
Math 113 Homework 2 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.

Exercise 2.A.11 Suppose v1, ..., vm is linearly independent in V and w ∈ V .
Show that v1, ..., vm, w is linearly independent if and only if

w /∈ span(v1, ..., vm)

Proof. First suppose v1, ..., vm, w is linearly independent. Then if w ∈ span(v1, ..., vm),
we can write w as the linear combination of v1, ..., vm, that is w = a1v1+ ...+amvm.
Adding both sides of the equation by −w, we have

a1v1 + ... + amvm + (−w) = 0

Therefore we can write 0 as a1v1+...+amvm+(−w), so there exists a1, a2, ..., am,−1,
not all 0, such that a1v1 + ... + amvm + (−w) = 0. by the definition of linear de-
pendence, we have v1, ...vm, w is linearly dependent, which contradicts our initial
assumption. Thus we have w /∈ span(v1, ..., vm).

Conversely, suppose w /∈ span(v1, ..., vm). If v1, ..., vm, w is linearly dependent,
then by the linear dependence lemma(Lemma 2.21), we have vj ∈ span(v1, ..., vj−1)
for some j or w ∈ span(v1, ..., vm). But since v1, ..., vm is linearly independent,
there is no j ∈ {1, ...,m} such that vj ∈span(v1, ..., vj−1). Meanwhile we have w /∈
span(v1, ..., vm) by our assumption. Therefore v1, ..., vm, w is linearly independent.

�

Exercise 2.B.5 Prove or disprove: there exists a basis p0, p1, p2, p3 of P3(F)
such that none of the polynomials p0, p1, p2, p3 has degree 2.

Proof. We will show that

p0 = 1

p1 = x

p2 = x3 + x2

p3 = x3

is a basis for P3(F). Note that none of these polynomials has degree 2.
Proposition 2.42 in the book states that if V is a finite dimensional vector space,

and we have a spanning list of vectors of length dimV , then that list is a basis. It
is shown in the book that P3(F) has dimension 4. Since this list has 4 vectors, we
only need to show that it spans P3(F).

Suppose p(x) = a0 + a1x + a2x
2 + a3x

3 ∈ P3(F). We need to find b0, . . . , b3 s.t.
p(x) = b0p0 + · · · + b3p3. Note that p2 − p3 = x2. So let b0 = a0, b1 = a1, b2 = a2
and b3 = a3 − a2. Then,

b0p0 + b1p1 + b2p2 + b3p3 = a0 + a1x + a2(x2 + x3) + (a3 − a2)x3

= a0 + a1x + a2x
2 + a2x

3 + a3x
3 − a2x

3

= a0 + a1x + a2x
2 + a3x

3

= p(x)

1
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So we can can write p(x) as a linear combination of p0, p1, p2 and p3. Thus p0, p1, p2
and p3 span P3(F). Thus, they form a basis for P3(F). Therefore, there exists a
basis of P3(F) with no polynomial of degree 2. �

Exercise 2.B.7 Prove or give a counterexample: If v1, v2, v3, v4 is a basis of V
and U is a subspace of V such that v1, v2 ∈ U and v3 /∈ U and v4 /∈ U , then v1, v2
is a basis of U.

Proof. The statement above is false. Take V = R4, let v1 = (1, 0, 0, 0), v2 =
(0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1), it is the standard basis of R4 (see
example 2.28 (a)). Let

U = {(a, b, c, c) : a, b, c ∈ R}
We have v1 ∈ U, v2 ∈ U, v3 /∈ U, v4 /∈ U . Now we will prove v1, v2 does not

span U. For any w ∈ span(v1, v2), w = a1v1 + a2v2 = a1(1, 0, 0, 0) + a2(0, 1, 0, 0) =
(a1, a2, 0, 0). Let u = (0, 0, 1, 1), we have u ∈ U but u /∈ span(v1, v2).

By definition of basis, we have v1, v2 is not a basis of U. �

Exercise 2.C.1 Suppose that V is finite dimensional and U is a subspace of V
such that dimU = dimV . Prove that U = V .

Proof. Suppose dimU = dimV = n. Then we can find a basis u1, . . . , un for U .
Since u1, . . . , un is a basis of U , it is a linearly independent set. Proposition 2.39

says that if V is finite dimensional, then every linearly independent list of vectors
in V of length dimV is a basis for V . The list u1, . . . , un is a list of n linearly
independent vectors in V (because it forms a basis for U , and because U ⊂ V .)
Since dimV = n, u1, . . . , un is a basis of V .

