed as a convex combination of G-invariant ergodic probability
measures.

11e.g. the systems are measure-theoretically isomorphic
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We shall also make use in this section of the notion of positive entropy;
for a definition see (19), but the reader might be better served by simply
treating it as a black-box notion for the moment and reading on.

Formalizations of some of the intuitions we suggested in the previous
section are to be found in the following results. They state, in that order,
that:

• There are a huge number of closed invariant sets for x 7→ 2x.
• There are very few closed invariant sets for x 7→ 2x, x 7→ 3x simul-

taneously (and a clean classification)
• Conjecturally, there are very few invariant probability measures un-

der x 7→ 2x, x 7→ 3x;
• One can prove the third assertion under an additional assumption

on the measure, positive entropy.

4.1. Lemma. There exists orbit closures {2nx}n≥0 of any Hausdorff dimen-
sion between 0 and 1.

Similarly, there exist “very many” probability measures on R/Z invariant
under x 7→ 2x. (A measure is said to be invariant under x 7→ 2x if the
integral of f(x) and f(2x) is the same, for f a continuous function).

4.1. Theorem. (Furstenberg) The orbit closure {2n3mx}n,m≥0 is R/Z or
finite, according to whether x is irrational or rational.

4.1. Conjecture. (Furstenberg) Let µ be a probability measure on R/Z that
is invariant under x 7→ 2x and x 7→ 3x and ergodic w.r.t. x 7→ 2x, x 7→ 3x.
Then µ is either Lebesgue measure, or supported on a finite set of rationals.

4.2. Theorem. (Rudolph) Let µ be a probability measure on R/Z that is
invariant under x 7→ 2x and x 7→ 3x and ergodic w.r.t. x 7→ 2x, x 7→ 3x,
and so that either ×2 or ×3 acts with positive entropy. Then µ is Lebesgue
measure.

Now let us enunciate the analogues of these statements for An acting on
Ln. They state, in this order, that:

• There are a huge number of orbit closures and invariant measures
for A2 acting on L2.

• Conjecturally, there are very few closed sets for An acting on Ln,
when n ≥ 3. The statement here is not as satisfactory as in the
(×2× 3, R/Z) case.

• Conjecturally, there are very few invariant probability measures on
Ln under An, when n ≥ 3.

• One can prove the third assertion under an additional assumption
on the measure, positive entropy.

4.2. Lemma. There exists orbit closures A2.x of any Hausdorff dimension
between 1 and 3.
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Similarly, there exists “very many” probability measures on L2 invariant
by A2.

The following conjectures are stated (in a considerably more general form)
in [13].

4.2. Conjecture. (Margulis) The orbit closure An.x (for n ≥ 3 and x ∈ Ln)
is, if compact, a closed An-orbit. 12

4.3. Conjecture. (Margulis) Let µ be a probability measure on Ln that is
invariant under An and ergodic w.r.t. An. Then13 µ coincides with the H ′-
invariant measure on a closed orbit H ′x0, for some subgroup An 6 H ′ 6
SL(n, R).

4.3. Theorem. (Einsiedler-Katok-Lindenstrauss) Let µ be a probability mea-
sure on Ln that is invariant under An and ergodic w.r.t. An, so that some
element of An acts with positive entropy. Then µ is algebraic.

Theorem 4.3 is the main theorem of [5]. The result concerning Little-
wood’s conjecture is deduced from it. It should be noted that, while Theo-
rem 4.3 is closely analogous to Theorem 4.2, the technique of proof is quite
different.

In the remainder of this article, we shall indicate one key idea that enters
not only into the proof of 4.3, but into the proof of all results in that line
proved so far, including [4] and [11].

5. Coordinate dilations acting on lattices, II: the product
lemma of Einsiedler-Katok

The contents of this section are sketchy and impressionistic! For concrete-
ness, we will primarily confine ourselves to the action of A3 on L3.

