Solutions by Guanyang Wang, with edits by Tom Church. Exercises from the book.

Exercise 2.A.11 Suppose $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Show that $v_1, ..., v_m, w$ is linearly independent if and only if

$$w \notin \operatorname{span}(v_1, ..., v_m)$$

Proof. First suppose $v_1, ..., v_m, w$ is linearly independent. Then if $w \in \text{span}(v_1, ..., v_m)$, we can write w as the linear combination of $v_1, ..., v_m$, that is $w = a_1v_1 + ... + a_mv_m$. Adding both sides of the equation by -w, we have

$$a_1v_1 + \dots + a_mv_m + (-w) = 0$$

Therefore we can write 0 as $a_1v_1+...+a_mv_m+(-w)$, so there exists $a_1,a_2,...,a_m,-1$, not all 0, such that $a_1v_1+...+a_mv_m+(-w)=0$. by the definition of linear dependence, we have $v_1,...v_m,w$ is linearly dependent, which contradicts our initial assumption. Thus we have $w \notin \operatorname{span}(v_1,...,v_m)$.

Conversely, suppose $w \notin \operatorname{span}(v_1,...,v_m)$. If $v_1,...,v_m,w$ is linearly dependent, then by the linear dependence lemma(Lemma 2.21), we have $v_j \in \operatorname{span}(v_1,...,v_{j-1})$ for some j or $w \in \operatorname{span}(v_1,...,v_m)$. But since $v_1,...,v_m$ is linearly independent, there is no $j \in \{1,...,m\}$ such that $v_j \in \operatorname{span}(v_1,...,v_{j-1})$. Meanwhile we have $w \notin \operatorname{span}(v_1,...,v_m)$ by our assumption. Therefore $v_1,...,v_m,w$ is linearly independent.

Exercise 2.B.5 Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $P_3(\mathbb{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has degree 2.

Proof. We will show that

$$p_0 = 1$$

$$p_1 = x$$

$$p_2 = x^3 + x^2$$

$$p_3 = x^3$$

is a basis for $P_3(\mathbb{F})$. Note that none of these polynomials has degree 2.

Proposition 2.42 in the book states that if V is a finite dimensional vector space, and we have a spanning list of vectors of length dim V, then that list is a basis. It is shown in the book that $P_3(\mathbb{F})$ has dimension 4. Since this list has 4 vectors, we only need to show that it spans $P_3(\mathbb{F})$.

Suppose $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in P_3(\mathbb{F})$. We need to find b_0, \ldots, b_3 s.t. $p(x) = b_0p_0 + \cdots + b_3p_3$. Note that $p_2 - p_3 = x^2$. So let $b_0 = a_0, b_1 = a_1, b_2 = a_2$ and $b_3 = a_3 - a_2$. Then,

$$b_0 p_0 + b_1 p_1 + b_2 p_2 + b_3 p_3 = a_0 + a_1 x + a_2 (x^2 + x^3) + (a_3 - a_2) x^3$$

$$= a_0 + a_1 x + a_2 x^2 + a_2 x^3 + a_3 x^3 - a_2 x^3$$

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$= p(x)$$

1

So we can can write p(x) as a linear combination of p_0, p_1, p_2 and p_3 . Thus p_0, p_1, p_2 and p_3 span $P_3(\mathbb{F})$. Thus, they form a basis for $P_3(\mathbb{F})$. Therefore, there exists a basis of $P_3(\mathbb{F})$ with no polynomial of degree 2.

Exercise 2.B.7 Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then v_1, v_2 is a basis of U.