This means that u1, . . . , un spans V . Thus, we can express any v ∈ V as a linear
combination of u1, . . . , un. But each ui is an element of U . Since U is a vector
space, any linear combination of elements of U is also in U . Thus any v ∈ V is also
an element of U . Therefore V ⊂ U .

We have U ⊂ V since U is a subspace of V , and we have just shown that V ⊂ U .
Therefore, U = V . �

Exercise 2.C.7 (a) Let U = {p ∈ P4(F) : p(2) = p(5) = p(6)}. Find a basis of
U .

(b) Extend the basis in part (a) to a basis of P4(F).
(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Proof. (a) A basis of U is

1, (x− 2)(x− 5)(x− 6), (x− 2)2(x− 5)(x− 6)

Each polynomial in the list above is in U . To verify that the list above is indeed a
basis of U , first note that the list above is linearly independent. Suppose a, b, c ∈ R
and

a + b(x− 2)(x− 5)(x− 6) + c(x− 2)2(x− 5)(x− 6) = 0

for every x ∈ R. Without explicitly expanding the left side of the equation above,
we can see that the left side has a cx4 term. Because the right side has no x4 term,
this implies that c = 0. Because c = 0, we see that the left side has a bx3 term,
which implies that b = 0. Because b = c = 0, the equation becomes a = 0.
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Therefore the equation above implies a = b = c = 0. Hence the list 1, (x−2)(x−
5)(x− 6), (x− 2)2(x− 5)(x− 6) is linearly independent in U . Now we are going to
prove dimU = 3, then Proposition 2.39 implies that 1, (x − 2)(x − 5)(x − 6), (x −
2)2(x−5)(x−6) is a basis of U . Since we already know 1, (x−2)(x−5)(x−6), (x−
2)2(x − 5)(x − 6) is linearly independent in U , we have dimU ≥ 3, thus we just
need to prove dimU ≤ 3.

Define V = {p ∈ P4(F) : p(2) = p(5)}. We know that V is a proper subspace of
P4(F), since e.g. f(x) = x is a polynomial in P4(F) that is not in V (since f(2) = 2
while f(5) = 5). We already know dim(P4(F)) = 5 from Example 2.37. Using
the result in Exercise 2.C.1, we know that dimV < dimP4(F) since V is a proper
subspace of P4(F), so dimV ≤ 4. Similarly, we know U is a proper subspace of
V , because e.g. q(x) = (x − 2)(x − 5) is a polynomial that is in V but not in U
(since q(5) = 0 while q(6) = 4). Applying Exercise 2.C.1 again, we conclude that
dimU < dimV , so dimU ≤ 3.

We conclude that dimU = 3. By Prop. 2.39, we can conclude that 1, (x−2)(x−
5)(x− 6), (x− 2)2(x− 5)(x− 6) is a basis of U .

(b)The list

1, (x− 2)(x− 5)(x− 6), (x− 2)2(x− 5)(x− 6), x, x2

is a basis of P4(F).
First we prove that 1, (x− 2)(x− 5)(x− 6), (x− 2)2(x− 5)(x− 6), x, x2 is linear

independent.
Suppose a, b, c, d, e ∈ R and

a + b(x− 2)(x− 5)(x− 6) + c(x− 2)2(x− 5)(x− 6) + dx + ex2 = 0

Without explicitly expanding the left side of the equation above, we can see that
the left side has a cx4 term. Because the right side has no x4 term, this implies
that c = 0. Because c = 0, we see that the left side has a bx3 term, which implies
that b = 0. Because b = c = 0, the left side has a ex2 term which implies that
b = 0. Because b = c = e = 0, the left side has a dx term which implies that d = 0.
Because b = c = d = e = 0, the equation above becomes a = 0.

Therefore the equation above implies a = b = c = d = e = 0. Hence the list
1, (x−2)(x−5)(x−6), (x−2)2(x−5)(x−6), x, x2 is linearly independent in P4(F).

Notice that this linearly independent list has length 5, meanwhile dimP4(F) = 5
(see Example 2.37 ). Using Proposition 2.39 , we can conclude that 1, (x− 2)(x−
5)(x− 6), (x− 2)2(x− 5)(x− 6), x, x2 is a basis of P4(F).

