MATH 113 HOMEWORK 2 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.

Exercise 2.A.11 Suppose vy, ..., v, is linearly independent in V and w € V.
Show that vy, ..., Uy, w is linearly independent if and only if

w ¢ span(vy, ..., V)

Proof. First suppose vy, ..., U, w is linearly independent. Then if w € span(vy, ..., vy,),
we can write w as the linear combination of vy, ..., Uy, that is w = a1v1 +... + GV .
Adding both sides of the equation by —w, we have

a1V + .. + AUy + (—w) =0

Therefore we can write 0 as a1 v1+...4am U +(—w), so there exists a1, as, ..., am, —1,
not all 0, such that a;vq + ... + @pmvm + (—w) = 0. by the definition of linear de-
pendence, we have v1,...v,, w is linearly dependent, which contradicts our initial
assumption. Thus we have w ¢ span(vy, ..., Usm,).

Conversely, suppose w ¢ span(vy, ..., Um ). If v1, ..., 0, w is linearly dependent,
then by the linear dependence lemma(Lemma 2.21), we have v; € span(vi, ..., vj_1)
for some j or w € span(vi,...,vy). But since vy, ..., v, is linearly independent,
there is no j € {1,...,m} such that v; €span(vy,...,vj_1). Meanwhile we have w ¢
span(vy, ..., vy, ) by our assumption. Therefore vy, ..., v, w is linearly independent.

([l

Exercise 2.B.5 Prove or disprove: there exists a basis pg,p1,p2,p3 of P3(F)
such that none of the polynomials pg, p1, p2, p3 has degree 2.

Proof. We will show that

Po =
pP1=x

p2 = 2° +2?
P3=$3

is a basis for P3(F). Note that none of these polynomials has degree 2.

Proposition 2.42 in the book states that if V' is a finite dimensional vector space,
and we have a spanning list of vectors of length dim V', then that list is a basis. It
is shown in the book that P;(F) has dimension 4. Since this list has 4 vectors, we
only need to show that it spans Ps(TF).

Suppose p(x) = ag + a1x + asx?® + azx® € P3(F). We need to find by, ..., b3 s.t.
p(x) = bopo + - - - + bsps. Note that ps — p3 = 2. So let by = ag, by = a1, by = as
and bs = a3 — as. Then,

bopo + bip1 + baps + bsps = ap + a1z + az(z® + 2%) + (a3 — az)z®
=ag+a1x + a2:102 + agx?’ + a3x3 — a2$3
=ag+ a1x + a2z2 + a3x3
=p(x)
1
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So we can can write p(x) as a linear combination of pg, p1, p2 and p3. Thus pg, p1, P2
and ps span P3(F). Thus, they form a basis for P3(F). Therefore, there exists a
basis of P5(F) with no polynomial of degree 2. O

Exercise 2.B.7 Prove or give a counterexample: If vy, vs,v3, vy is a basis of V
and U is a subspace of V' such that v1,vs € U and v3 ¢ U and vy ¢ U, then vy, vy
is a basis of U.

Proof. The statement above is false. Take V = R%, let v; = (1,0,0,0), vo =
(0,1,0,0), v3 = (0,0,1,0), v4 = (0,0,0,1), it is the standard basis of R* (see
example 2.28 (a)). Let

U ={(a,b,c,c):a,bce R}

We have v; € U,uy € Uyug ¢ U,vg ¢ U. Now we will prove vq,vy does not
span U. For any w € span(vy, v2), w = a1v; + agvs = a1(1,0,0,0) + a2(0,1,0,0) =
(a1,0a2,0,0). Let u=(0,0,1,1), we have u € U but u ¢ span(vy,vs).

By definition of basis, we have v1,vs is not a basis of U. O

Exercise 2.C.1 Suppose that V is finite dimensional and U is a subspace of V'
such that dimU = dim V. Prove that U = V.

Proof. Suppose dimU = dim V' = n. Then we can find a basis u1,...,u, for U.
Since w1, ..., u, is a basis of U, it is a linearly independent set. Proposition 2.39
says that if V is finite dimensional, then every linearly independent list of vectors
in V of length dimV is a basis for V. The list uq,...,u, is a list of n linearly
independent vectors in V' (because it forms a basis for U, and because U C V.)