Proof. The statement above is false. Take $V = \mathbb{R}^4$, let $v_1 = (1,0,0,0)$, $v_2 = (0,1,0,0)$, $v_3 = (0,0,1,0)$, $v_4 = (0,0,0,1)$, it is the standard basis of \mathbb{R}^4 (see example 2.28 (a)). Let

$$U = \{(a, b, c, c) : a, b, c \in R\}$$

We have $v_1 \in U, v_2 \in U, v_3 \notin U, v_4 \notin U$. Now we will prove v_1, v_2 does not span U. For any $w \in \text{span}(v_1, v_2), w = a_1v_1 + a_2v_2 = a_1(1, 0, 0, 0) + a_2(0, 1, 0, 0) = (a_1, a_2, 0, 0)$. Let u = (0, 0, 1, 1), we have $u \in U$ but $u \notin \text{span}(v_1, v_2)$.

By definition of basis, we have v_1, v_2 is not a basis of U.

Exercise 2.C.1 Suppose that V is finite dimensional and U is a subspace of V such that $\dim U = \dim V$. Prove that U = V.

Proof. Suppose dim $U = \dim V = n$. Then we can find a basis u_1, \ldots, u_n for U.

Since u_1, \ldots, u_n is a basis of U, it is a linearly independent set. Proposition 2.39 says that if V is finite dimensional, then every linearly independent list of vectors in V of length dim V is a basis for V. The list u_1, \ldots, u_n is a list of n linearly independent vectors in V (because it forms a basis for U, and because $U \subset V$.) Since dim $V = n, u_1, \ldots, u_n$ is a basis of V.

This means that u_1, \ldots, u_n spans V. Thus, we can express any $v \in V$ as a linear combination of u_1, \ldots, u_n . But each u_i is an element of U. Since U is a vector space, any linear combination of elements of U is also in U. Thus any $v \in V$ is also an element of U. Therefore $V \subset U$.

We have $U \subset V$ since U is a subspace of V, and we have just shown that $V \subset U$. Therefore, U = V.

Exercise 2.C.7 (a) Let $U = \{ p \in P_4(\mathbb{F}) : p(2) = p(5) = p(6) \}$. Find a basis of U.

- (b) Extend the basis in part (a) to a basis of $P_4(\mathbb{F})$.
- (c) Find a subspace W of $P_4(\mathbb{F})$ such that $P_4(\mathbb{F}) = U \oplus W$.

Proof. (a) A basis of U is

$$1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$$

Each polynomial in the list above is in U. To verify that the list above is indeed a basis of U, first note that the list above is linearly independent. Suppose $a,b,c\in\mathbb{R}$ and

$$a + b(x-2)(x-5)(x-6) + c(x-2)^{2}(x-5)(x-6) = 0$$

for every $x \in R$. Without explicitly expanding the left side of the equation above, we can see that the left side has a cx^4 term. Because the right side has no x^4 term, this implies that c = 0. Because c = 0, we see that the left side has a bx^3 term, which implies that b = 0. Because b = c = 0, the equation becomes a = 0.

Therefore the equation above implies a=b=c=0. Hence the list $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$ is linearly independent in U. Now we are going to prove $\dim U=3$, then Proposition 2.39 implies that $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$ is a basis of U. Since we already know $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$ is linearly independent in U, we have $\dim U \geq 3$, thus we just need to prove $\dim U \leq 3$.

Define $V = \{p \in P_4(\mathbb{F}) : p(2) = p(5)\}$. We know that V is a proper subspace of $P_4(\mathbb{F})$, since e.g. f(x) = x is a polynomial in $P_4(\mathbb{F})$ that is not in V (since f(2) = 2 while f(5) = 5). We already know $\dim(P_4(\mathbb{F})) = 5$ from Example 2.37. Using the result in Exercise 2.C.1, we know that $\dim V < \dim P_4(\mathbb{F})$ since V is a proper subspace of $P_4(\mathbb{F})$, so $\dim V \leq 4$. Similarly, we know U is a proper subspace of V, because e.g. q(x) = (x-2)(x-5) is a polynomial that is in V but not in U (since q(5) = 0 while q(6) = 4). Applying Exercise 2.C.1 again, we conclude that $\dim U < \dim V$, so $\dim V \leq 3$.