(c) Denote the subspace span(x, x2) by W . Since

1, (x− 2)(x− 5)(x− 6), (x− 2)2(x− 5)(x− 6), x, x2

forms a basis of P4(F), we know that x, x2 is linearly independent, thus x, x2 is
a basis of W (see Definition 2.27 ) and we have dimW = 2 (see Definition 2.36 ).
From (a) we know that 1, (x− 2)(x− 5)(x− 6), (x− 2)2(x− 5)(x− 6) is a basis of
U , and dimU = 3. Now we want to prove P4(F) = U ⊕W .

First we prove that U and W is a direct sum. Suppose f ∈ U ∩W , then we can
write f as

f = a1 + a2(x− 2)(x− 5)(x− 6) + a3(x− 2)2(x− 5)(x− 6)( since f ∈ U)

and
f = a4x + a5x

2( since f ∈W )
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Combining the two equalities together we have

a1 + a2(x− 2)(x− 5)(x− 6) + a3(x− 2)2(x− 5)(x− 6) = a4x + a5x
2

Adding both sides of the equality by −(a4x + a5x
2) and using the property of

additive inverse, we have

a1 + a2(x− 2)(x− 5)(x− 6) + a3(x− 2)2(x− 5)(x− 6) + (−(a4x + a5x
2))

=a4x + a5x
2 + (−(a4x + a5x

2))

=0

So we have

a1 + a2(x− 2)(x− 5)(x− 6) + a3(x− 2)2(x− 5)(x− 6) + (−a4)x + (−a5)x2 = 0

Since 1, (x−2)(x−5)(x−6), (x−2)2(x−5)(x−6), x, x2 is linearly independent,
using Definition 2.17 we have:

a1 = a2 = a3 = −a4 = −a5 = 0

Which is equivalent to
a1 = a2 = a3 = a4 = a5 = 0

So we have f = 0x2 + 0x = 0, thus U and W is a direct sum (see Proposition 1.45).
Then we prove U ⊕W = P4(F). Using Theorem 2.43 , we have

dim(U + W ) = dimU + dimW − dim(U ∩W )

Consider the right side of the equation. Since dimU = 3, dimW = 2, dim(U ∩
W ) = 0. We have dim(U + W ) = 5. The vector space U + W is a subspace of
P4(F), so using the result in Exercise 2.C.1, we have U + W = P4(F). We have
proved that U and W is a direct sum, therefore we have U ⊕W = P4(F). �

Exercise 2.C.11 Suppose that U and W are subspaces of R8 such that dimU =
3, dimW = 5, and U + W = R8. Prove that R8 = U ⊕W .

Proof. We know from Theorem 2.43 that

dim(U + W ) = dimU + dimW − dim(U ∩W )

First consider the left hand side of the equation. Here we have U + W = R8, so
dim(U + W ) = dim(R8) = 8.

Now consider the right hand side of the equation. Since dimU = 3, dimW = 5
, the right hand of the equation equals to 8− dim(U ∩W ).

Therefore we have 8 − dim(U ∩ W ) = 8, so dim(U ∩ W ) = 0, which implies
U∩W = {0}, so we have R8 = U⊕W (see Proposition 1.45 from our textbook). �

Exercise 2.C.12 Suppose U and W are both five-dimensional subspaces of R9.
Prove that U ∩W 6= {0}.

Proof. Suppose that U ∩W = {0}. By Theorem 2.43,

dim(U + W ) = dimU + dimW − dim(U ∩W )

First consider the right hand side of this equation. Since U ∩ W = {0}, the
dimension of U ∩W is zero. Since dimU = dimV = 5, the right hand side of this
equation is 10.
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Now consider the left hand side of the equation. The vector space U + W is a
subspace of R9. By Proposition 2.38 in the book, the dimension of a subspace of
R9 is at most the dimension of R9. Since dim(R9) = 9, we have dim(U + W ) ≤ 9.
But this is impossible since the right hand side of the equality is 10.

Therefore, U ∩W 6= {0}. �

Exercise 3.A.11 Suppose V is finite-dimensional. Prove that every linear map
on a subspace of V can be extended to a linear map on V . In other words, show
that if U is a subspace of V and S ∈ L(U,W ), then there exists T ∈ L(V,W ) such
that Tu = Su for all u ∈ U .