The main thing which the reader might come away with is the impor-
tance and naturality of conditional measures. The study and usage of con-
ditional measures is a formalization of the following natural idea: given an
A3-invariant measure µ on L3, study µ along slices transverse to A3. Note
that the action of A3 contracts part of these slices and dilates other parts.

The ideas we will discuss in this section are contained in the important
paper [4] of Einsiedler and Katok; we will not discuss the new ideas intro-
duced in [5]. Those new ideas stem from [11] and are, indeed, essential to
get the main result on the Littlewood conjecture. On the other hand, the
ideas from [4] that we now discuss have been fundamental in all the later
work in this topic.

12This is not quite as good as a complete classification of orbit closures, and, indeed,
[13] posits a more precise classification. Conjecture 4.2 is just a simple clean statement
that can be extracted from this classification.

13i.e. “the measure-theoretic analogue of Theorem 3.1 holds for An acting on Ln.”
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5.1. Closed sets. Before we embark on describing some of the ideas in [4],
we begin by explaining how one might try to approach the analysis of A3-
invariant closed sets. We then explain – in the spirit of §3.3 – why it might
be helpful to switch to measures.

Suppose σ ⊂ L3 is an A3-invariant closed set.
We wish to study the behavior of σ in directions transverse to A3. Let eij

be the elementary matrix with a 1 in the (i, j) position and 0s everywhere
else; for i 6= j let nij(x) = exp(x.eij). Then Nij = {nij(x) : x ∈ R} is a
subgroup of SL3(R).

A natural way of studying, then, of how σ behaves transverse to A3 are
the subsets:

σij
x := {t ∈ R : nij(t)x ∈ σ} ⊂ R

This set is a closed subset of R and is defined for all x ∈ L3.
Now, we wish to use the fact that a typical element a ∈ A3 can contract

some Nijs and expand others.

Let us take an explicit example: the matrix a =

 1/2 0 0
0 1/2 0
0 0 4

. It

centralizes N12 but it shrinks N23, that is to say:

a.n23(x).a−1 = n23(x/8)

Now consider two points x1, x2 ∈ σ which lie along the N23 direction from
one another, i.e. x2 ∈ N23x1. Let us compare σ12

x1
and σ12

x2
. Because our

element a centralizes N12,

(13) σ12
x1

= σ12
ax1

= σ12
a2x1

= . . . AND σ12
x2

= σ12
ax2

= σ12
a2x2

= . . . .

But akx1 and akx2 are becoming very close as k → ∞ – because a shrinks
the direction N23. Therefore, if we had some version of the statement

(14) Wishful thinking: as x approaches y, σ12
x approaches σ12

y

we could deduce from (13) – by considering akx1, a
kx2 as k → ∞ – the

following surprising fact:

(15) σ12
x1

= σ12
x2

(NOT proved, based on wishful thinking!)

In other words, were some version of (14) true: we would have a rather
weak version of the following statement: the behavior of a closed set σ in
the N12-direction, is constant along the N23-direction. It is not immediate
how to use this, but nonetheless it is an important structural fact. (See
discussion after Lemma 5.1 for an indication of how the measure-theoretic
version of this fact is used). It is quite surprising, because we assumed
nothing about the behavior of σ besides A3-invariance.

In order to get any mileage, of course, we need to be able to find points
x1, x2 which differ in the N23 directions; or equivalently, the sets σN23

x should
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have more than one point. So in order to have any hope of using this entire
setup, we should also have:

(16) The sets σ
Nij
x should not always be singletons.

Let me emphasize that the above is, indeed, essentially wishful thinking,
and is based on the rather baselessly optimistic (14). The surprising fact is
that, by working with measures, we can salvage a version of (14).

5.1. Example. Take a closed subset S of the square [0, 1]2. Let π : [0, 1]2 →
[0, 1] be the projection. For each x ∈ [0, 1], we can consider the set Sx =
π−1({x}) ∩ S. There is no reason that nearby xs should have similar Sxs;
this is the failure of (14).