Since dimV =n, uy,...,u, is a basis of V.
This means that uq, ..., u, spans V. Thus, we can express any v € V as a linear
combination of wuq,...,u,. But each u; is an element of U. Since U is a vector

space, any linear combination of elements of U is also in U. Thus any v € V is also
an element of U. Therefore V C U.

We have U C V since U is a subspace of V', and we have just shown that V C U.
Therefore, U = V. O

Exercise 2.C.7 (a) Let U = {p € P4(F) : p(2) = p(5) = p(6)}. Find a basis of
U.

(b) Extend the basis in part (a) to a basis of Py(IF).

(¢) Find a subspace W of P4(IF) such that Py(F) =U @ W.

Proof. (a) A basis of U is
1, (z —2)(x — 5)(x — 6), (x — 2)*(x — 5)(z — 6)

FEach polynomial in the list above is in U. To verify that the list above is indeed a
basis of U, first note that the list above is linearly independent. Suppose a,b,c € R
and

a+blx—2)(x—5)(z—6)+clx—2)*(z—5)(r—6)=0
for every x € R. Without explicitly expanding the left side of the equation above,
we can see that the left side has a cx? term. Because the right side has no 2* term,
this implies that ¢ = 0. Because ¢ = 0, we see that the left side has a bx® term,
which implies that b = 0. Because b = ¢ = 0, the equation becomes a = 0.
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Therefore the equation above implies a = b = ¢ = 0. Hence the list 1, (z —2)(x —
5)(z — 6), (z — 2)%(z — 5)(z — 6) is linearly independent in U. Now we are going to
prove dim U = 3, then Proposition 2.39 implies that 1, (z — 2)(z — 5)(z — 6), (x —
2)2(x —5)(x —6) is a basis of U. Since we already know 1, (x —2)(x —5)(x —6), (x —
2)%(z — 5)(z — 6) is linearly independent in U, we have dimU > 3, thus we just
need to prove dimU < 3.

Define V = {p € P4(F) : p(2) = p(5)}. We know that V is a proper subspace of
P, (F), since e.g. f(z) = z is a polynomial in P4 (F) that is not in V' (since f(2) = 2
while f(5) = 5). We already know dim(P4(F)) = 5 from Example 2.37. Using
the result in Exercise 2.C.1, we know that dimV' < dim P (F) since V' is a proper
subspace of P4(F), so dimV < 4. Similarly, we know U is a proper subspace of
V, because e.g. g(z) = (z — 2)(x — 5) is a polynomial that is in V' but not in U
(since ¢(5) = 0 while ¢(6) = 4). Applying Exercise 2.C.1 again, we conclude that
dimU < dimV, so dimU < 3.

We conclude that dim U = 3. By Prop. 2.39, we can conclude that 1, (z —2)(x —
5)(z — 6), (x — 2)%(x — 5)(z — 6) is a basis of U.

(b)The list

1, (z —2)(x — 5)(x —6), (x — 2)*(x — 5)(z — 6),z, 2>
is a basis of Py(F).

First we prove that 1, (z — 2)(z — 5)(x — 6), (z — 2)*(z — 5)(z — 6), z, 22 is linear
independent.

Suppose a, b, c,d, e € R and

a+b(x —2)(x —5)(x — 6) + c(x — 2)%(x — 5)(x — 6) + dz + ex® =0

Without explicitly expanding the left side of the equation above, we can see that
the left side has a cx* term. Because the right side has no z* term, this implies
that ¢ = 0. Because ¢ = 0, we see that the left side has a bx3 term, which implies
that b = 0. Because b = ¢ = 0, the left side has a ex? term which implies that
b= 0. Because b = ¢ = e = 0, the left side has a dz term which implies that d = 0.
Because b = ¢ = d = e = 0, the equation above becomes a = 0.

Therefore the equation above implies a = b = ¢ = d = e = 0. Hence the list
L, (z—2)(x—5)(x—6), (x—2)%(x —5)(x — 6), 2,22 is linearly independent in P, (F).

Notice that this linearly independent list has length 5, meanwhile dim Py(F) = 5
(see Example 2.37 ). Using Proposition 2.39 , we can conclude that 1, (z — 2)(x —
5)(z — 6), (x — 2)%(z — 5)(z — 6), 2,22 is a basis of P,(F).

