MATH 113 HOMEWORK 6 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church. Exercises from the book.

Exercise 6.A.16 Suppose $u, v \in V$ are such that

$$||u|| = 3, ||u + v|| = 4, ||u - v|| = 6.$$

What number does ||v|| equal?

Answer. We will use the following two formulas.

$$||u + v||^2 = \langle u + v, u + v \rangle$$
$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= ||u||^2 + 2\langle u, v \rangle + ||v||^2$$

since $\langle u, v \rangle = \langle v, u \rangle$ because V is over \mathbb{R} . And,

$$||u - v||^2 = \langle u - v, u - v \rangle$$

$$= \langle u, u \rangle + \langle u, -v \rangle + \langle -v, u \rangle + \langle -v, -v \rangle$$

$$= ||u||^2 - 2\langle u, v \rangle + ||v||^2$$

again where the simplifications are justified because V is over \mathbb{R} .

Adding these two equations together, we get that

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

(This is called the parallelogram identity. Think of u and v as the sides of the parallelogram, and u + v and u - v as its diagonals.)

We are given that ||u+v||=4, ||u-v||=6 and ||u||=3. Thus,

$$16 + 36 = 18 + 2||v||^2$$

implies that $||v||^2 = 17$. Therefore $||v|| = \sqrt{17}$.

Exercise 6.B.5 On $\mathcal{P}_2(\mathbb{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x)q(x) \, dx$$

Apply the Gram-Schmidt Procedure to the basis $1, x, x^2$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$.

Proof. Denote $v_0 = 1, v_1 = x$ and $v_2 = x^2$. We use the formula 6.31. This gives us

$$e_0 = \frac{v_0}{||v_0||}$$

so we need to compute the norm of v_0 . We have $||v_0||^2 = \langle v_0, v_0 \rangle$. So we use that

$$\langle v_0, v_0 \rangle = \int_0^1 1(x)1(x)dx = 1$$

to see that $||v_0|| = 1$. Therefore

$$e_0 = 1$$

Next, we need to find a constant a_1 s.t. $v_1 - ae_0$ is perpendicular to e_0 . We have that

$$\langle v_1 - a_0 e_0, e_0 \rangle = \int_0^1 (v_1(x) - a_0 e_0(x)) e_0(x) dx$$
$$= \int_0^1 (x - a_0) 1 dx$$
$$= \frac{1}{2} - a_0$$

Thus,

$$\langle v_1 - ae_0, e_0 \rangle = 0 \iff a_0 = \frac{1}{2}$$

So $f_1(x) = x - \frac{1}{2}$ is perpendicular to e_0 . We need to scale it so that it has norm one. First we compute $||f_1(x)||^2$:

$$\langle f_1(x), f_1(x) \rangle = \int_0^1 (x - \frac{1}{2})(x - \frac{1}{2}) dx = \frac{1}{12}$$

Thus, $||f_1(x)|| = \frac{1}{\sqrt{12}}$. We want $e_1 = \frac{f_1(x)}{||f_1(x)||}$. Therefore,

$$e_1 = \sqrt{12}(x - \frac{1}{2}) = \sqrt{3}(2x - 1)$$

Lastly, we need to find constants a_2, b_2 s.t. $v_2 - a_2e_1 - b_2e_0$ is perpendicular to both e_1 and e_2 . We have that

$$\begin{split} \langle v_2 - a_2 e_1 - b_2 e_0, e_0 \rangle &= \langle v_2 - b_2 e_0, e_0 \rangle \\ &= \langle x^2 - b_2, 1 \rangle \\ &= \int_0^1 x^2 - b_2 dx \\ &= \frac{1}{3} - b_2 \end{split}$$

So, $b_2 = \frac{1}{3}$. Next,

$$\begin{split} \langle v_2 - a_2 e_1 - b_2 e_0, e_1 \rangle &= \langle v_2 - a_2 e_1, e_1 \rangle \\ &= \langle v_2, e_1 \rangle - a_2 \\ &= \langle x^2, \sqrt{12} (x - \frac{1}{2}) \rangle - a_2 \\ &= \int_0^1 x^2 \sqrt{12} (x - \frac{1}{2}) \, dx - a_2 \\ &= \sqrt{12} \int_0^1 x^3 - \frac{1}{2} x^2 dx - a_2 \\ &= \sqrt{12} \left(\frac{1}{4} - \frac{1}{6} \right) - a_2 \\ &= \frac{\sqrt{12}}{12} - a_2 \end{split}$$

