MATH 113 HOMEWORK 5 SOLUTIONS (STARRED PROBLEMS)

Solutions by Guanyang Wang, with edits by Tom Church.

Exercise 5.C.1 Suppose T € L(V) is diagonalizable. Prove that V = nullT @&
range T

Proof. Let vy, ...,v, be a basis of V' with respect to which T has a diagonal ma-
trix. So for every j € 1,2,..n, we have some A; € F such that Tv; = Ajv;. By
renumbering, we can choose m € {1,2,....,n} such that

Aj=0forj=1,2..m

and

Aj#FOforj=m+1,..n
So we have V' = span{vy, ..., v } ® span{vm,+1, ...t }. Now we claim that nullT =
span{vy, ..., vy, } and range T = span{vy, 41, ...Un }

First we prove nullT = span{vy,..., v, }. Notice that span{vi,...,v;,} is the
eigenspace of T corresponding to 0. Hence every element v € span{vi,..., v}
satisfies Tv = 0, so v € nullT. Meanwhile any v € nullT, we have Tu = 0,
therefore u is an eigenvector of T' corresponding to 0. So u € span{vy, ..., Vm }.
Hence we have null T' = span{vy, ..., vy, }.

Then we prove rangeT = span{v,;,41,...vn}. For any j € m +1,...n, we have
T()\;lvj) = vj, therefore range T O span{vp1,...t,}. Meanwhile for every y €
rangel’, we have y = T'x for some x € V. Since vy, ..., v, is a basis of V', we have
T =av1 + ... + a,v, for some aq,--- ,a, € F. Therefore

y=Tz=T(ar1v1 + ... + apvy)

= )\m+1am+17)m+1 +F )\nanvn € Spaﬂ{varh ceey Un}

Hence we have range T = span{v,,41,...U, }. Therefore we have proved our claim,
so we can conclude that V' = nullT @ range T |

Exercise 5.C.2 Prove the converse of the statement in the exercise above or
give a counterexample to the converse.

Proof. The converse of the statement in the exercise above is false. As an example,
define T € L(F?) by
T(w,z) = (w+z,2)
The eigenvector-eigenvalue equation T'(w, z) = A(w, z) is equivalent to the sys-
tem of equations
w+2z=M v and z = Az

After solving the equations, we have 1 is the only eigenvalue of T and that
E(1,T) = {(w,0) : w € F}.

Since 1 is the only eigenvalue of T', 5.41 shows that T is not diagonalizable.
Because 0 is not an eigenvalue of T', we know that T is invertible. Thus nullT =
{0} and rangeT = F?. Hence F? = nullT @ range T, providing a counterexample
to the converse of the previous exercise.
O



Exercise 5.C.8. Suppose T € F® and dim E(8,T) = 4. Prove that T'— 2I and
T — 61 is invertible.

Proof. From 5.38, we know that
dim E(8,T) + dim E(2,T) + dim E(6,T) < dim F®.
Since dim E(8,T) = 4 and dimF® = 5, the inequality above can be written as
dim E(2,T) +dim E(6,T) <1

Thus we have dim E(2,T) = 0 or dim E(6,7) = 0. In other words, 2 is not
an eigenvalue of T or 6 is not an eigenvalue of T. Hence T"— 2 or T — 61 is
invertible. (]

Exercise 5.C.14 Find T € £(C?) such that 6 and 7 are eigenvalues of T and
such that T does not have a diagonal matrix with respect to any basis of C3.

Proof. Define T € L(C?) by
T(21,22,23) = (621 + 22,622, T23)

The eigenvector-eigenvalue equation T'(z1, 22, 23) = A(21, 22, 23) is equivalent to the
system of equations

621 + 20 = A1
622 = )\22
72:3 = )\23

After solving the equations, we have 6 and 7 are the only eigenvalues of 7" and from
our definition we have z, is the eigenvector of T' corresponding to 6 and z3 is the
eigenvector of T' corresponding to 7. We also have

E(6,T) = span((1,0,0)) and E(7,T) = span((0,0, 1))
Thus
dim E(6,T) = dim E(7,T) = 1.
Now 5.41 shows that T is not diagonalizable since dim E(6,T) 4+ dim E(7,T) =
2 < 3 = dim(C?). O

Exercise 8.C.8 Suppose T' € L(V). Prove that T is invertible if and only if the
constant term in the minimal polynomial of T' is nonzero.

Proof. For any polynomial f(z), the constant term is the value f(0) at 0 (since if
f(@) =anx™ + -+ 4+ a1z + ag, then f(0) = a, 0™ 4+ --- + a10 + ap = ag). Therefore
the constant term in the minimal polynomial p(z) is nonzero if and only if p(0) is
nonzero; in other words, if and only if 0 is not a root of p(x). Since the roots of the
minimal polynomial are the eigenvalues of T', we conclude that:

constant term of p(x) is nonzero <= 0 is not a root of p(x)
<= 0 is not an eigenvalue of T'
— (T —-0I)={0}
<= T is injective
<= T is invertible (]



Question 1.