(c) Denote the subspace span(x,z?) by W. Since
1, (z —2)(x —5)(x —6), (x — 2)*(z — 5)(x — 6),z, 2>

forms a basis of P4(F), we know that z,z? is linearly independent, thus z,z? is
a basis of W (see Definition 2.27 ) and we have dim W = 2 (see Definition 2.36 ).
From (a) we know that 1, (z — 2)(z — 5)(x — 6), (x — 2)%(z — 5)(z — 6) is a basis of
U, and dimU = 3. Now we want to prove Py(F) =U & W.

First we prove that U and W is a direct sum. Suppose f € UN W, then we can
write f as

f=a1+ax(z—2)(x —5)(x —6) + az(x — 2)*(x — 5)(z — 6)( since f € U)

and

2

f = asx + asz?( since f € W)
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Combining the two equalities together we have
ay + as(x — 2)(x — 5)(z — 6) + az(z — 2)*(x — 5)(x — 6) = asx + asx”
Adding both sides of the equality by —(asz + asz?) and using the property of
additive inverse, we have
ay + as(x — 2)(x — 5)(z — 6) + az(x — 2)*(x — 5)(x — 6) + (—(asx + asz?))
=ayx + asz? + (—(agx + asx?))
=0

So we have
ay + az(z — 2)(x — 5)(x — 6) + az(x — 2)*(x — 5)(x — 6) + (—as)x + (—az)2z® =0

Since 1, (z —2)(z —5)(x — 6), (x — 2)?(z — 5)(x — 6), z, 2% is linearly independent,

using Definition 2.17 we have:
a1:a2:a3:fa4:fa5:0
Which is equivalent to
a1:a2:a3:a4:a5:0

So we have f = 0x? +0z = 0, thus U and W is a direct sum (see Proposition 1.45).

Then we prove U @ W = P4(F). Using Theorem 2.43 , we have

dim(U + W) =dimU + dim W — dim(U N W)

Consider the right side of the equation. Since dimU = 3, dim W = 2, dim(U N
W) = 0. We have dim(U + W) = 5. The vector space U + W is a subspace of
P, (F), so using the result in Exercise 2.C.1, we have U + W = P4 (F). We have
proved that U and W is a direct sum, therefore we have U @ W = Py(F). O

Exercise 2.C.11 Suppose that U and W are subspaces of R® such that dim U =
3, dimW =5, and U + W = R8. Prove that R  =U @ W.

Proof. We know from Theorem 2.43 that
dim(U + W) =dimU + dim W — dim(U N W)

First consider the left hand side of the equation. Here we have U + W = R3, so
dim(U + W) = dim(R®) = 8.

Now consider the right hand side of the equation. Since dimU = 3, dimW =5
, the right hand of the equation equals to 8 — dim(U N W).

Therefore we have 8 — dim(U N W) = 8, so dim(U N W) = 0, which implies
UNW = {0}, so we have R® = U®W (see Proposition 1.45 from our textbook). [J

Exercise 2.C.12 Suppose U and W are both five-dimensional subspaces of R?.
Prove that U N W # {0}.

Proof. Suppose that U N W = {0}. By Theorem 2.43,
dim(U + W) =dimU + dim W — dim(U N W)

First consider the right hand side of this equation. Since U N W = {0}, the
dimension of U N W is zero. Since dimU = dim V = 5, the right hand side of this
equation is 10.
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Now consider the left hand side of the equation. The vector space U + W is a
subspace of R?. By Proposition 2.38 in the book, the dimension of a subspace of
R? is at most the dimension of RY. Since dim(R?) = 9, we have dim(U + W) < 9.
But this is impossible since the right hand side of the equality is 10.

Therefore, U N W # {0}. O

Exercise 3.A.11 Suppose V is finite-dimensional. Prove that every linear map
on a subspace of V' can be extended to a linear map on V. In other words, show
that if U is a subspace of V and S € L(U, W), then there exists T € L(V, W) such
that Tu = Su for all u € U.