We conclude that dim U = 3. By Prop. 2.39, we can conclude that $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$ is a basis of U.

(b)The list

$$1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$$

is a basis of $P_4(\mathbb{F})$.

First we prove that $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$ is linear independent.

Suppose $a, b, c, d, e \in \mathbb{R}$ and

$$a + b(x-2)(x-5)(x-6) + c(x-2)^{2}(x-5)(x-6) + dx + ex^{2} = 0$$

Without explicitly expanding the left side of the equation above, we can see that the left side has a cx^4 term. Because the right side has no x^4 term, this implies that c=0. Because c=0, we see that the left side has a bx^3 term, which implies that b=0. Because b=c=0, the left side has a ex^2 term which implies that b=0. Because b=c=e=0, the left side has a dx term which implies that d=0. Because b=c=d=e=0, the equation above becomes a=0.

Therefore the equation above implies a=b=c=d=e=0. Hence the list $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$ is linearly independent in $P_4(\mathbb{F})$.

Notice that this linearly independent list has length 5, meanwhile dim $P_4(\mathbb{F}) = 5$ (see Example 2.37). Using Proposition 2.39, we can conclude that $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$ is a basis of $P_4(\mathbb{F})$.

(c) Denote the subspace $span(x, x^2)$ by W. Since

$$1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$$

forms a basis of $P_4(\mathbb{F})$, we know that x, x^2 is linearly independent, thus x, x^2 is a basis of W (see Definition 2.27) and we have dim W=2 (see Definition 2.36). From (a) we know that $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6)$ is a basis of U, and dim U=3. Now we want to prove $P_4(\mathbb{F})=U\oplus W$.

First we prove that U and W is a direct sum. Suppose $f \in U \cap W$, then we can write f as

$$f = a_1 + a_2(x-2)(x-5)(x-6) + a_3(x-2)^2(x-5)(x-6)$$
 (since $f \in U$)

and

$$f = a_4 x + a_5 x^2$$
 (since $f \in W$)

Combining the two equalities together we have

$$a_1 + a_2(x-2)(x-5)(x-6) + a_3(x-2)^2(x-5)(x-6) = a_4x + a_5x^2$$

Adding both sides of the equality by $-(a_4x + a_5x^2)$ and using the property of additive inverse, we have

$$a_1 + a_2(x - 2)(x - 5)(x - 6) + a_3(x - 2)^2(x - 5)(x - 6) + (-(a_4x + a_5x^2))$$

$$= a_4x + a_5x^2 + (-(a_4x + a_5x^2))$$

$$= 0$$

So we have

$$a_1 + a_2(x-2)(x-5)(x-6) + a_3(x-2)^2(x-5)(x-6) + (-a_4)x + (-a_5)x^2 = 0$$

Since $1, (x-2)(x-5)(x-6), (x-2)^2(x-5)(x-6), x, x^2$ is linearly independent, using Definition 2.17 we have:

$$a_1 = a_2 = a_3 = -a_4 = -a_5 = 0$$

Which is equivalent to

$$a_1 = a_2 = a_3 = a_4 = a_5 = 0$$

So we have $f = 0x^2 + 0x = 0$, thus U and W is a direct sum (see Proposition 1.45). Then we prove $U \oplus W = P_4(\mathbb{F})$. Using Theorem 2.43, we have

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Consider the right side of the equation. Since $\dim U = 3$, $\dim W = 2$, $\dim(U \cap W) = 0$. We have $\dim(U + W) = 5$. The vector space U + W is a subspace of $P_4(\mathbb{F})$, so using the result in Exercise 2.C.1, we have $U + W = P_4(\mathbb{F})$. We have proved that U and W is a direct sum, therefore we have $U \oplus W = P_4(\mathbb{F})$.