Proof. Suppose U is a subspace of V and S ∈ L(U,W ). Choose a basis u1, ..., um

of U . Then u1, ..., um is a linearly independent list of vectors in V, and so can
be extended to a basis u1, ..., um, v1, ..., vn of V (by Proposition 2.33 ). Using
Proposition 3.5, we know that there exists a unique linear map T ∈ L(V,W ) such
that

Tui = Sui for all i ∈ {1, 2, ...,m}
Tvj = 0 for all j ∈ {1, 2, ...n}

Now we are going to prove Tu = Su for all u ∈ U .
For any u ∈ U , u can be written as a1u1 + ... + amum, since S ∈ L(U,W ),

Su = a1Su1 + a2Su2 + ... + amSum (see Definition 3.2 ).
Since T ∈ L(V,W ), we have

Tu = T (a1u1 + ... + amum)

= a1Tu1 + a2Tu2 + ... + amTum

= a1Su1 + a2Su2 + ... + amSum

= Su

Therefore we have Tu = Su for all u ∈ U , so we have proved that every linear
map on a subspace of V can be extended to a linear map on V . �

Exercise 3.A.14 Suppose V is finite-dimensional with dimV ≥ 2. Prove that
there exist S, T ∈ L(V, V ) such that ST 6= TS.

Proof. Let v1, ..., vn be a basis of V . We can use Proposition 3.5 to define S, T ∈
L(V, V ) such that

Svk =

{
v2 if k = 1

0 if k 6= 1

and

Tvk =

{
v1 if k = 2

0 if k 6= 2

Then
(ST )(v1) = S(Tv1) = S0 = 0

but
(TS)(v1) = T (Sv1) = Tv2 = v1 6= 0

Thus ST 6= TS.
�
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Question 1. If V is a vector space over the field F, consider its dual vector space
V ∗. Assume that dimV = n, and that v1, . . . , vn is a basis for V . Find a basis V ∗.
What is dimV ∗?

Proof. Let v1, . . . , vn be a basis for V . Let v ∈ V . Then we can write v as a
linear combination of the basis vectors. That is, v = a1v1 + · · · + anvn for some
a1, . . . , an ∈ F. Let fi : V → F be the map such that fi(v) = ai. We will show that
f1, . . . , fn is a basis for V ∗.

First, we should show that fi ∈ V ∗ for all i. Suppose v, w ∈ V . Write v =
a1v1 + · · · + anvn and w = b1v1 + · · · + bnvn. Thus fi(v) = ai and fi(w) = bi.
We have v + w = (a1 + b1)v1 + . . . (an + bn)vn. So, fi(v + w) = ai + bi. This is
the same as fi(v) + fi(w). Thus fi(v + w) = fi(v) + fi(w). Next, if c ∈ F, then
cv = ca1v1 + · · · + canvn. So, fi(cv) = cai, which is the same as cfi(v). Thus
fi(cv) = cfi(v). Therefore, fi ∈ V ∗ for all i.

Next, we need to show that f1, . . . , fn span V ∗. Let f ∈ V ∗. We will show that
if ci = f(vi), (where v1, . . . , vn is our basis for V ), then f = c1f1 + · · ·+ cnfn.

Let v = a1v1 + · · ·+ anvn ∈ V . Then

f(v) = a1f(v1) + . . . anf(vn) because f ∈ V ∗

= a1c1 + · · ·+ ancn since we defined ci = f(vi)

= c1f1(v) + · · ·+ cnfn(v) because fi(v) = ai, by definition

Thus f(v) = (c1f1 + . . . cnfn)(v) for all v ∈ V , so f = c1f1 + . . . cnfn. This shows
that any element f of V ∗ can be written as a linear combination of f1, . . . , fn.

Lastly, we need to show that f1, . . . , fn are linearly independent. Suppose that
we can find constants c1, . . . , cn s.t. c1f1 + · · · + cnfn = 0. Then for any element
v ∈ V , c1f1(v) + · · ·+ cnfn(v) = 0. In particular, for any i,

c1f1(vi) + · · ·+ cnfn(vi) = 0 but fj(vi) = 0 for all j 6= i so

cifi(vi) = 0 and since fi(vi) = 1.

ci = 0

Therefore ci = 0 for all i. Thus the fi are linearly independent.
This means f1, . . . , fn form a basis for V ∗. Since there are n elements of this

basis, the dimension of V ∗ is n. �

Question 2. Let V be a vector space with basis v1, v2, and let W be a vector space
with basis w1, w2, w3. Find a basis for L(V,W ). What is dimL(V,W ) ?