Proof. Suppose U is a subspace of V and S € L(U, W). Choose a basis u1, ..., Um
of U. Then wuq,...,u, is a linearly independent list of vectors in V, and so can
be extended to a basis uq, ..., Um,v1,...,v, of V (by Proposition 2.33 ). Using
Proposition 3.5, we know that there exists a unique linear map T € L(V, W) such
that
Tu; = Su; for all ¢ € {1,2,...,m}
Tv; =0 for all j € {1,2,..n}

Now we are going to prove Tu = Su for all u € U.

For any w € U, u can be written as ajuj + ... + @, since S € L(U,W),
Su = a1 Suy + asSug + ... + @y, Suy, (see Definition 3.2 ).

Since T' € L(V, W), we have

Tu=T(a1uy + ... + amim,)
=aiTu; +axTus + ... + a, Ty,
= a1Su1 + asSus + ... + a;nSu,

= Su
Therefore we have T'uw = Su for all w € U, so we have proved that every linear
map on a subspace of V' can be extended to a linear map on V. O

Exercise 3.A.14 Suppose V is finite-dimensional with dim V' > 2. Prove that
there exist S,T € L(V,V) such that ST # TS.

Proof. Let vy, ...,v, be a basis of V. We can use Proposition 3.5 to define S,T €
L(V,V) such that

Svk{UQ ifk=1

0 ifk#1

and
Tvk:{vl %fk:2

0 ifk#2

Then
(ST)(v1) =S(Tw1) =50=0
but
(TS)(v1) =T(Svy) =Tve =v1 #0

Thus ST #TS.
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Question 1. If V is a vector space over the field F, consider its dual vector space
V*. Assume that dim V' = n, and that vy, ..., v, is a basis for V. Find a basis V*.
What is dim V*7

Proof. Let vy,...,v, be a basis for V. Let v € V. Then we can write v as a
linear combination of the basis vectors. That is, v = ajv1 + - - - + a,v, for some
ai,...,an, € F. Let f; : V — F be the map such that f;(v) = a;. We will show that
fi,.-., fn is a basis for V*.

First, we should show that f; € V* for all i. Suppose v,w € V. Write v =
a1vy + -+ + apv, and w = byvy + -+ + byv,. Thus fi(v) = a; and f;(w) = b;.
We have v + w = (a1 + b1)vy + ... (an + bp)vn. So, fi(v+ w) = a; + b;. This is
the same as f;(v) + f;(w). Thus f;(v +w) = fi(v) + fi(w). Next, if ¢ € F, then
w = caivy + -+ + capvy. So, fi(cv) = ca;, which is the same as cf;(v). Thus
fi(cv) = cfi(v). Therefore, f; € V* for all 1.

Next, we need to show that fi1,..., f, span V*. Let f € V*. We will show that
if ¢; = f(v;), (where vy, ..., v, is our basis for V), then f =c1f1 + -+ + cpfan.

Let v =aiv1 + -+ apv, € V. Then

f(v)=ai1f(v1) +...anf(vy,) because f € V*
=ajcy + -+ + anc, since we defined ¢; = f(v;)
=c1f1(v) + - + enfn(v) because f;(v) = a;, by definition
Thus f(v) = (c1f1 +...cnfn)(v) forallv € V so f =c1f1 +...cnfn. This shows
that any element f of V* can be written as a linear combination of fi,..., f,.
Lastly, we need to show that f1,..., f, are linearly independent. Suppose that

we can find constants c¢1,...,¢, s.t. c1f1 + -+ ¢ fn = 0. Then for any element
veV,e1fi(v) + -+ cnfn(v) = 0. In particular, for any ¢,

c1fi(vi) + -+ cenfn(vi) =0 but fj(v;) =0 for all j # i so
¢ifi(v;) = 0 and since f;(v;) = 1.

C; — 0
Therefore ¢; = 0 for all 4. Thus the f; are linearly independent.
This means f1,..., f, form a basis for V*. Since there are n elements of this
basis, the dimension of V* is n. O

Question 2. Let V be a vector space with basis vy, v9, and let W be a vector space
with basis wy, ws, ws. Find a basis for £(V, W). What is dim £(V, W) ?

Proof. Let v € V. Then we can write v = ajv1 + agva. Define f;; : V. — W for
i€{1,2} and j € {1,2,3} to be

fij(v) = azw,
For example, fi12(v) = ajws, and so on.