Exercise 2.C.11 Suppose that U and W are subspaces of \mathbb{R}^8 such that dim U=3, dim W=5, and $U+W=\mathbb{R}^8$. Prove that $\mathbb{R}^8=U\oplus W$.

Proof. We know from Theorem 2.43 that

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

First consider the left hand side of the equation. Here we have $U + W = \mathbb{R}^8$, so $\dim(U + W) = \dim(\mathbb{R}^8) = 8$.

Now consider the right hand side of the equation. Since dim U=3, dim W=5, the right hand of the equation equals to $8-\dim(U\cap W)$.

Therefore we have $8 - \dim(U \cap W) = 8$, so $\dim(U \cap W) = 0$, which implies $U \cap W = \{0\}$, so we have $\mathbb{R}^8 = U \oplus W$ (see Proposition 1.45 from our textbook). \square

Exercise 2.C.12 Suppose U and W are both five-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.

Proof. Suppose that $U \cap W = \{0\}$. By Theorem 2.43,

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

First consider the right hand side of this equation. Since $U \cap W = \{0\}$, the dimension of $U \cap W$ is zero. Since dim $U = \dim V = 5$, the right hand side of this equation is 10.

Now consider the left hand side of the equation. The vector space U+W is a subspace of \mathbb{R}^9 . By Proposition 2.38 in the book, the dimension of a subspace of \mathbb{R}^9 is at most the dimension of \mathbb{R}^9 . Since $\dim(\mathbb{R}^9) = 9$, we have $\dim(U+W) \leq 9$. But this is impossible since the right hand side of the equality is 10.

Therefore, $U \cap W \neq \{0\}$.

Exercise 3.A.11 Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U,W)$, then there exists $T \in \mathcal{L}(V,W)$ such that Tu = Su for all $u \in U$.

Proof. Suppose U is a subspace of V and $S \in \mathcal{L}(U,W)$. Choose a basis $u_1,...,u_m$ of U. Then $u_1,...,u_m$ is a linearly independent list of vectors in V, and so can be extended to a basis $u_1,...,u_m,v_1,...,v_n$ of V (by Proposition 2.33). Using Proposition 3.5, we know that there exists a unique linear map $T \in \mathcal{L}(V,W)$ such that

$$Tu_i = Su_i \text{ for all } i \in \{1, 2, ..., m\}$$

 $Tv_j = 0 \text{ for all } j \in \{1, 2, ...n\}$

Now we are going to prove Tu = Su for all $u \in U$.

For any $u \in U$, u can be written as $a_1u_1 + ... + a_mu_m$, since $S \in \mathcal{L}(U, W)$, $Su = a_1Su_1 + a_2Su_2 + ... + a_mSu_m$ (see Definition 3.2).

Since $T \in \mathcal{L}(V, W)$, we have

$$Tu = T(a_1u_1 + \dots + a_mu_m)$$

$$= a_1Tu_1 + a_2Tu_2 + \dots + a_mTu_m$$

$$= a_1Su_1 + a_2Su_2 + \dots + a_mSu_m$$

$$= Su$$

Therefore we have Tu = Su for all $u \in U$, so we have proved that every linear map on a subspace of V can be extended to a linear map on V.

Exercise 3.A.14 Suppose V is finite-dimensional with dim $V \geq 2$. Prove that there exist $S, T \in \mathcal{L}(V, V)$ such that $ST \neq TS$.

Proof. Let $v_1, ..., v_n$ be a basis of V. We can use Proposition 3.5 to define $S, T \in \mathcal{L}(V, V)$ such that

$$Sv_k = \begin{cases} v_2 & \text{if } k = 1\\ 0 & \text{if } k \neq 1 \end{cases}$$

and

$$Tv_k = \begin{cases} v_1 & \text{if } k = 2\\ 0 & \text{if } k \neq 2 \end{cases}$$

Then

$$(ST)(v_1) = S(Tv_1) = S0 = 0$$

but

$$(TS)(v_1) = T(Sv_1) = Tv_2 = v_1 \neq 0$$

Thus $ST \neq TS$.