So $\langle v_2-a_2e_1-b_2e_0,e_1\rangle=0$ iff $a_2=\frac{\sqrt{12}}{12}$. Note that $a_2e_1=x-\frac{1}{2}$. Thus $f_2=v_2-a_2e_1-b_2e_0=x^2-x+\frac{1}{6}$ is perpendicular to both e_0 and e_1 . We want to normalize f_2 to get e_2 . So we compute its norm:

$$||f_2||^2 = \langle f_2, f_2 \rangle$$

$$= \int_0^1 (x^2 - x + \frac{1}{6})^2 dx$$

$$= \frac{1}{180}$$

Thus, $||f_2|| = \frac{1}{\sqrt{180}}$, so $e_2 = \frac{f_2(x)}{||f_2(x)||}$ is

$$e_2 = \sqrt{180}(x^2 - x + \frac{1}{6}) = \sqrt{5}(1 - 6x + 6x^2)$$

So the orthonormal basis we obtain via the Gram-Schmidt method is:

$$e_0 = 1,$$
 $e_1 = \sqrt{3}(2x - 1),$ and $e_2 = \sqrt{5}(1 - 6x + 6x^2).$

Exercise 6.B.7. Find a polynomial $q \in \mathcal{P}_2(\mathbb{R})$ such that

$$p(\frac{1}{2}) = \int_0^1 p(x)q(x) dx$$

For every $p \in \mathcal{P}_2(\mathbb{R})$

Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was $e_0 =$ $1, e_1 = \sqrt{3}(2x-1)$ and $e_2 = \sqrt{5}(6x^2-6x+1)$. Any polynomials p(x) and q(x) can be expressed as linear combinations of e_0, e_1 and e_2 . Suppose p(x), q(x) are written

$$p(x) = a_0e_0 + a_1e_1 + a_2e_2$$
 and $q(x) = b_0e_0 + b_1e_1 + b_2e_2$

Since $\int_0^1 p(x)q(x) dx$ is the inner product of p(x) and q(x), we want to find a q(x) s.t. $\langle p(x), q(x) \rangle = p(1/2)$ for each polynomial p(x). Since e_0, e_1, e_2 are an orthonormal basis,

$$\langle p(x), q(x) \rangle = \langle a_0 e_0 + a_1 e_1 + a_2 e_2, b_0 e_0 + b_1 e_1 + b_2 e_2 \rangle$$

= $a_0 b_0 + a_1 b_1 + a_2 b_2$

On the other hand, if $p(x) = a_0 e_0 + a_1 e_1 + a_2 e_2$ then $p(1/2) = a_0 - \frac{\sqrt{5}}{2} a_2$. (We use that $e_0(1/2) = 1$, $e_1(1/2) = 0$ and $e_2(1/2) = \sqrt{5}(-\frac{1}{2})$.

Thus, let $q(x) = b_0 e_0 + b_1 e_1 + b_2 e_2$ for $b_0 = 1$, $b_1 = 0$ and $b_2 = -\frac{\sqrt{5}}{2}$. So $q(x) = -15x^2 + 15x - \frac{3}{2}$

$$q(x) = -15x^2 + 15x - \frac{3}{2}$$

Then $\langle p(x), q(x) \rangle = a_0 - \frac{\sqrt{5}}{2}a_2$. That is, $p(\frac{1}{2}) = \int_0^1 p(x)q(x)dx$ for each $p(x) \in$ $\mathcal{P}_2(\mathbb{R}).$

Exercise 6.B.8 Find a polynomial $q \in \mathcal{P}_2(\mathbb{R})$ such that

$$\int_0^1 p(x)(\cos \pi x) \, dx = \int_0^1 p(x)q(x) \, dx.$$

for every $p \in \mathcal{P}_2(\mathbb{R})$

Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was $e_0 = 1$, $e_1 = \sqrt{3}(2x-1)$ and $e_2 = \sqrt{5}(6x^2-6x+1)$. Any polynomials p(x) and q(x) can be expressed as linear combinations of e_0 , e_1 and e_2 . Suppose p(x), q(x) are written

$$p(x) = a_0e_0 + a_1e_1 + a_2e_2$$
 and $q(x) = b_0e_0 + b_1e_1 + b_2e_2$

Since $\int_0^1 p(x)q(x) dx$ is the inner product of p(x) and q(x), we want to find a q(x) s.t. $\langle p(x), q(x) \rangle = \int_0^1 p(x) \cos(\pi x) dx$ for each polynomial p(x). Since e_0, e_1, e_2 are an orthonormal basis,

$$\langle p(x), q(x) \rangle = \langle a_0 e_0 + a_1 e_1 + a_2 e_2, b_0 e_0 + b_1 e_1 + b_2 e_2 \rangle$$