We claim that fi11, fi2, f13, f21, f22, f23 form a basis for £(V, W). First we need
to show that f;; is linear for any ¢,j. Suppose v,w € V. Write v = a1v1 + asv2
and w = byvy + bave. Thus f;;(v) = a;w; and fi;(w) = byw;. We have v+ w =
(a1 +b1)v1 + (a2 + b2)va. So, fij(v+w) = (a; + b;)w;. This is the same as f;;(v) +
fij(w). Thus fi;(v+w) = fi;j(v) + fi;(w). If ¢ € F, then cv = cajv1 + cazvs. So,
fij(cv) = ca;wj, which is the same as cf;;(v). Thus f;;(cw) = cfi;(w). Therefore,
fij € L(V,W) for all 4, j.
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Next, we need to show that f11,f12,f13,f21,f22,f23 span ﬁ(‘/, W) Let f S
L(V,W). For each i, f(v;) is an element of W. That means we can express it
as a linear combination of wy,ws and ws. For each i € {1,2} we define elements
i1, iz, ¢z € F st f(v;) = cipwy + ¢ipwa + ¢izws (where vy, vo is our basis for V.)
We claim that

J=cufu+cazfiz+casfis +cofor + caafoo + co3fos
Let v = aqv1 + asve € V. Then
f(v) = a1 f(v1) + az f(v2)
because f is linear
=ay(cr1wi + crawa + c13ws3) + az(ca1wi + caows + c23ws3)
by the definition of ¢;; for each ¢, j
=c11f11(v) + c12f12(v) + c13f13(v) + c21.f21(v) + c22f22(v) + €23 f23(v)

because f;;(v) = a;w;, by definition

Thus any element of £(V, W) can be written as a linear combination of fi11, f12, f13, fo1, fa2
and f23.

Lastly, we need to show that fi1, fi2, f13, f21, foo and fo3 are linearly indepen-
dent. Suppose that we can find constants ci1, ¢12, €13, €21, C22 and co3 S.t.

ci1fi1 + ci2fi2 + c13fiz + ca1for + caafoa + ca3fo3 =0
Then for any element v € V,
c11f11(v) + cr2f12(v) + 13 f13(v) + 21 f21(v) + caz fo2(v) + ca3 fa3(v) = 0
In particular, for any 4,
c11f11(vi) + crzfi2(vi) + c13 f13(vi) + ca1 fo1 (vi) + caa foa(vi) + cas foz(vi) =0
but fr;(v;) =0 for all k # i so
ci fir(vi) + cia fia(vi) + ciz fiz(vi) = 0
and since f;;(v;) = wy,
citwy + Cipwz + czws =0
but wy,ws form a basis for W, so this is only possible if
Ci1=Ca=0¢3=0

Therefore ¢;; = 0 for all 4, j. Thus the f;; are linearly independent.
This means fi1, fi2, f13, f21, fo2 and fao3 form a basis for £(V,W). Since there
are 6 elements of this basis, the dimension of £L(V, W) is 6. O

Question 3. Let U be a subset of R* consisting of all sequences that satisfy
Vi + Vi42 = vy for all ¢

(1) Prove that U is a subspace of R*.



(2) Let z,y € U be the elements
z=(0,1,1,0,—1,-1,0,1,1,...)
Yy = (1,0,—1,—1,0,171,0,—17.-.)

Prove that the list x,y is a linearly independent set.
(3) Prove that x,y is a basis for U.
(4) Let W be the subspace of R* consisting of all sequences with v; = 0 and
vg = 0. Prove that R =U & W.

Proof. (1) First we prove that U is a subspace of R*®. To do this, we show
that it has the following properties.
Zero: The sequence (0,0,...) satisfies v; + v;42 = v;41 because v; =
Vi+1 = V42 = 0. Therefore 0 € U.

Closed Under Vector Addition: Suppose v = (vq,vs,...),w = (wi,ws, ...

U. Then v; + v19 = Vit1 and w; + Wig2 = Wit1- Thus (’U,L' + wi) +
(Vig2 + witr2) = (Vig1 + wip1). Since the i term of v + w is v; + w;
for each i, this means that v + w € U. Therefore U is closed under
vector addition.