However, a measure-theoretic version of this is valid. If µ is a probability
measure on [0, 1]2, we can disintegrate it along fibers: we can write µ =∫
x∈[0,1] µxdν(x), where ν = π∗µ is the pushed-down measure on [0, 1], and

µx is a probability measure supported on the fiber π−1({x}). The µxs are
the measure-theoretic analogue of Sx; and:

(17) On a set of measure 0.999999 the function x 7→ µx is continuous.

In other words, throwing away a set of small measure, we can think of the
µxs as satisfying a version of (14).

5.2. What comes next. Einsiedler and Katok implement the strategy dis-
cussed in §5.1, but in the world of measures, not sets.

• Rather than an A3-invariant closed set σ, we start with an A3-
invariant probability measure µ.

• The analogue of σ
Nij
x ⊂ R is played by conditional measures µij

x ∈
Measures(R) discussed in §5.3. (Note that these are not probability
measures in general, and may have infinite mass.)

• The assumption (16) that σij
x not be singletons is replaced by the

assumption that µij
x not be atomic (a multiple of a point mass),

which will be needed in both Theorem 5.1 and Theorem 5.2.
• One can prove the analogue of (15): it is the product-lemma, Lemma

5.1.

5.3. Conditional measures: the analogue of the σij
x for measures.

Let a nice group G (e.g. G = Nij) act on a nice space X (e.g. X = L3).
Given a closed subset S ⊂ X, we can define the sets σG

x = {g ∈ G :
gx ∈ S}, which isolates behavior of S along the G-direction. Now we want
to define a similar concept but with the set S replaced by a probability
measure µ, and replace the closed subset σG

x ⊂ G by a measure µG
x (or just

µx) on G.
This can indeed be done in a canonical way, except that the measures µx

are defined only up to scaling by a positive number. In other words, there
exists an association x 7→ µx from points of X to measures on G, referred
to as conditional measures along G, with the following properties:
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(1) The map x 7→ µx (thought of as a map from X to measures on G)
is itself measurable.

(2) For g ∈ G and x ∈ X so that both µgx and µx are defined, the
measures µg.x and g.µx are proportional14 (one would like to say
“equal” but everything is defined only up to a positive scalar).

(3) Let B be any open ball containing the identity in G. Then µx(B) > 0
for almost all x ∈ X.

(4) µ is invariant under the G-action if and only if µx is a Haar measure
on G for almost all x ∈ X.

Let’s briefly describe how to do this when X is general but G is finite.
In that case, one can normalize the µx canonically by requiring them to be
probability measures on the finite set G. We will just describe the function
x 7→ µx({1}); then (2) determines µx totally (in this case, after normalizing
the µx, the ∝ of (2) becomes equality).

Average µ under G to get a measure ν, w.r.t. which µ is absolutely
continuous. Therefore, by the theorem of Radon and Nikodym, there exists
a function f ∈ L1(ν) so that µ = f.ν, i.e. µ(S) =

∫
S fdν. Then f(x) =

µx({1}) almost everywhere, when matters are normalized so that µx is a
probability measure.

Returning to the context of an A3-invariant measure µ on L3, we denote
by µij

x the measure on Nij
∼= R defined by the process described above,

applied to the action of Nij on L3.

5.4. From product lemma to unipotent invariance. Let µ be an A3-
invariant measure on L3. The following is established in [4], Corollary to
Proposition 5.1.

5.1. Lemma. [Product lemma] Let µ be an A3-invariant measure on L3.
Then, for (k, `) 6= (i, j), (j, i) we have µij

nk`(t)x
∝ µij

x , for µk`
x -almost all

t ∈ R, and for µ-almost every x ∈ X.

The reasoning is a measure-theoretic version of that already discussed in
(5.1). Thus Lemma 5.1 is “just” a consequence of the fact that it is possible
to “shrink” the Nk` while leaving Nij unchanged.