Proof. Let v ∈ V . Then we can write v = a1v1 + a2v2. Define fij : V → W for
i ∈ {1, 2} and j ∈ {1, 2, 3} to be

fij(v) = aiwj

For example, f12(v) = a1w2, and so on.
We claim that f11, f12, f13, f21, f22, f23 form a basis for L(V,W ). First we need

to show that fij is linear for any i, j. Suppose v, w ∈ V . Write v = a1v1 + a2v2
and w = b1v1 + b2v2. Thus fij(v) = aiwj and fij(w) = biwj . We have v + w =
(a1 + b1)v1 + (a2 + b2)v2. So, fij(v +w) = (ai + bi)wj . This is the same as fij(v) +
fij(w). Thus fij(v + w) = fij(v) + fij(w). If c ∈ F, then cv = ca1v1 + ca2v2. So,
fij(cv) = caiwj , which is the same as cfij(v). Thus fij(cw) = cfij(w). Therefore,
fij ∈ L(V,W ) for all i, j.
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Next, we need to show that f11, f12, f13, f21, f22, f23 span L(V,W ). Let f ∈
L(V,W ). For each i, f(vi) is an element of W . That means we can express it
as a linear combination of w1,w2 and w3. For each i ∈ {1, 2} we define elements
ci1, ci2, ci3 ∈ F s.t. f(vi) = ci1w1 + ci2w2 + ci3w3 (where v1, v2 is our basis for V .)
We claim that

f = c11f11 + c12f12 + c13f13 + c21f21 + c22f22 + c23f23

Let v = a1v1 + a2v2 ∈ V . Then

f(v) = a1f(v1) + a2f(v2)

because f is linear

=a1(c11w1 + c12w2 + c13w3) + a2(c21w1 + c22w2 + c23w3)

by the definition of cij for each i, j

=c11f11(v) + c12f12(v) + c13f13(v) + c21f21(v) + c22f22(v) + c23f23(v)

because fij(v) = aiwj , by definition

Thus any element of L(V,W ) can be written as a linear combination of f11, f12, f13, f21, f22
and f23.

Lastly, we need to show that f11, f12, f13, f21, f22 and f23 are linearly indepen-
dent. Suppose that we can find constants c11, c12, c13, c21, c22 and c23 s.t.

c11f11 + c12f12 + c13f13 + c21f21 + c22f22 + c23f23 = 0

Then for any element v ∈ V ,

c11f11(v) + c12f12(v) + c13f13(v) + c21f21(v) + c22f22(v) + c23f23(v) = 0

In particular, for any i,

c11f11(vi) + c12f12(vi) + c13f13(vi) + c21f21(vi) + c22f22(vi) + c23f23(vi) = 0

but fkj(vi) = 0 for all k 6= i so

ci1fi1(vi) + ci2fi2(vi) + ci3fi3(vi) = 0

and since fij(vi) = wj ,

ci1w1 + ci2w2 + ci3w3 = 0

but w1, w2 form a basis for W , so this is only possible if

ci1 = ci2 = ci3 = 0

Therefore cij = 0 for all i, j. Thus the fij are linearly independent.
This means f11, f12, f13, f21, f22 and f23 form a basis for L(V,W ). Since there

are 6 elements of this basis, the dimension of L(V,W ) is 6. �

Question 3. Let U be a subset of R∞ consisting of all sequences that satisfy

vi + vi+2 = vi+1 for all i

(1) Prove that U is a subspace of R∞.
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(2) Let x, y ∈ U be the elements

x = (0, 1, 1, 0,−1,−1, 0, 1, 1, . . . )

y = (1, 0,−1,−1, 0, 1, 1, 0,−1, . . . )

Prove that the list x, y is a linearly independent set.
(3) Prove that x, y is a basis for U .
(4) Let W be the subspace of R∞ consisting of all sequences with v1 = 0 and

v2 = 0. Prove that R∞ = U ⊕W .

Proof. (1) First we prove that U is a subspace of R∞. To do this, we show
that it has the following properties.
Zero: The sequence (0, 0, . . . ) satisfies vi + vi+2 = vi+1 because vi =

vi+1 = vi+2 = 0. Therefore 0 ∈ U .
Closed Under Vector Addition: Suppose v = (v1, v2, . . . ), w = (w1, w2, . . . ) ∈

U . Then vi + vi+2 = vi+1 and wi + wi+2 = wi+1. Thus (vi + wi) +
(vi+2 + wi+2) = (vi+1 + wi+1). Since the ith term of v + w is vi + wi

for each i, this means that v + w ∈ U . Therefore U is closed under
vector addition.

