Math 113 – Winter 2013 – Prof. Church Midterm Solutions

Name:		
Student ID:		
Signature:		

Question 1 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V, W)$. Assume that v_1, \ldots, v_n is a basis for V. (For this question only, do not use the Rank-Nullity Theorem.)

a) Prove that T is injective if and only if $T(v_1), \ldots, T(v_n)$ are linearly independent in W.

Proof. (\Longrightarrow) Assume that T is injective. Consider a linear dependence $a_1T(v_1)+\cdots+a_nT(v_n)=0$. If we set $v=a_1v_1+\cdots+a_nv_n$, we have $T(v)=T(a_1v_1+\cdots+a_nv_n)=a_1T(v_1)+\cdots+a_nT(v_n)$, so our assumption says that T(v)=0. Since T is injective, this implies that v=0. But since v_1,\ldots,v_n is linearly independent (since it is a basis), the only way we can have $a_1v_1+\cdots+a_nv_n=0$ is if $a_1=0,\ldots,a_n=0$. This shows that $a_1T(v_1)+\cdots+a_nT(v_n)=0$ implies $a_1=0,\ldots,a_n=0$, which is the definition of linear independence.

(\Leftarrow) Assume that $T(v_1), \ldots, T(v_n)$ are linearly independent. Consider $u \in \ker T$, so that T(u) = 0. Since v_1, \ldots, v_n spans V (it is a basis), we can write $u = b_1v_1 + \cdots + b_nv_n$. Therefore

$$0 = T(u) = T(b_1v_1 + \dots + b_nv_n) = b_1T(v_1) + \dots + b_nT(v_n).$$

Since $T(v_1), \ldots, T(v_n)$ are linearly independent, this is only possible if $b_1 = 0, \ldots, b_n = 0$. Therefore

$$u = b_1 v_1 + \dots + b_n v_n = 0 \cdot v_1 + \dots + 0 \cdot v_n = 0.$$

Therefore $u \in \ker T \implies u = 0$, or in other words $\ker T = \{0\}$. By Proposition 3.2, this is equivalent to injectivity of T.

b) Prove that T is surjective if and only if $T(v_1), \ldots, T(v_n)$ spans W.

Proof. (\Longrightarrow) Assume that T is surjective. Therefore for any $w \in W$ there exists $v \in V$ such that T(v) = w. Since v_1, \ldots, v_n is a basis, we can write $v = a_1v_1 + \cdots + a_nv_n$. Then

$$w = T(v) = T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n).$$

This shows that $w \in \text{span}(T(v_1), \dots, T(v_n))$. Since this holds for any $w \in W$, we conclude that span $(T(v_1), \dots, T(v_n)) = W$ as desired.

(\Leftarrow) Assume that $T(v_1), \ldots, T(v_n)$ spans W. Then for any $w \in W$ there exist a_1, \ldots, a_n such that $w = a_1 T(v_1) + \cdots + a_n T(v_n)$. Then if we set $v = a_1 v_1 + \cdots + a_n v_n$ we have T(v) = w. Therefore every $w \in W$ is in the image of T, and T is surjective.

Question 2 (20 points). We consider a linear transformation $T \in \mathcal{L}(P_{\leq 2}(\mathbb{R}), P_{\leq 3}(\mathbb{R}))$. Assume that we are given partial data about T:

$$T(x^2 + 1) = x^2 - x$$
$$T(1) = 2x + 1$$

Given this partial data, answer the following questions. Justify your answers.

a) Could T be injective?

Answer. Yes. For example, consider the transformation T defined by the formula

$$T(ax^{2} + bx + c) = ax^{2} + (b - 3a + 2c)x + (c - a)$$

We check: $T(x^2 + 1) = x^2 + (-3 + 2)x + (1 - 1) = x^2 - x$ and T(1) = 0 + 2x + 1 = 2x + 1, so this fits the partial data. This map is injective: if $ax^2 + bx + c \in \ker T$, we must have

$$ax^{2} + (b - 3a + 2c)x + (c - a)x = 0 \implies \begin{cases} a = 0 \\ b - 3a + 2c = 0 \\ c - a = 0 \end{cases}$$

The first equation implies a=0; given this, the third becomes c=0; given these, the second becomes b=0. Therefore $\ker T=\{0\}$ and T is injective.

b) Could T be surjective?

Answer. No. We know that $\dim P_{\leq 2}(\mathbb{R}) = 3$ and $\dim P_{\leq 3}(\mathbb{R}) = 4$. However Corollary 3.6 states that $T: V \to W$ cannot be surjective if $\dim V < \dim W$.

c) Can we determine $T(x^2 + x + 1)$ from the given data?