= $a_0 b_0 + a_1 b_1 + a_2 b_2$

On the other hand, if $p(x) = a_0 e_0 + a_1 e_1 + a_2 e_2$ then $\int_0^1 p(x) \cos(\pi x) dx = \frac{-4\sqrt{3}}{\pi^2} a_1$. (We use that $\int_0^1 e_0(x) \cos(\pi x) dx = 0$, $\int_0^1 e_1(x) \cos(\pi x) dx = \frac{-4\sqrt{3}}{\pi^2}$ and $\int_0^1 e_2(x) \cos(\pi x) dx = 0$.)

Thus, let $q(x) = b_0 e_0 + b_1 e_1 + b_2 e_2$ for $b_0 = 0$, $b_1 = \frac{-4\sqrt{3}}{\pi^2}$ and $b_2 = 0$. So

$$q(x) = \frac{-24x + 12}{\pi^2}$$

Then $\langle p(x), q(x) \rangle = \frac{-4\sqrt{3}}{\pi^2} a_1$. That is, $\int_0^1 p(x) (\cos \pi x) dx = \int_0^1 p(x) q(x) dx$ for each $p(x) \in \mathcal{P}_2(\mathbb{R})$.

Question 1. Let V be a finite-dimensional vector space over \mathbb{C} , and let $T \in \mathcal{L}(V)$. Let U, W be nonzero subspaces s.t. $V = U \oplus W$. Assume U, W are invariant under T, so we can restrict the operator $T: V \to V$ to an operator $T|_U: U \to U$ and similarly we can restrict T to an operator $T|_W: W \to W$.

- a) Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of T, then either λ is an eigenvalue of $T|_U$ or λ is an eigenvalue of $T|_W$ (or both).
 - Let f(x) be the minimal polynomial of $T|_U$ and let g(x) be the minimal polynomial of $T|_W$.
- b) Prove that f(T)g(T) = 0 in $\mathcal{L}(V)$.
- c) Prove that if f(x), g(x) have no shared roots, then f(x)g(x) is the minimal polynomial of T.
- d) Prove that if f(x), g(x) have a shared rood $\lambda \in \mathbb{C}$ then f(x)g(x) is not the minimal polynomial of T.

Proof. a) Suppose λ is an eigenvalue of T. Then there is some $v \in V$ s.t. $Tv = \lambda v$ (and $v \neq 0$). Since $V = U \oplus W$, we can write v = u + w for some $u \in U$ and $w \in W$. Thus Tv = Tu + Tw, so $Tv = \lambda v$ implies that

$$Tu + Tw = \lambda u + \lambda w$$

Since U and W are invariant under T, $Tu \in U$ and $Tw \in W$. We also have that $\lambda u \in U$ and $\lambda w \in W$. Since V is the direct sum of U and W, there is only one way to write any vector as a sum of an element of U and an element of W. Therefore we must have that $Tu = \lambda u$ and $Tw = \lambda w$.

Since $v \neq 0$, either u or w is non-zero. Suppose that $u \neq 0$. Then $Tu = \lambda u$ implies $T|_{U}u = \lambda u$. So λ is an eigenvalue for $T|_{U}$. Otherwise, if u = 0 we must

have $w \neq 0$. Then $Tw = \lambda w$ implies $T|_W w = \lambda w$, so λ is an eigenvalue for $T|_W$. Therefore λ is an eigenvalue for either $T|_U$ or $T|_W$ (or both.)

b) Let f(x) be the minimal polynomial of $T|_U$ and let g(x) be the minimal polynomial of $T|_W$. We need to show that for any $v \in V$, f(T)g(T)v = 0.