Closed Under Scalar Multiplication: Suppose v = (vy,vs,...) € U
and a € R. Since v; + v;12 = v;11, we have that av; + av;12 = avi41.
Since the i*" term of av is av; for each i, this means that av € U.
Therefore U is closed under scalar multiplication.

Since U satisfies these properties, it is a subspace of R*.
(2) Let z,y € U be the elements

z=(0,1,1,0,—1,-1,0,1,1,...)
y=(1,0,—-1,-1,0,1,1,0,—1,...)

We will show that (x,y) is a linearly independent set.
Suppose not. Then we can find a,b € R s.t. ax + by = 0. Note that

ax = (0,a,a,0,—a,—a,0,a,a,...)
by = (b,0, b, —b,0,b,b,0, b, ...) so,
ar + by = (b,a,...)

If ax + by = 0 then b = 0 and a = 0 since two sequences are equal iff their
terms are all equal. This means that = and y are linearly independent.
(3) Next we show that (x,y) is a basis for U. Since we have already shown that
(z,y) is a linearly independent set, we just need to show that it spans U.
Let u € U. Write u = (u,us,...). Then we claim that u = uyy + ugz.
Note that

w1y + usx = (U1, Uz, Us — Uy, —U1, —Us, —Us + Uy, U, U, U — U1, ... )

We will show that all the terms of u and w1y 4+ usx match up by induction.
We will use the fact that since u; + u;42 = u;y1, then w10 = ujp1 — u;.
First of all, this means that us = uo — uwy. Thus, v and w1y + usx match
up on the first three terms.

Now suppose the first 3n terms of v and w1y + usx are the same. We
need to show that this implies the first 3(n + 1) terms are the same. There
are two cases: n is either odd or even. First suppose n is odd. Then

w=(U1,...,—Uz + U1, U1, U2, U2 — Ul, U3n+1, USn+2, USnt3 - - )
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where the uy —u; is its 3n'" term. Since us, 1 = us, —us3,_1, we have that
Ugp4+1 = —u1. Next, since ug, 12 = Ugp41 — U3y, We have that ug, o = —us.
Lastly, since usy 43 = uspt2 —Usn+1, we have that ug,+3 = —us +u;. Thus
uw and u1y 4+ usz match up for 3n + 3 = 3(n + 1) terms.

Now suppose that n is even. Then,

u = (U1, ey, U2 — U, —UL, —U2, —U2 + u17u3n+17u3n+27u3n+37 . )

where the ug —u; is its 3n" term. Since U3n+1 = U3y — U3n—1, We have that
Ugn+1 = up. Next, since ugni2 = Uspt1 — Usy, we have that ug,4o = us.
Lastly, since usp43 = Usp42 — Usn+1, we have that ug,43 = ug —u;. Thus
w and u1y 4+ usx match up for 3n + 3 = 3(n + 1) terms.

Therefore, by induction, w1y + usx = u.

This means that = and y span U. Since we have shown that they are
linearly independent, they form a basis for U.

Let W be the subspace of R* consisting of all sequences with v; = 0 and
vo = 0. We need to show that R> = U @& W. By Proposition 1.9 from the
book, R =U @ W iff R° =U +W and UNW = {0}.

To show that R* = U 4+ W we need to show that any sequence can
be written as the sum of an element of U and an element of W. Let x =
(z1,22,...) € R®. Let u = (21,292,229 — 1, —T1, —T2,T1 — T2, T1,Ta,...)
be the element of U that starts with 27 and x5. Let w = x —u. Since u and
2 have the same first and second term, w = (0,0, w3, wy,...). So, w € W.
Since © = u + w, we can write any element of R> as the sum of an element
of U plus an element of W. Thus, R* =U + W.

To show that U N W = {0}, suppose v € U N W. We will show that
v = 0 by induction. Write v = (v1,vs,...). Since v € W, v; = vy = 0.
Suppose v,—1 = v, = 0. Then we need to show that v,41 = 0. Since
Up41 = Up — Up—1, we have that v,41 = 0. So by induction, v = 0.
Therefore, U N W = {0}.

Since we proved R® = U + W and U N W = {0}, we have shown that
R*=UqW.

O



