MATH 113 HOMEWORK 8 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.

Exercises from the book.

Exercise 7.A.11 Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self-adjoint.

Proof. First suppose there is a subspace U of V such that $P = P_U$. Suppose $v_1, v_2 \in V$. Write

$$v_1 = u_1 + w_1, \ v_2 = u_2 + w_2,$$

where $u_1, u_2 \in U$ and $w_1, w_2 \in U^{\perp}$ (see 6.47). Now

$$\langle Pv_1, v_2 \rangle = \langle u_1, u_2 + w_2 \rangle$$

$$= \langle u_1, u_2 \rangle + \langle u_1, w_2 \rangle$$

$$= \langle u_1, u_2 \rangle$$

$$= \langle u_1, u_2 \rangle + \langle w_1, u_2 \rangle$$

$$= \langle v_1, u_2 \rangle$$

$$= \langle v_1, Pv_2 \rangle$$

Therefore $P = P^*$. Hence P is self-adjoint.

To prove the implication in the other direction, now suppose P is self-adjoint. Let $v \in V$, because $P(v - Pv) = Pv - P^2v = 0$, we have

$$v - Pv \in \text{null } P = (\text{range } P^*)^{\perp} = \text{range } P^{\perp},$$

where the first equality comes from 7.7(c). Writing

$$v = Pv + (v - Pv).$$

We have $Pv \in \operatorname{range} P$ and $v - Pv \in \operatorname{range} P^{\perp}$. Thus $Pv = P_{\operatorname{range} P}v$. Since this holds for all $v \in V$, we have $P = P_{\operatorname{range} P}$.

Exercise 7.A.12 Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

Proof. Let u and v be eigenvectors of T corresponding to the eigenvalues 3 and 4. Thus,

$$Tu = 3u$$
 and $Tw = 4w$.

Replacing u with $\frac{u}{||u||}$ and w with $\frac{w}{||w||}$, we can assume that

$$||u|| = ||w|| = 1.$$

Because T is normal, 7.22 implies that u and w are orthogonal. Now the Pythagoream Theorem implies that

$$||u + w|| = \sqrt{||u||^2 + ||w||^2} = \sqrt{2}.$$

Using the Pythagoream Theorem again, we have

$$||T(u+w)|| = ||3u+4w|| = \sqrt{9||u||^2 + 16||w||^2} = \sqrt{25} = 5.$$

Thus taking v = u + w, we have a vector v such that $||v|| = \sqrt{2}$ and ||Tv|| = 5. \square

Exercise 7.A.16 Prove that if $T \in L(V)$ is normal, then

$$\operatorname{range} T = \operatorname{range} T^*$$

Proof. By Prop 7.20 in the book, T is normal implies that $||Tv|| = ||T^*v||$ for all v. Thus, if $v \in \text{null } T$ then ||Tv|| = 0 implies that $||T^*v|| = 0$, thus $v \in \text{null } T^*$. As $(T^*)^* = T$, this means that $v \in \text{null } T$ iff $v \in \text{null } T^*$. So the kernels of T and T^* are equal.

By Prop 7.7, null $T^* = (\operatorname{range} T)^{\perp}$ and null $T = (\operatorname{range} T^*)^{\perp}$. As null $T = \operatorname{null} T^*$, this implies that

$$(\operatorname{range} T)^{\perp} = (\operatorname{range} T^*)^{\perp}$$

If U is a subspace of V, then $(U^{\perp})^{\perp} = U$. Taking the orthogonal complement of both sides of the above equation give us range $T = \operatorname{range} T^*$.

Exercise 7.B.1. True or false (and give a proof of your answer): There exists $T \in \mathcal{L}(\mathbb{R}^3)$ such that T is not self-adjoint (with respect to the usual inner product) and such that there is a basis of \mathbb{R}^3 consisting of eigenvectors of T.

Proof. The statement above is true. To produce the desired example, note that (1,0,0),(0,1,0),(1,1,1) is a basis of \mathbb{R}^3 and consider the operator $T\in\mathbb{R}^3$ such that

$$T(1,0,0) = (0,0,0)$$

$$T(0,1,0) = (0,0,0)$$

$$T(1,1,1) = (1,1,1)$$

here we have used 3.5 to guarantee the existence of an operator T with the properties above.

The vector (1,0,0) and (0,1,0) are eigenvectors of T with eigenvalue 0; the vector (1,1,1) is an eigenvector of T with eigenvalue 1. Thus there is a basis of \mathbb{R}^3 consisting of eigenvectors of T.

However, 7.22 tells us that T is not normal (and thus not self-adjoint) because the eigenvectors (1,0,0) and (1,1,1) correspond to distinct eigenvalues but these eigenvectors are not orthogonal.

