Math 113: Linear Algebra and Matrix Theory

Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 7

Due Wednesday, November 11 in class.

Do all the following exercises and questions.

6C.4	6C.6	6C.11
7A.1	7A.2	7A.4

Question 1. Suppose (e_1, \ldots, e_m) is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$.

Question 2. Let V be the vector space of infinite sequences of real numbers:

$$V = \{ (a_1, a_2, a_3, \ldots) \mid a_i \in \mathbb{R} \}$$

This is an infinite-dimensional vector space over \mathbb{R} . Consider the forwards shift on V: let $T \in \mathcal{L}(V)$ be the operator defined by

$$T(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, \ldots).$$

(a) The operator T + I is given by

$$(T+I)(a_1,a_2,a_3,a_4,\ldots)=(a_1,a_1+a_2,a_2+a_3,a_3+a_4,\ldots).$$

Find an inverse $(T+I)^{-1}$ for this operator.

- (b) For which values of $\lambda \in \mathbb{R}$ is the operator $T \lambda I$ non-invertible? Try to prove your answer is correct; if you cannot prove it completely, give as much justification as you can.
- (c) What are the eigenvalues of T?
- (d) Explain the discrepancy between your answers to (b) and (c).