Question 1. If V is a vector space over the field \mathbb{F} , consider its dual vector space V^* . Assume that dim V = n, and that v_1, \ldots, v_n is a basis for V. Find a basis V^* . What is dim V^* ?

Proof. Let v_1, \ldots, v_n be a basis for V. Let $v \in V$. Then we can write v as a linear combination of the basis vectors. That is, $v = a_1v_1 + \cdots + a_nv_n$ for some $a_1, \ldots, a_n \in \mathbb{F}$. Let $f_i : V \to \mathbb{F}$ be the map such that $f_i(v) = a_i$. We will show that f_1, \ldots, f_n is a basis for V^* .

First, we should show that $f_i \in V^*$ for all i. Suppose $v, w \in V$. Write $v = a_1v_1 + \cdots + a_nv_n$ and $w = b_1v_1 + \cdots + b_nv_n$. Thus $f_i(v) = a_i$ and $f_i(w) = b_i$. We have $v + w = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$. So, $f_i(v + w) = a_i + b_i$. This is the same as $f_i(v) + f_i(w)$. Thus $f_i(v + w) = f_i(v) + f_i(w)$. Next, if $c \in \mathbb{F}$, then $cv = ca_1v_1 + \cdots + ca_nv_n$. So, $f_i(cv) = ca_i$, which is the same as $cf_i(v)$. Thus $f_i(cv) = cf_i(v)$. Therefore, $f_i \in V^*$ for all i.

Next, we need to show that f_1, \ldots, f_n span V^* . Let $f \in V^*$. We will show that if $c_i = f(v_i)$, (where v_1, \ldots, v_n is our basis for V), then $f = c_1 f_1 + \cdots + c_n f_n$.

Let $v = a_1v_1 + \cdots + a_nv_n \in V$. Then

$$f(v) = a_1 f(v_1) + \dots + a_n f(v_n)$$
 because $f \in V^*$
= $a_1 c_1 + \dots + a_n c_n$ since we defined $c_i = f(v_i)$
= $c_1 f_1(v) + \dots + c_n f_n(v)$ because $f_i(v) = a_i$, by definition

Thus $f(v) = (c_1 f_1 + \dots c_n f_n)(v)$ for all $v \in V$, so $f = c_1 f_1 + \dots c_n f_n$. This shows that any element f of V^* can be written as a linear combination of f_1, \dots, f_n .

Lastly, we need to show that f_1, \ldots, f_n are linearly independent. Suppose that we can find constants c_1, \ldots, c_n s.t. $c_1 f_1 + \cdots + c_n f_n = 0$. Then for any element $v \in V$, $c_1 f_1(v) + \cdots + c_n f_n(v) = 0$. In particular, for any i,

$$c_1f_1(v_i)+\cdots+c_nf_n(v_i)=0$$
 but $f_j(v_i)=0$ for all $j\neq i$ so
$$c_if_i(v_i)=0 \text{ and since } f_i(v_i)=1.$$

$$c_i=0$$

Therefore $c_i = 0$ for all i. Thus the f_i are linearly independent.

This means f_1, \ldots, f_n form a basis for V^* . Since there are n elements of this basis, the dimension of V^* is n.

Question 2. Let V be a vector space with basis v_1, v_2 , and let W be a vector space with basis w_1, w_2, w_3 . Find a basis for $\mathcal{L}(V, W)$. What is dim $\mathcal{L}(V, W)$?

Proof. Let $v \in V$. Then we can write $v = a_1v_1 + a_2v_2$. Define $f_{ij}: V \to W$ for $i \in \{1, 2\}$ and $j \in \{1, 2, 3\}$ to be

$$f_{ij}(v) = a_i w_j$$

For example, $f_{12}(v) = a_1 w_2$, and so on.