We say that µij
x is trivial if it is proportional to the Dirac measure sup-

ported at 0, i.e. if µij
x (f) ∝ f(0) for every continuous function f on the real

line. To make usage of the µij
x s, one really needs them to be nontrivial for

almost all x. This is the analogue of (16).
Now let us briefly – and very heuristically – indicate how one might use

Lemma 5.1. The assertion (5.1) says, in particular, that the value of x 7→ µ13
x

is “the same” (at least, proportional) at x and at n12(t)x, except for a set
of t of µ

(12)
x -measure 0. If µ12

x is far from being atomic, we can find plenty of
t 6= 0 for which this will be true. Similarly, if µ23

x is far from being atomic,

14Here g.µx is the measure defined as g.µx(S) = µx(Sg) for a subset S ⊂ G.
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we can find plenty of s for which the value of x 7→ µ13
x is the same at x and

at n23(s)x.
Applying this argument repeatedly, we may hope to find t, s so that µ13

takes proportional values at x and n12(t)n23(s)n12(−t)n23(−s)x. But the
groups N12 and N23 do not commute: indeed n12(t)n23(s)n12(−t)n23(t) =
n13(ts). This shows that µ

(13)
x is proportional at x0, and at n13(ts)x.

This says something quite strong: the measure µ
(13)
x on the real line is

proportional to its translate under ts! A simple auxiliary argument shows
that we can find enough (t, s) to force µ

(13)
x to be Lebesgue measure on

R; so (by property (4) of conditional measures) µ is invariant by N13. At
this point we have invariance in a unipotent direction; and one may apply
the measure-theoretic version of Ratner’s theorem (Theorem 3.1, see also
discussion of §3.3) to classify possibilities for µ.15

In words, (5.1) combines with the noncommutativity of the subgroups Nij

to show that µ is invariant in a unipotent direction.
The conclusion of this line of reasoning is the following, part of [4, Theo-

rem 4.2]:

5.1. Theorem. Suppose µ is an A3-ergodic measure on L3 so that, for every
i 6= j and for a positive measure set of x ∈ X, the measure µij

x is nontrivial.
Then µ is Haar measure.

Here Haar measure refers to the unique SL3(R)-invariant probability mea-
sure on L3. New ideas introduced by Lindenstrauss (based on his earlier
work [11]) allowed this to be refined to the following result, which is (as we
briefly discuss in §5.6) equivalent up to rephrasing to Theorem 4.3.

5.2. Theorem. Suppose µ is an A3-ergodic measure on L3 so that, for at
least one pair i 6= j and for a positive measure set of x ∈ X, the measure
µij

x is nontrivial. Then µ is Haar measure.

Suitable analogues of these theorems are true replacing (A3,L3) by (An,Ln).
In that case there are, in general, more possibilities for µ besides Haar mea-
sure, as in the statement of Theorem 4.3.

The question of removing the assumption in Theorem 5.2 seems to be
a very difficult and fundamental one. If one could do so, the Littlewood
conjecture (without any set of exceptions) would follow.

5.5. Back to Theorem 1.1. Now let’s return to Theorem 1.1, which can
be attacked using Theorem 5.2 and the relation between sets and measures.

We claim that for any fixed positive δ,

(18) BoxDimension {(α, β) : inf n.‖nα‖.‖nβ‖ ≥ δ} = 0

from this it is easy to deduce Theorem 1.1.

15In fact, in [4], the use of Ratner’s theorem was avoided by applying this argument
repeatedly, with 13 replaced by various ij.
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We saw that in the discussion preceding (10) that the failure of the Lit-
tlewood conjecture for a fixed pair (α, β) would correspond to the A+

3 -orbit
of a certain Lα,β ∈ L3 being bounded. If (18) fails, indeed, there exists a set
of lattices Lα,β of box dimension ≥ 0.01 (say) whose A+

3 -orbits all remain
within a fixed bounded set inside L3.