Closed Under Scalar Multiplication: Suppose v = (v1, v2, . . . ) ∈ U
and a ∈ R. Since vi + vi+2 = vi+1, we have that avi + avi+2 = avi+1.
Since the ith term of av is avi for each i, this means that av ∈ U .
Therefore U is closed under scalar multiplication.

Since U satisfies these properties, it is a subspace of R∞.
(2) Let x, y ∈ U be the elements

x = (0, 1, 1, 0,−1,−1, 0, 1, 1, . . . )

y = (1, 0,−1,−1, 0, 1, 1, 0,−1, . . . )

We will show that (x, y) is a linearly independent set.
Suppose not. Then we can find a, b ∈ R s.t. ax + by = 0. Note that

ax = (0, a, a, 0,−a,−a, 0, a, a, . . . )
by = (b, 0,−b,−b, 0, b, b, 0,−b, . . . ) so,

ax + by = (b, a, . . . )

If ax + by = 0 then b = 0 and a = 0 since two sequences are equal iff their
terms are all equal. This means that x and y are linearly independent.

(3) Next we show that (x, y) is a basis for U . Since we have already shown that
(x, y) is a linearly independent set, we just need to show that it spans U .

Let u ∈ U . Write u = (u1, u2, . . . ). Then we claim that u = u1y + u2x.
Note that

u1y + u2x = (u1, u2, u2 − u1,−u1,−u2,−u2 + u1, u1, u2, u2 − u1, . . . )

We will show that all the terms of u and u1y +u2x match up by induction.
We will use the fact that since ui + ui+2 = ui+1, then ui+2 = ui+1 − ui.
First of all, this means that u3 = u2 − u1. Thus, u and u1y + u2x match
up on the first three terms.

Now suppose the first 3n terms of u and u1y + u2x are the same. We
need to show that this implies the first 3(n+ 1) terms are the same. There
are two cases: n is either odd or even. First suppose n is odd. Then

u = (u1, . . . ,−u2 + u1, u1, u2, u2 − u1, u3n+1, u3n+2, u3n+3, . . . )
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where the u2−u1 is its 3nth term. Since u3n+1 = u3n−u3n−1, we have that
u3n+1 = −u1. Next, since u3n+2 = u3n+1−u3n, we have that u3n+2 = −u2.
Lastly, since u3n+3 = u3n+2−u3n+1, we have that u3n+3 = −u2 +u1. Thus
u and u1y + u2x match up for 3n + 3 = 3(n + 1) terms.

Now suppose that n is even. Then,

u = (u1, . . . , u2 − u1,−u1,−u2,−u2 + u1, u3n+1, u3n+2, u3n+3, . . . )

where the u2−u1 is its 3nth term. Since u3n+1 = u3n−u3n−1, we have that
u3n+1 = u1. Next, since u3n+2 = u3n+1 − u3n, we have that u3n+2 = u2.
Lastly, since u3n+3 = u3n+2 − u3n+1, we have that u3n+3 = u2 − u1. Thus
u and u1y + u2x match up for 3n + 3 = 3(n + 1) terms.

Therefore, by induction, u1y + u2x = u.
This means that x and y span U . Since we have shown that they are

linearly independent, they form a basis for U .
(4) Let W be the subspace of R∞ consisting of all sequences with v1 = 0 and

v2 = 0. We need to show that R∞ = U ⊕W . By Proposition 1.9 from the
book, R∞ = U ⊕W iff R∞ = U + W and U ∩W = {0}.

To show that R∞ = U + W we need to show that any sequence can
be written as the sum of an element of U and an element of W . Let x =
(x1, x2, . . . ) ∈ R∞. Let u = (x1, x2, x2 − x1,−x1,−x2, x1 − x2, x1, x2, . . . )
be the element of U that starts with x1 and x2. Let w = x−u. Since u and
x have the same first and second term, w = (0, 0, w3, w4, . . . ). So, w ∈ W .
Since x = u+w, we can write any element of R∞ as the sum of an element
of U plus an element of W . Thus, R∞ = U + W .

To show that U ∩W = {0}, suppose v ∈ U ∩W . We will show that
v = 0 by induction. Write v = (v1, v2, . . . ). Since v ∈ W , v1 = v2 = 0.
Suppose vn−1 = vn = 0. Then we need to show that vn+1 = 0. Since
vn+1 = vn − vn−1, we have that vn+1 = 0. So by induction, v = 0.
Therefore, U ∩W = {0}.

Since we proved R∞ = U + W and U ∩W = {0}, we have shown that
R∞ = U ⊕W .
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