Since f(x) is the minimal polynomial of $T|_U$ we know that $f(T|_U)(u) = 0$ for any $u \in U$. Moreover since $T(u) = T|_U(u)$ for any $u \in U$, this can be written simply as f(T)(u) = 0 for any $u \in U$. Similarly, since g(x) is the minimal polynomial for $T|_W$, we have $g(T)(w) = g(T|_W)(w) = 0$ for any $w \in W$.

Since $V=U\oplus W,$ any $v\in V$ can be written as v=u+w for $u\in U$ and $w\in W.$ Therefore

$$\begin{split} f(T)g(T)(v) &= f(T)g(T)](u+w) \\ &= f(T)[g(T)(u+w)] \\ &= f(T)[g(T)(u)] + f(T)[g(T)(w)] \\ &= g(T)[f(T)(u)] + f(T)[g(T)(w)] \quad \text{(since } f(T) \text{ and } g(T) \text{ commute)} \\ &= 0 + 0 = 0, \end{split}$$

as desired.

c) In this proof, we will frequently use the general theorem that if p(x) is the minimal polynomial of a linear operator T, and if f(T) = 0 for some other polynomial f(x), then p(x) divides f(x).

Let h(x) = f(x)g(x). Let p(x) be the minimal polynomial of T. Since h(T) = 0, we have that p(x) divides h(x). In particular, the degree of h(x) is at least the degree of p(x).

Note that if $u \in U$, $f(T|_U)g(T|_U)(u) = f(T)g(T)(u) = 0$, and the same holds for $w \in W$. Thus $h(T|_U) = 0$ and $h(T|_W) = 0$. Since f(x) is the minimal polynomial of $T|_U$, we have that f(x) divides h(x). Likewise, g(x) divides h(x), as well.

Since V is a vector space over \mathbb{C} , we can write f(x), g(x) and p(x) in terms of linear factors:

$$f(x) = \prod_{i=1}^{k} (x - \lambda_i)$$

where $\lambda_1, \ldots, \lambda_k$ are the eigenvalues for $T|_U$.

$$g(x) = \prod_{i=k+1}^{n} (x - \lambda_i)$$

where $\lambda_{k+1}, \ldots, \lambda_n$ are the eigenvalues for $T|_W$.

$$p(x) = \prod_{i=1}^{m} (x - \beta_i)$$

where β_1, \ldots, β_m are the eigenvalues for T. Since the degree of h(x) is at least the degree of p(x), $m \le n$.

Since f(x) divides p(x), every term $(x - \lambda_i)$ for i = 1, ..., k of f(x) is a term of p(x), as well. Thus, we can renumber the β_i s.t. $\beta_i = \lambda_i$ for i = 1, ..., k. Likewise, since g(x) divides p(x), every term $(x - \lambda_i)$ for i = k + 1, ..., n of g(x) corresponds to a term $(x - \beta_{j_i})$ in p(x). Since $T|_U$ and $T|_W$ have no common eigenvalues, no λ_i for i = k + 1, ..., n corresponds any of $\beta_1, ..., \beta_k$. Thus, we

can renumber $\beta_{k+1}, \ldots, \beta_m$ s.t. $\lambda_i = \beta_i$ for $i = k+1, \ldots, n$. In particular, m > n.

Therefore, m = n, so the degree of h(x) equals the degree of p(x). Since f(x), g(x) are minimal polynomials, they are monic. Thus h(x) = f(x)g(x) is a monic polynomial. Since h(x) and p(x) are both monic and have the same degree, they are equal.

d) Prove that if f(x), g(x) have a shared root $\lambda \in \mathbb{C}$ then f(x)g(x) is not the minimal polynomial of T.

Suppose f(x), g(x) have a shared root $\lambda \in \mathbb{C}$. Again, let

$$f(x) = \prod_{i=1}^{k} (x - \lambda_i)$$

where $\lambda_1, \ldots, \lambda_k$ are the eigenvalues for $T|_U$.

$$g(x) = \prod_{i=k+1}^{n} (x - \lambda_i)$$

where $\lambda_{k+1}, \ldots, \lambda_n$ are the eigenvalues for $T|_W$.