We claim that $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}$ form a basis for $\mathcal{L}(V, W)$. First we need to show that f_{ij} is linear for any i, j. Suppose $v, w \in V$. Write $v = a_1v_1 + a_2v_2$ and $w = b_1v_1 + b_2v_2$. Thus $f_{ij}(v) = a_iw_j$ and $f_{ij}(w) = b_iw_j$. We have $v + w = (a_1 + b_1)v_1 + (a_2 + b_2)v_2$. So, $f_{ij}(v + w) = (a_i + b_i)w_j$. This is the same as $f_{ij}(v) + f_{ij}(w)$. Thus $f_{ij}(v + w) = f_{ij}(v) + f_{ij}(w)$. If $c \in \mathbb{F}$, then $cv = ca_1v_1 + ca_2v_2$. So, $f_{ij}(cv) = ca_iw_j$, which is the same as $cf_{ij}(v)$. Thus $f_{ij}(cw) = cf_{ij}(w)$. Therefore, $f_{ij} \in \mathcal{L}(V, W)$ for all i, j.

Next, we need to show that $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}$ span $\mathcal{L}(V, W)$. Let $f \in \mathcal{L}(V, W)$. For each $i, f(v_i)$ is an element of W. That means we can express it as a linear combination of w_1, w_2 and w_3 . For each $i \in \{1, 2\}$ we define elements $c_{i1}, c_{i2}, c_{i3} \in \mathbb{F}$ s.t. $f(v_i) = c_{i1}w_1 + c_{i2}w_2 + c_{i3}w_3$ (where v_1, v_2 is our basis for V.) We claim that

$$f = c_{11}f_{11} + c_{12}f_{12} + c_{13}f_{13} + c_{21}f_{21} + c_{22}f_{22} + c_{23}f_{23}$$

Let $v = a_1v_1 + a_2v_2 \in V$. Then

$$f(v) = a_1 f(v_1) + a_2 f(v_2)$$

because f is linear

$$= a_1(c_{11}w_1 + c_{12}w_2 + c_{13}w_3) + a_2(c_{21}w_1 + c_{22}w_2 + c_{23}w_3)$$

by the definition of c_{ij} for each i, j

$$=c_{11}f_{11}(v)+c_{12}f_{12}(v)+c_{13}f_{13}(v)+c_{21}f_{21}(v)+c_{22}f_{22}(v)+c_{23}f_{23}(v)$$

because $f_{ij}(v) = a_i w_j$, by definition

Thus any element of $\mathcal{L}(V, W)$ can be written as a linear combination of f_{11} , f_{12} , f_{13} , f_{21} , f_{22} and f_{23} .

Lastly, we need to show that f_{11} , f_{12} , f_{13} , f_{21} , f_{22} and f_{23} are linearly independent. Suppose that we can find constants c_{11} , c_{12} , c_{13} , c_{21} , c_{22} and c_{23} s.t.

$$c_{11}f_{11} + c_{12}f_{12} + c_{13}f_{13} + c_{21}f_{21} + c_{22}f_{22} + c_{23}f_{23} = 0$$

Then for any element $v \in V$,

$$c_{11}f_{11}(v) + c_{12}f_{12}(v) + c_{13}f_{13}(v) + c_{21}f_{21}(v) + c_{22}f_{22}(v) + c_{23}f_{23}(v) = 0$$

In particular, for any i,

$$c_{11}f_{11}(v_i) + c_{12}f_{12}(v_i) + c_{13}f_{13}(v_i) + c_{21}f_{21}(v_i) + c_{22}f_{22}(v_i) + c_{23}f_{23}(v_i) = 0$$

but $f_{kj}(v_i) = 0$ for all $k \neq i$ so

$$c_{i1} f_{i1}(v_i) + c_{i2} f_{i2}(v_i) + c_{i3} f_{i3}(v_i) = 0$$

and since $f_{ij}(v_i) = w_j$,

$$c_{i1}w_1 + c_{i2}w_2 + c_{i3}w_3 = 0$$

but w_1, w_2 form a basis for W, so this is only possible if

$$c_{i1} = c_{i2} = c_{i3} = 0$$

Therefore $c_{ij} = 0$ for all i, j. Thus the f_{ij} are linearly independent.