Exercise 7.B.2 Suppose that T is a self-adjoint operator on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of T. Prove that $T^2 - 5T + 6I = 0$

Proof. If v is an eigenvector of T with eigenvalue 2, then

$$(T^{2} - 5T + 6I)v = ((T - 3I)(T - 2I))v$$

$$= (T - 3I)((T - 2I)v)$$

$$= (T - 3I)0$$

$$= 0$$

Similarly, if v is an eigenvector of T with eigenvalue 3, then

$$(T^{2} - 5T + 6I)v = ((T - 2I)(T - 3I))v$$

$$= (T - 2I)((T - 3I)v)$$

$$= (T - 2I)0$$

$$= 0$$

By the Complex Spectral Theorem, there is an orthonormal basis of the domain of T consisting of eigenvectors of T. The equations above show that $T^2 - 5T + 6I$ applied to any such basis vector equals 0. Since a linear map is determined by its values on a basis, $T^2 - 5T + 6I = 0$.

Exercise 7.B.7 Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.

Proof. By the Complex Spectral Theorem(7.24), there is an orthonormal basis $e_1, ..., e_n$ of V consisting of eigenvectors of T. Let $\lambda_1, ..., \lambda_n$ be the corresponding eigenvalues. Thus

$$Te_i = \lambda_i e_i$$

for j=1,...,n. Applying T repeatedly both sides of the equation above, we get $T^9e_j=\lambda_j^9e_j$ and $T^8e_j=\lambda_j^8e_j$. Thus $\lambda_j^9=\lambda_j^8$, which implies that λ_j equals 0 or 1. In particular, all the eigenvalues of T are real. The matrix of T with respect to the orthonormal basis $e_1,...,e_n$ is the diagonal matrix with $\lambda_1,...,\lambda_n$ on the diagonal. This matrix equals its conjugate transpose. Thus $T=T^*$. Hence T is self-adjoint, as desired. [Alternate argument: we know from class that "self-adjoint" is equivalent to "normal and all eigenvalues are real".]

Applying T to both sides of the equation above, we get

$$T^{2}e_{j} = \lambda_{j}^{2}e_{j}$$
$$= \lambda_{j}e_{j}$$
$$= Te_{j},$$

where the second equality holds because λ_j equals 0 or 1. Because T^2 and T agree on a basis, they are equal.

Question 1.

a) Given an example of two self-adjoint operators $S \in \mathcal{L}(\mathbb{R}^2)$ and $T \in \mathcal{L}(\mathbb{R}^2)$ whose product is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that $S, T \in \mathcal{L}(V)$ are self-adjoint.

- b) Prove that ST + TS is a self-adjoint operator.
- c) Prove that ST is self-adjoint iff ST = TS.

Proof. a) Let $T, S : \mathbb{R}^2 \to \mathbb{R}^2$ s.t.

$$T(x,y) = (x + 2y, 2x)$$
 and $S(x,y) = (y, x + y)$

Their matrices with respect to the standard basis (which is orthonormal) are

$$M(T) = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
 and $M(S) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

These operators are self-adjoint because the matrices are equal to their conjugatetransposes. The product of these matrices is

$$M(T)M(S) = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$

This matrix is not equal to its conjugate transpose. As the standard basis is orthonormal, this implies that TS is not self-adjoint.

b) We expand the following expression, using the fact that S, T are self-adjoint:

$$\begin{split} \langle (ST+TS)v,w\rangle &= \langle STv,w\rangle + \langle TSv,w\rangle \\ &= \langle Tv,S^*w\rangle + \langle Sv,T^*w\rangle \\ &= \langle Tv,Sw\rangle + \langle Sv,Tw\rangle \\ &= \langle v,T^*Sw\rangle + \langle v,S^*Tw\rangle \\ &= \langle v,TSw\rangle + \langle v,STw\rangle \\ &= \langle v,(TS+ST)w\rangle \end{split}$$

Therefore, $\langle (ST+TS)v,w\rangle = \langle v,(TS+ST)w\rangle$ so ST+TS is self-adjoint. \square c) If ST=TS, then ST+TS=2ST. Since 2ST is self-adjoint, and 2 is a real number,

$$\begin{aligned} 2\langle STv,w\rangle &= \langle 2STv,w\rangle \\ &= \langle v,2STw\rangle \\ &= 2\langle v,STw\rangle \end{aligned}$$

Since our field is either \mathbb{R} or \mathbb{C} , we get that $\langle STv, w \rangle = \langle v, STw \rangle$, so ST is self-adjoint.

Suppose ST is self-adjoint. Then

$$\langle STv, w \rangle = \langle v, STw \rangle$$

and,

$$\begin{split} \langle STv,w\rangle &= \langle v,(ST)^*w\rangle \\ &= \langle v,T^*S^*w\rangle \\ &= \langle v,TSw\rangle \text{ because } T,S \text{ are self-adjoint.} \end{split}$$

Since

$$\begin{split} \langle v, STw \rangle &= \langle v, TSw \rangle \text{ for all } v, w \in V, \\ \langle v, (ST-TS)w \rangle &= 0 \text{ for all } v, w \in V, \text{ so setting } v = (ST-TS)w, \\ ||(ST-TS)w||^2 &= 0 \text{ for all } w \in V, \text{ therefore,} \\ &ST-TS &= 0 \end{split}$$

So ST = TS.