Up to renumbering, we can assume that $\lambda_1 = \lambda_n$. Then consider the polynomial

$$h(x) = \prod_{i=1}^{n-1} (x - \lambda_i)$$

where we multiply f(x) and g(x) but get rid of the last factor $(x - \lambda_n)$. Then f(x) and g(x) both still divide h(x). So, there are polynomials a(x) and b(x) s.t. h(x) = a(x)f(x) = b(x)g(x).

We claim that h(T) = 0. First, suppose $u \in U$. Then h(T)(u) = a(T)f(T)(u). Since f is the minimal polynomial of $T|_U$, f(T)(u) = 0. Thus a(T)(f(T)(u)) = 0, so h(T)(u) = 0. Likewise, since g(x) is the minimal polynomial of $T|_W$, g(T)(w) = 0 for any $w \in W$. Thus h(T)(w) = 0. Let $v \in V$. We can write v = u + w for $u \in U$ and $w \in W$. Then

$$h(T)(v) = h(T)(u + w)$$
$$= h(T)(u) + h(T)(w)$$
$$= 0$$

Therefore, h(T) = 0. Since the degree of h(T) is one less than the degree of f(x)g(x), and h(T) = 0, f(x)g(x) cannot be the minimal polynomial of T. \square

Question 2. Let V be an inner product space over \mathbb{R} , and suppose that $T \in \mathcal{L}(V)$ satisfies ||Tv|| = ||v|| for all $v \in V$. Prove that T has at most two eigenvalues.

Proof. For any eigenvalue λ of T, we can find an eigenvector v of T corresponding to λ . So we have

$$||Tv|| = |\lambda| \cdot ||v|| = ||v||$$

Since $v \neq 0$, we must have $|\lambda| = 1$. But V is an inner product space over \mathbb{R} , and the only real numbers with absolute value 1 are 1 and -1. Therefore the only possible eigenvalues are $\lambda = 1$ and $\lambda = -1$; in particular, T can have at most 2 eigenvalues.

Question 3. Fix an integer $n \geq 1$, and let $V = \mathbb{C}^n$ with the standard inner product. We let $R: V \to V$ be the operator defined by

$$R(a_1,\ldots,a_n) = (a_2,\ldots,a_n,a_1)$$

- a) Set $p(x) = x^n 1$. Prove that p(R) = 0. Convince yourself that $p(x) = x^n 1$ is in fact the minimal polynomial of R.
- b) Since p(x) has n distinct roots, we know that R is diagonalizable. Diagonalize R by finding a basis of eigenvectors v_1, \ldots, v_n for \mathbb{C}^n satisfying

$$R(v_i) = \omega^i v_i$$
 and $||v_i|| = 1$

- c) Prove that if $\mu \in \mathbb{C}$ satisfies $\mu^n = 1$ but $\mu \neq 1$, then $1 + \mu + \mu^2 + \dots + \mu^{n-1} = 0$.
- d) Prove your basis v_1, \ldots, v_n is orthonormal.
- e) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1 v_1 + \cdots + b_n v_n$, give a formula for the coefficient b_i in terms of the coordinates a_1, \ldots, a_n .
- f) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1 v_1 + \cdots + b_n v_n$, give a formula for the coordinate a_i in terms of the coefficients b_1, \ldots, b_n .
- g) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1 v_1 + \cdots + b_n v_n$, prove that the coordinates a_1, \ldots, a_n and the coefficients b_1, \ldots, b_n satisfy the relation

$$|a_1|^2 + \dots + |a_n|^2 = |b_1|^2 + \dots + |b_n|^2$$

Proof. (a) For any element $a=(a_1,\ldots,a_n)\in\mathbb{C}^n$, we just need to prove that $R^na=a$. Since $Ra=R(a_1,\ldots,a_n)=(a_2,\ldots,a_n,a_1)$, we have

$$R^2a = R(a_2, \dots, a_n, a_1) = R(a_3, \dots, a_n, a_1, a_2).$$

Repeating this n times, we conclude that

$$R^{n-1}a = (a_n, a_1, \dots, a_{n-1})$$

$$R^n a = R(R^{n-1}a) = R(a_n, a_1, \dots, a_{n-1}) = (a_1, \dots, a_n) = a.$$

Therefore we have $(R^n - I)a = 0$. Therefore p(R) = 0, as desired.