This means f_{11} , f_{12} , f_{13} , f_{21} , f_{22} and f_{23} form a basis for $\mathcal{L}(V, W)$. Since there are 6 elements of this basis, the dimension of $\mathcal{L}(V, W)$ is 6.

Question 3. Let U be a subset of \mathbb{R}^{∞} consisting of all sequences that satisfy

$$v_i + v_{i+2} = v_{i+1}$$
 for all i

(1) Prove that U is a subspace of \mathbb{R}^{∞} .

(2) Let $x, y \in U$ be the elements

$$x = (0, 1, 1, 0, -1, -1, 0, 1, 1, \dots)$$

$$y = (1, 0, -1, -1, 0, 1, 1, 0, -1, \dots)$$

Prove that the list x, y is a linearly independent set.

- (3) Prove that x, y is a basis for U.
- (4) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_1 = 0$ and $v_2 = 0$. Prove that $\mathbb{R}^{\infty} = U \oplus W$.
- *Proof.* (1) First we prove that U is a subspace of \mathbb{R}^{∞} . To do this, we show that it has the following properties.

Zero: The sequence $(0,0,\ldots)$ satisfies $v_i+v_{i+2}=v_{i+1}$ because $v_i=v_{i+1}=v_{i+2}=0$. Therefore $0\in U$.

Closed Under Vector Addition: Suppose $v = (v_1, v_2, ...), w = (w_1, w_2, ...) \in U$. Then $v_i + v_{i+2} = v_{i+1}$ and $w_i + w_{i+2} = w_{i+1}$. Thus $(v_i + w_i) + (v_{i+2} + w_{i+2}) = (v_{i+1} + w_{i+1})$. Since the i^{th} term of v + w is $v_i + w_i$ for each i, this means that $v + w \in U$. Therefore U is closed under vector addition.

Closed Under Scalar Multiplication: Suppose $v = (v_1, v_2, ...) \in U$ and $a \in \mathbb{R}$. Since $v_i + v_{i+2} = v_{i+1}$, we have that $av_i + av_{i+2} = av_{i+1}$. Since the i^{th} term of av is av_i for each i, this means that $av \in U$. Therefore U is closed under scalar multiplication.

Since U satisfies these properties, it is a subspace of \mathbb{R}^{∞} .

(2) Let $x, y \in U$ be the elements

$$x = (0, 1, 1, 0, -1, -1, 0, 1, 1, \dots)$$

$$y = (1, 0, -1, -1, 0, 1, 1, 0, -1, \dots)$$

We will show that (x, y) is a linearly independent set.

Suppose not. Then we can find $a, b \in \mathbb{R}$ s.t. ax + by = 0. Note that

$$ax = (0, a, a, 0, -a, -a, 0, a, a, ...)$$

 $by = (b, 0, -b, -b, 0, b, b, 0, -b, ...)$ so,
 $ax + by = (b, a, ...)$

If ax + by = 0 then b = 0 and a = 0 since two sequences are equal iff their terms are all equal. This means that x and y are linearly independent.

(3) Next we show that (x, y) is a basis for U. Since we have already shown that (x, y) is a linearly independent set, we just need to show that it spans U.

Let $u \in U$. Write $u = (u_1, u_2, ...)$. Then we claim that $u = u_1 y + u_2 x$. Note that

$$u_1y + u_2x = (u_1, u_2, u_2 - u_1, -u_1, -u_2, -u_2 + u_1, u_1, u_2, u_2 - u_1, \dots)$$

We will show that all the terms of u and $u_1y + u_2x$ match up by induction. We will use the fact that since $u_i + u_{i+2} = u_{i+1}$, then $u_{i+2} = u_{i+1} - u_i$. First of all, this means that $u_3 = u_2 - u_1$. Thus, u and $u_1y + u_2x$ match up on the first three terms.

