
Math 113: Linear Algebra and Matrix Theory
Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 7
Due Wednesday, November 11 in class.

Do all the following exercises and questions.

6C.4 6C.6 6C.11

7A.1 7A.2 7A.4

Question 1. Suppose (e1, . . . , em) is an orthonormal list of vectors in V . Let v ∈ V . Prove that

‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, em〉|2

if and only if v ∈ span(e1, . . . , em).

Question 2. Let V be the vector space of infinite sequences of real numbers:

V =
{

(a1, a2, a3, . . .) | ai ∈ R
}

This is an infinite-dimensional vector space over R. Consider the forwards shift on V : let T ∈ L(V )

be the operator defined by

T (a1, a2, a3, . . .) = (0, a1, a2, . . .).

(a) The operator T + I is given by

(T + I)(a1, a2, a3, a4, . . .) = (a1, a1 + a2, a2 + a3, a3 + a4, . . .).

Find an inverse (T + I)−1 for this operator.

(b) For which values of λ ∈ R is the operator T − λI non-invertible? Try to prove your answer is

correct; if you cannot prove it completely, give as much justification as you can.

(c) What are the eigenvalues of T?

(d) Explain the discrepancy between your answers to (b) and (c).
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