Proof.

Give an example of an operator T on V = C? whose minimal polynomial
is (z +2)2.

Give an example of an operator S on W = C* whose minimal polynomial
is (22 +1)(x — 3)%

What are the eigenvalues of the operators T' and S in parts a) and b)?

e Let T': C? — C? be defined by
T(l‘7 Y, Z) = (_21‘7 _2ya _2(y + Z))

We claim that the minimal polynomial of T is f(z) = (z + 2)2. First we
show that f(T) = (T +2I)? = 0. We have that

(T + 2‘[)(377 Y, Z) = (07 07 _2y)
Thus, (T + 21)2(x,y, z) = (T + 21)(0,0, —2y). Since
we get that (T — I)?(z,y,2) = (0,0,0) for all (z,y,2z) € C3. That is,
F(T) = 0.

We have found one polynomial f(x) € Ur, which has degree 2 (recall
from class that Up is the set of all polynomials with F(T) = 0). It is
obvious that 7" is not a multiple of the identity, so no degree-1 polynomial
x — X is contained in Ur. Therefore f(z) has the smallest possible degree
in Uz, and so the minimal polynomial of T is mz(x) = (z + 1)2.

Give an example of an operator S on W = C® whose minimal polynomial
is (2% + 1)(z — 3)2.
Let S: C® — C® be defined by
S(z,y,z,w,t) = (ix, —iy, 3z, 3w, 3t + w)
We begin by noting that ¢ —¢ and 3 are eigenvalues of S:
5(1,0,0,070) = (’i,0,0,0,0) =i (LO,OvaO)
S(Ov 1a Oa 07 O) = (Oa _7;’ Oa 07 O) =—i- (07 17 Oa Oa O)

5(0,0,1,0,0) = (0,0,3,0,0) =3-(0,0,1,0,0)

So we compute
(S - 3])(%, Y, z,w, t) = ((Z - 3)%, (_Z - 3)3/3 Oa 07 U))
and therefore.
(S —30)*(x,y, z,w,t) = ((i — 3)*x, (=i — 3)%y,0,0,0)
Meanwhile,
(S? +I)(z,y, z,w,t) = (0,0,102, 10w, 10t + 6w)

Thus applying (52 + I) to the result of (S — 31)?(z,vy, 2, w,t) we get

(8% +1)(S = 31)*(z,y, 2,w,t) = (0,0,0,0,0).
This shows that (S + I)(S — 3I)2 =0, so if f(z) = (2% + 1)(x — 3)? then
f(z) € Us. However, since —i, ¢ and 3 are eigenvalues of S, we know that
—i,i and 3 are roots of the minimal polynomial. Therefore the only smaller
possibility for the minimal polynomial is (x—i)(x+i)(x—3) = (22+1)(x—3),
since this is the only polynomial of degree < 4 with both —i, i and 3 as



roots. So we just need to show that (S2 + I)(S — 3I) # 0, and this we can
do by direct computation. Indeed, applying S? + I to the result of S — 31
that we found above, we get

(S? +1)(S —3I)(x,y, z,w,t) = (0,0,0,0, 10w)
which is non-zero. Thus the minimal polynomial of S is indeed
mg(z) = (2% +1)(z — 3)%

e Since all the eigenvalues are precisely all the zeros of the minimal polyno-
mial (8.49), we just need to compute the zeros of the minimal polynomial.
In the first case, the minimal polynomial (z + 2)2, so —2 is the only eigen-
value of operator 7. In the second case, the minimal polynomial of S is
(22 + 1)(z — 3)3, the roots of this polynomial are —i,i and 3. Therefore
—i,4 and 3 are all the eigenvalues of S.

(Il

Question 2. Let V =R*, and let T € £(V) be the operator with matrix

2 0 00
0 3 01
0 0 3 0
0 0 0 3

Find the minimal polynomial of T'.

Proof. We claim that f(z) = (z — 2)(z — 3)? is the minimal polynomial. First we
show that (T — 2I)(T — 31)2 = 0
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Therefore we have (T — 2I)(T — 31)?> =0, so f(z) = (z — 2)(z — 3)? € Ur.
However, since 2, and 3 are eigenvalues of T', we know that 2 and 3 are roots
of the minimal polynomial. Therefore the only smaller possibility for the minimal
polynomial is (z — 2)(x — 3), since this is the only polynomial of degree < 3 with
both 2 and 3 as roots. So we just need to show that (T'—2I)(T —3I) # 0, and this



we can do by direct computation.
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