Now suppose the first 3n terms of u and $u_1y + u_2x$ are the same. We need to show that this implies the first 3(n+1) terms are the same. There are two cases: n is either odd or even. First suppose n is odd. Then

$$u = (u_1, \dots, -u_2 + u_1, u_1, u_2, u_2 - u_1, u_{3n+1}, u_{3n+2}, u_{3n+3}, \dots)$$

where the $u_2 - u_1$ is its $3n^{th}$ term. Since $u_{3n+1} = u_{3n} - u_{3n-1}$, we have that $u_{3n+1} = -u_1$. Next, since $u_{3n+2} = u_{3n+1} - u_{3n}$, we have that $u_{3n+2} = -u_2$. Lastly, since $u_{3n+3} = u_{3n+2} - u_{3n+1}$, we have that $u_{3n+3} = -u_2 + u_1$. Thus u and $u_1y + u_2x$ match up for 3n + 3 = 3(n+1) terms.

Now suppose that n is even. Then,

```
u = (u_1, \dots, u_2 - u_1, -u_1, -u_2, -u_2 + u_1, u_{3n+1}, u_{3n+2}, u_{3n+3}, \dots)
```

where the $u_2 - u_1$ is its $3n^{th}$ term. Since $u_{3n+1} = u_{3n} - u_{3n-1}$, we have that $u_{3n+1} = u_1$. Next, since $u_{3n+2} = u_{3n+1} - u_{3n}$, we have that $u_{3n+2} = u_2$. Lastly, since $u_{3n+3} = u_{3n+2} - u_{3n+1}$, we have that $u_{3n+3} = u_2 - u_1$. Thus u and $u_1y + u_2x$ match up for 3n + 3 = 3(n+1) terms.

Therefore, by induction, $u_1y + u_2x = u$.

This means that x and y span U. Since we have shown that they are linearly independent, they form a basis for U.

(4) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_1 = 0$ and $v_2 = 0$. We need to show that $\mathbb{R}^{\infty} = U \oplus W$. By Proposition 1.9 from the book, $\mathbb{R}^{\infty} = U \oplus W$ iff $\mathbb{R}^{\infty} = U + W$ and $U \cap W = \{0\}$.

To show that $\mathbb{R}^{\infty} = U + W$ we need to show that any sequence can be written as the sum of an element of U and an element of W. Let $x = (x_1, x_2, \dots) \in \mathbb{R}^{\infty}$. Let $u = (x_1, x_2, x_2 - x_1, -x_1, -x_2, x_1 - x_2, x_1, x_2, \dots)$ be the element of U that starts with x_1 and x_2 . Let w = x - u. Since u and x have the same first and second term, $w = (0, 0, w_3, w_4, \dots)$. So, $w \in W$. Since x = u + w, we can write any element of \mathbb{R}^{∞} as the sum of an element of U plus an element of W. Thus, $\mathbb{R}^{\infty} = U + W$.

To show that $U \cap W = \{0\}$, suppose $v \in U \cap W$. We will show that v = 0 by induction. Write $v = (v_1, v_2, \dots)$. Since $v \in W$, $v_1 = v_2 = 0$. Suppose $v_{n-1} = v_n = 0$. Then we need to show that $v_{n+1} = 0$. Since $v_{n+1} = v_n - v_{n-1}$, we have that $v_{n+1} = 0$. So by induction, v = 0. Therefore, $U \cap W = \{0\}$.

Since we proved $\mathbb{R}^{\infty} = U + W$ and $U \cap W = \{0\}$, we have shown that $\mathbb{R}^{\infty} = U \oplus W$.