Answer. No. For the T given in a) we compute $T(x^2 + x + 1) = x^2$. However we could also define

$$T(ax^{2} + bx + c) = bx^{3} + ax^{2} + (-3a + 2c)x + (c - a),$$

(again we can check that $T(x^2+1)=x^2-x$ and T(1)=2x+1), in which case $T(x^2+x+1)=x^3+x^2-x$. Therefore $T(x^2+x+1)$ cannot be definitively determined from the given data.

d) Can we determine whether $x^2 + x + 1 \in \text{Image}(T)$ from the given data?

Answer. Yes, and it is indeed in the image. We have
$$T(x^2 + 2) = T(x^2 + 1) + T(1) = (x^2 - x) + (2x + 1) = x^2 + x + 1$$
, so $x^2 + x + 1 \in \text{Image}(T)$.

Question 3 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V)$. Assume that

$$\operatorname{Image}(T) \neq \operatorname{Image}(T^2).$$

a) Prove that T is not diagonalizable.

Proof. If T is diagonalizable, then there exists a basis v_1, \ldots, v_n for V such that $T(v_i) = \lambda_i v_i$ for all $i = 1, \ldots, n$. For each i, let¹

$$c_i = \begin{cases} \frac{1}{\lambda_i} & \text{if } \lambda_i \neq 0\\ 0 & \text{if } \lambda_i = 0 \end{cases}$$

Note that in either case we have $c_i \cdot \lambda_i^2 = \lambda_i$ (in the first case $\frac{1}{\lambda_i} \lambda_i^2 = \lambda_i$, in the second case $0 \cdot 0^2 = 0$).

We know that $\operatorname{Image}(T^2) \subset \operatorname{Image}(T)$ (since $\operatorname{Image}TS \subset \operatorname{Image}T$ for any $S \in \mathcal{L}(V)$, including S = T). We will prove that $\operatorname{Image}(T) \subset \operatorname{Image}(T^2)$ (for a contradiction). Assume that $w \in \operatorname{Image}(T)$, so we can write w = T(v) for some $v \in V$. Since v_1, \ldots, v_n is a basis for V, we can write $v = a_1v_1 + \cdots + a_nv_n$. We can then calculate

$$w = T(v) = T(a_1v_1 + \dots + a_nv_n)$$
$$= a_1T(v_1) + \dots + a_nT(v_n)$$
$$= a_1\lambda_1v_1 + \dots + a_n\lambda_nv_n$$

Now define

$$u := a_1c_1v_1 + \cdots + a_nc_nv_n.$$

I claim that $T^2(u) = w$. Indeed,

$$T^{2}(u) = T^{2}(a_{1}c_{1}v_{1} + \dots + a_{n}c_{1}v_{n})$$

$$= a_{1}c_{1}T^{2}(v_{1}) + \dots + a_{n}c_{n}T^{2}(v_{n})$$

$$= a_{1}c_{1}\lambda_{1}^{2}v_{1} + \dots + a_{n}c_{n}\lambda_{n}^{2}v_{n}$$

$$= a_{1}\lambda_{1}v_{1} + \dots + a_{n}\lambda_{n}v_{n}$$

Since $w = T^2(u)$, we conclude that $w \in \operatorname{Image}(T^2)$. Since w was an arbitrary element of $\operatorname{Image}(T)$, this shows that $\operatorname{Image}(T) \subset \operatorname{Image}(T^2)$. Combined with $\operatorname{Image}(T^2) \subset \operatorname{Image}(T)$ this implies that $\operatorname{Image}(T) = \operatorname{Image}(T^2)$, contradicting the hypothesis of the question. Therefore T must not be diagonalizable.

¹Many students forgot to consider the case $\lambda_i = 0$. Since part b tells us that T must have 0 as an eigenvalue, this is an important case!

- b) Which of the following is true?
 - (I) T must be invertible.
 - (II) T must be non-invertible.
 - (III) T could be invertible or non-invertible.

Prove your answer.

Answer. (II) is correct. If T is invertible, then T is surjective, so Image(T) = V. Separately, if T is invertible, then so is T^2 . (Its inverse is given by $(T^{-1})^2$, as we can check by

$$T^{2}(T^{-1})^{2} = T \cdot T \cdot T^{-1} \cdot T^{-1} = T \cdot I \cdot T^{-1} = T \cdot T^{-1} = I.$$

But if T^2 is invertible, then it is surjective, and so $\operatorname{Image}(T^2) = V$ as well. This contradicts the hypothesis that $\operatorname{Image}(T) \neq \operatorname{Image}(T^2)$.

Question 4 (20 points). Let V be a finite-dimensional vector space over \mathbb{C} , and let $T \in \mathcal{L}(V)$. Let U and W be subspaces such that $V = U \oplus W$. Assume that U and W are invariant under T.

