Math 113: Linear Algebra and Matrix Theory

Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 3

Due Wednesday, October 14 in class.

Do all the following exercises, but write up only the **unstarred exercises** and the **questions** below. (Starred exercises are valuable and worth working out, but they will not be collected or graded.)

$3B.2^{*}$	$3B.12^{*}$	3B.20	$3B.21^{*}$	3B.29
3C.3	$3C.4^{*}$	$3C.5^{*}$		
3D.7	$3D.9^{*}$	$3D.10^{*}$	3D.16	

Question 1. Let $T \in \mathcal{L}(V)$ be an operator on V. Recall that T^2 denotes the composition $T \circ T$.

- a) Give an example of a vector space V and an operator $T \in \mathcal{L}(V)$ such that $T^2 = T$ (an example other than T = I or T = 0, those are too easy).
- b) Prove that if $T^2 = T$, then $V = \text{null } T \oplus \text{null } (T I)$.
- c) Prove that if V = null T + null (T I), then $T^2 = T$.
- d) Give an example of a vector space V and an operator $T \in \mathcal{L}(V)$ such that $T^2 = -I$.

Question 2. Let V and W be finite dimensional, and consider $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, U)$.

- a) Prove that $\dim(\operatorname{range} ST) \leq \dim(\operatorname{range} T)$.
- b) Prove that $\dim(\operatorname{range} ST) = \dim(\operatorname{range} T)$ if and only if

range
$$T + \text{null } S = \text{range } T \oplus \text{null } S$$
.

- c) Prove that $\dim(\operatorname{null} ST) \leq \dim(\operatorname{null} S) + \dim(\operatorname{null} T)$.
- d) Challenge problem: Can you give some description (in terms of conditions on T, S, V, etc.) of when we get equality in the previous part, i.e. $\dim(\text{null } ST) = \dim(\text{null } S) + \dim(\text{null } T)$?