(b) We just need to show that if f(x) is a nonzero polynomial of degree < n, then $f(R) \neq 0$. Write this polynomial as $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1}$ for some coefficients $c_0, c_1, c_2, \ldots, c_{n-1} \in \mathbb{C}$. [Note that we have not bothered to assume that f(x) is monic; it's a bit easier that way, notationally.]

Consider the vector v = (0, ..., 0, 1). We will show that f(R) is not the zero operator by showing that f(R)v is not the zero vector. From the computations above, we know that

$$Rv = (0, \dots, 0, 1, 0),$$
 $R^2v = (0, \dots, 1, 0, 0), \dots$ $R^{n-1}v = (1, 0, \dots, 0).$

Therefore f(R)v is equal to

$$(c_0 + c_1 R + c_2 R^2 + \dots + c_{n-1} R^{n-1}) v = c_0 v + c_1 R v + c_2 R^2 v + \dots + c_{n-1} R^{n-1} v$$

$$= (0, \dots, 0, 0, c_0)$$

$$+ (0, \dots, 0, c_1, 0)$$

$$+ (0, \dots, c_2, 0, 0)$$

$$+ \dots$$

$$+ (c_{n-1}, \dots, 0, 0, 0)$$

$$= (c_{n-1}, \dots, c_3, c_2, c_1, c_0)$$

Since f(x) is a nonzero polynomial, at least one of the coefficients c_i must be nonzero, so this vector $f(R)v = (c_{n-1}, \ldots, c_3, c_2, c_1, c_0)$ must be nonzero. This proves that n is the smallest possible degree of a polynomial with f(R) = 0; since p(x) has degree n, this shows that $p(x) = x^n - 1$ is the minimal polynomial of R.

(c) Let $w_i = (\omega^i, \omega^{2i}, \dots, \omega^{ni})$ for $i = 1, \dots, n$. So, $w_1 = (\omega, \omega^2, \dots, \omega^{n-1}, 1)$, $w_2 = (\omega^2, \omega^4, \dots, \omega^{2n-2}, 1)$ and so on until $w_n = (1, 1, \dots, 1)$. We claim that these are eigenvectors s.t. w_i has eigenvalue ω^i . We can compute what R does to these vectors:

$$R(\omega^i, \omega^{2i}, \dots, \omega^{ni}) = (\omega^{2i}, \omega^{3i}, \dots, \omega^{ni}, \omega^i)$$

Since $\omega^i \cdot \omega^{ki} = \omega^{(k+1)i}$, we see that $R(w_i) = \omega^i \cdot w_i$ as desired. (Note that $\omega^{ni} = (\omega^n)^i = 1^i = 1$, so in the last coordinate we have $\omega^i \cdot \omega^{ni} = \omega^i$.) Since $1, \omega, \ldots, \omega^{n-1}$ are distinct eigenvalues, w_1, \ldots, w_n are linearly independent. As there are n of them, they must form a basis for \mathbb{C}^n .

Since $|\omega| = 1$, we have that $|\omega^i| = 1^i = 1$ for all i. Thus for all i,

$$||w_i||^2 = |\omega^i| + |\omega^{2i}| + \dots + |\omega^{ni}| = 1 + 1 + 1 + \dots + 1 = n.$$

This shows that each of our eigenvectors w_i has length $||w_i|| = \sqrt{n}$. To get an eigenbasis v_1, \ldots, v_n with length 1, we set $v_i = \frac{1}{\sqrt{n}}w_i$. In conclusion, v_1, \ldots, v_n forms a basis for \mathbb{C}^n s.t. $||v_i|| = 1$ for all i, and R is diagonal with respect to this basis.

(d) If $\mu \neq 1$, then $1 - \mu$ is nonzero. If we multiply the sum $1 + \mu + \mu^2 + \cdots + \mu^{n-1}$ by $1 - \mu$, we get a telescoping sum:

$$(1-\mu)(1+\mu+\mu^2+\dots+\mu^{n-1}) = 1-\mu+\mu-\mu^2+\mu^2-\dots+\mu^{n-1}-\mu^n$$
$$= 1$$

But our assumption was that $\mu^n = 1$, so $1 - \mu^n = 0$. Since $1 + \mu + \mu^2 + \dots + \mu^{n-1}$ becomes 0 when multiplied by the nonzero constant $1 - \mu$, it must be that $1 + \mu + \mu^2 + \dots + \mu^{n-1} = 0$.

