Math 113: Linear Algebra and Matrix Theory

Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 4

Due Wednesday, October 21 in class.

Do all the following exercises, but write up only the **unstarred exercises** and the **questions** below. (Starred exercises are valuable and worth working out, but they will not be collected or graded.)

$3E.13^*$						
$3F.7^{*}$	3F.8*	3F.15				
5A.12*	$5A.15^{*}$	$5A.18^{*}$	5A.20	5A.22	5A.30	$5A.32^{*}$
5B.1*	5B.2					

Question 1. Suppose U is a subspace of V such that $\dim V/U = 1$. Prove that there exists a linear functional $f \in V'$ such that

$$\operatorname{null} f = U.$$
 (typo corrected here)

(Note that V is not assumed to be finite-dimensional, so we cannot do this by choosing a basis.)

Question 2. Let $C^{\infty}(\mathbb{R})$ denote the vector space (over \mathbb{R}) of infinitely-differentiable¹ real-valued functions $f: \mathbb{R} \to \mathbb{R}$.

a) Let U denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which vanish at 42 and at π (you do not have to prove that U is a subspace):

$$U = \{ f \in C^{\infty}(\mathbb{R}) \mid f(42) = 0, f(\pi) = 0 \}$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R})/U$ is finite-dimensional. What is its dimension? (Note that $C^{\infty}(\mathbb{R})$ itself is very *infinite*-dimensional!)

b) Let W denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which "vanish to second order at 0":

$$W = \left\{ f \in C^{\infty}(\mathbb{R}) \mid f(0) = 0, \ f'(0) = 0, \ f''(0) = 0 \right\}$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R})/W$ is finite-dimensional, and find a basis for $C^{\infty}(\mathbb{R})/W$.

¹A function $f: \mathbb{R} \to \mathbb{R}$ is "infinitely differentiable" if f is continuous, its derivative f' exists and is continuous, its derivative f'' exists and is continuous, and so on. Almost all the standard functions you know are infinitely differentiable: for example, all polynomials, exponentials, sin, cos, etc. You do not need to prove that $C^{\infty}(\mathbb{R})$ or $C^{\infty}(\mathbb{R}, \mathbb{C})$ is a vector space; in fact, you shouldn't have to worry about the details of $C^{\infty}(\mathbb{R})$ at all.

Question 3. Let $C^{\infty}(\mathbb{R}, \mathbb{C})$ be the vector space (over \mathbb{C}) of complex-valued functions $f : \mathbb{R} \to \mathbb{C}$ that are infinitely differentiable. Let V be the subspace consisting of functions $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ satisfying the differential equation f'' = -f:

$$V = \left\{ f \in C^{\infty}(\mathbb{R}, \mathbb{C}) \mid f'' = -f \right\}$$

(You do not have to prove that V is a subspace of $C^{\infty}(\mathbb{R},\mathbb{C})$.)

If you take a course on differential equations, you'll learn how to prove that the space of solutions V is at most 2-dimensional, from the form of the differential equation f'' = -f. However, since this is a linear algebra course, just trust me on this, and assume without proof that dim $V \leq 2$.

- a) Prove that the functions $\sin x$ and $\cos x$ both lie in V, and moreover that $(\sin x, \cos x)$ forms a basis for V. ²
- b) Let D be the operator on $C^{\infty}(\mathbb{R}, \mathbb{C})$ defined by D(f) = f'. Prove that V is an invariant subspace for D.
- c) Now consider $D \in \mathcal{L}(V)$ as an operator on V (still defined by D(f) = f'). Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

²Remember your derivatives: $(\sin x)' = \cos x$, and $(\cos x)' = -\sin x$.