So the closure Y of A+
3 .{Lα,β} is a bounded, A+

3 -invariant closed set on
L3 with box dimension ≥ 2.01 ((the extra 2 comes from taking the A3-orbit;
in words it means that Y has thickness transverse to the A3-direction).

In what follows, let us ignore the distinction between A+
3 and A3 for sim-

plicity. The necessity of dealing with A+
3 complicates the argument slightly.

So, let us assume that Y was actually A3-invariant.
We construct a A3-invariant measure µ supported on Y . It turns out that

the fact that Y has thickness transverse to the A3-direction translates into
the fact that it is possible to choose µ so that at least one of the conditional
measures µx

ij is nontrivial for almost all x. But then Theorem 5.2 shows that
µ has to be Haar measure. So the support of µ is all of L3 and µ cannot be
supported on the bounded set Y – a contradiction.

We observe that the need to allow a set of exceptions in Theorem 1.1
arises from the condition in Theorem 5.2 concerning conditional measures
(equivalently, the positive entropy condition – see below). Removing that
condition would settle the Littlewood conjecture in whole.

5.6. Positive entropy. The theorems 5.1 and 5.2 are not useful without a
reasonable way to verify the conditions on µij

x . The utility of these results
stem, in enormous part, from the fact that there is a very usable way to
verify the conditions. This is provided by the theory of entropy, and, in
many other applications, it is through entropy that these conditions have
been verified. Indeed, even the discussion in §5.5 is made rigorous using
entropy.

The importance of entropy justifies ending this paper with a brief discus-
sion. For more, see [7, Section 3].

The theory of metric entropy assigns to a measure-preserving transforma-
tion T of a probability space (X, µ) a non-zero number, the entropy hµ(T )
of T . We briefly reprise the definition, which, of course, is rather little use
without motivation. If P is a partition of the probability space (X, µ), the
entropy of P is defined as hµ(P) :=

∑
S∈P −µ(S) log µ(S). We define the

entropy of T as:

(19) hµ(T ) = sup
P

lim
n→∞

hµ(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)
n

where the supremum is taken over all finite partitions of X.
Roughly speaking, this means the following. Suppose for simplicity that

there exists a finite partition P attaining the supremum on the right-hand
side of (19). The entropy measures, in a suitable average sense, the amount
of extra information required to specify which part x ∈ X belongs to, given
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that one knows which part Tx, T 2x, T 3x, . . . belong to. One bit of informa-
tion corresponds to entropy log 2.

(Clearly the above is not a complete description, because, besides being
very ill-defined, it made no mention of the measure µ!)

For example, if X = R/Z, T (x) = 2x,P = {[0, 1/2), [1/2, 1)}, the knowl-
edge of T kx specifies the (k +1)st binary digit of x. So it requires one extra
bit to specify x given {Tx, T 2x, . . . , }, which corresponds to entropy = log 2

On the other hand, if X = R/Z, T (x) = x +
√

2,P = {[0, 1/2), [1/2, 1)},
the entropy is 0: if we know the first binary digit of {Tx, T 2x, . . . }, we also
know the first binary digit of x.

Thus, to a very crude approximation, positive entropy arises from the pos-
sibility of different x, x′ ∈ X having “similar” forward trajectories {Tx, T 2x, T 3x, . . . }.
But, in the context of (An,Ln) there is a simple reason this could happen:
if x = nijx

′ and a ∈ An contracts nij (cf. discussion near (13)), then the
points akx, akx′ become very close as k →∞.

Formalizing this reasoning gives:

5.3. Theorem. Let µ be an A3-invariant probability measure on L3. Then
hµ(a) = 0 for all a ∈ A3 if and only if, for almost all x ∈ L3, the conditional
measures µij

x are trivial.

Thus Theorem 4.3 and Theorem 5.2 are indeed the same.
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