(e) We have already shown that $||v_i|| = 1$ for all i. Now we need to show that $\langle v_i, v_j \rangle = 0$ for all $i \neq j$. So suppose that $i \neq j$. Then

$$\langle v_i, v_j \rangle = \frac{1}{n} \left(\omega^i \cdot \overline{\omega}^j + \omega^{2i} \cdot \overline{\omega}^{2j} + \dots + \omega^{ni} \cdot \overline{\omega}^{nj} \right)$$

Since ω is on the unit circle, we know that $|\omega| = 1$, or in other words $\omega \cdot \overline{\omega} = 1$. This shows that $\overline{\omega} = \omega^{-1}$, and so in general $\overline{\omega}^{kj} = \omega^{-kj}$. Thus,

$$\langle v_i, v_j \rangle = \frac{1}{n} \left(\omega^{i-j} + \omega^{2(i-j)} + \dots + \omega^{n(i-j)} \right)$$

Set $\mu = \omega^{i-j}$; note that the last term above is $\mu^n = \omega^{n(i-j)} = (\omega^n)^{i-j} = 1$, so the sum inside the parentheses is

$$\mu + \mu^2 + \dots + \mu^{n-1} + \mu^n = \mu + \mu^2 + \dots + \mu^{n-1} + 1.$$

Since $i \neq j$ we know that $\mu \neq 1$, so part c) implies that the sum inside the parentheses is 0:

$$\langle v_i, v_j \rangle = \frac{1}{n} (1 + \mu + \mu^2 + \dots + \mu^{n-1}) = \frac{1}{n} \cdot 0 = 0.$$

Therefore $\langle v_i, v_j \rangle = 0$ for all $i \neq j$, demonstrating that the vectors v_1, \ldots, v_n form an orthonormal basis for \mathbb{C}^n .

(f) If $v = b_1 v_1 + \cdots + b_n v_n$, then $\langle v, v_i \rangle = b_i$ since v_1, \ldots, v_n form an orthonormal basis for \mathbb{C}^n . Thus,

$$b_i = \langle (a_1, a_2, \dots, a_n), \frac{1}{\sqrt{n}} (\omega^i, \dots, \omega^{ni}) \rangle$$
$$= \frac{1}{\sqrt{n}} (a_1 \omega^{-i} + a_2 \omega^{-2i} + \dots + a_n \omega^{-ni}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \omega^{-ij} a_j$$

[TC: this is the analogue of the Fourier transform $\hat{f}(\theta) = \frac{1}{\sqrt{(2\pi)^n}} \int e^{-i\theta x} f(x) dx$.]

(g) If $v = b_1v_1 + \cdots + b_nv_n$, we can just compute

$$v = (a_1, \dots, a_n) = \frac{b_1}{\sqrt{n}} (\omega, \omega^2, \dots, \omega^n) + \frac{b_2}{\sqrt{n}} (\omega^2, \omega^4, \dots, \omega^{2n}) + \vdots + \frac{b_n}{\sqrt{n}} (1, 1, 1, \dots, 1)$$

So looking at the *i*th component we have:

$$a_i = \frac{1}{\sqrt{n}} \left(b_1 \omega^i + b_2 \omega^{2i} + \dots + b_n \omega^{ni} \right) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \omega^{ij} b_j$$

[TC: this is analogous to the inverse Fourier transform $f(x) = \frac{1}{\sqrt{(2\pi)^n}} \int e^{i\theta x} \hat{f}(\theta) d\theta$.]

(h) If we write $v=(a_1,\ldots,a_n)$ then the standard inner product on \mathbb{C}^n satisfies $||v||^2=|a_1|^2+\cdots+|a_n|^2$.

On the other hand, if we write $v = b_1 v_1 + \cdots + b_n v_n$, then

$$||v||^2 = \langle b_1 v_1 + \dots + b_n v_n, b_1 v_1 + \dots + b_n v_n \rangle.$$

Since v_1, \ldots, v_n is an orthonormal basis, this is just

$$\langle b_1 v_1 + \dots + b_n v_n, b_1 v_1 + \dots + b_n v_n \rangle = |b_1|^2 + \dots + |b_n|^2$$

Therefore we must have

$$|a_1|^2 + \dots + |a_n|^2 = |b_1|^2 + \dots + |b_n|^2$$
,

because both sides are equal to $||v||^2$.