(Recall that when U is an invariant subspace, $T|_U: U \to U$ is the restriction of T to U.)

a) Prove that:

if the minimal polynomial of $T|_U$ is x-2 and the minimal polynomial of $T|_W$ is $(x-3)^2$, then the minimal polynomial of T is $(x-2)(x-3)^2$.

Proof. Let $p(x) = (x-2)(x-3)^2$. We first check that p(T) = 0 on all of V. Since $m_{T|_U}(x) = x - 2$ we know that

$$(T-2I)(u) = (T|_{U} - 2I)(u) = 0$$

for all $u \in U$, and similarly since $m_{T|W}(x) = (x-3)^2$ we know that $(T-3I)^2(w) = (T|W-3I)^2(w) = 0$ for all $w \in W$. Since $V = U \oplus W$, we can write any $v \in V$ as v = u + w for some $u \in U$ and $w \in W$. Therefore

$$p(T)(v) = p(T)(u + w)$$

$$= p(T)(u) + p(T)(w)$$

$$= (T - 3I)^{2}(T - 2I)(u) + (T - 2I)(T - 3I)^{2}(w)$$

$$= (T - 3I)^{2}(0) + (T - 2I)(0) = 0.$$

This shows that p(T) = 0. We need to show that p(x) is the minimal such polynomial.

Since $m_{T|_U}(x) = x - 2$, we know that 2 is the only eigenvalue of $T|_U$, and in fact $T|_U = 2I$ when restricted to U! Therefore for any $u \in U$ we have $T(u) = T|_U(u) = 2u$; in particular, this shows that 2 is an eigenvalue of T.

Similarly, $m_{T|W}(x) = (x-3)^2$ implies that 3 is the only eigenvalue of T on W. This gives three things: first, there exists a nonzero $w \in W$ such that $T|_W(w) = 3w$, so that 3 is an eigenvalue of T. Second, $\ker T|_W - 2I = \{0\}$ (since 2 is not an eigenvalue of $T|_W$), so $T|_W - 2I$ is invertible as an operator on W. Third, there exists some $w' \in W$ so that $T(w') \neq 3w'$, since if T(w') = 3w' were true for all $w' \in W$ then $T|_W$ would have minimal polynomial x-3.

Since 2 and 3 are eigenvalues of T, they must be roots of $m_T(x)$. Assume for a contradiction that the degree of $m_T(x)$ is < 3. Since $m_T(x)$ has two roots, its degree must be ≥ 2 . But the only quadratic polynomial with 2 and 3 as roots is (x-2)(x-3). Therefore it suffices to prove that $(T-2I)(T-3I) \neq 0$. Consider the $w' \in W$ from above with $T(w') \neq 3w'$. Let $w'' = (T-3I)(w') \neq 0$. Since $(T|_W-2I)$ is invertible, we have $(T-2I)(w) \neq 0 \iff w \neq 0$ for $w \in W$. Applying this to w'', we conclude that $(T-2I)(T-3I)(w') \neq 0$. Therefore (x-2)(x-3) cannot be the minimal polynomial of T. Therefore the minimal polynomial has degree 3, and therefore must be $p(x) = (x-2)(x-3)^2$.

b) Prove or give a counterexample to the following statement: if the minimal polynomial of $T|_U$ is f(x) and the minimal polynomial of $T|_W$ is g(x), then the minimal polynomial of T is f(x)g(x).

Counterexample. The statement is false. For a counter-example, let $V = \mathbb{R}^2$, and let $U = \{(x,0)\}$ and $W = \{(0,y)\}$; we have seen before that $V = U \oplus W$.

Let $T = I \in \mathcal{L}(V)$. Every subspace is invariant under I, so this fits the setup of the question. We have $T|_U = I$ and $T|_V = I$. Note that the minimal polynomial of the identity is $m_I(x) = x - 1$, no matter what vector space we work on. (Proof: plugging in I to x - 1 gives I - I = 0. Since the minimal polynomial of I cannot be constant, x - 1 must be the minimal polynomial.)

Therefore we have $f(x) = m_{T|U}(x) = x - 1$ and $g(x) = m_{T|W}(x) = x - 1$. However we also have $m_T(x) = x - 1$, showing that

$$m_T(x) = (x-1) \neq (x-1)^2 = f(x)g(x).$$

Question 5 (20 points). Let $V = \mathbb{R}^2$ and $T \in \mathcal{L}(V)$. Prove that if $T^3 = 0$, then $T^2 = 0$.

Proof. [There are a number of different ways to prove this; here's one that arises naturally by splitting up the possibilities case-by-case.]

Since dim V=2, we know that rank T=0, 1, or 2; we consider these cases one at a time. If rank T=0 we have T=0, which certainly implies $T^2=0$. If rank T=2 we have Image T=V, so T is invertible. But then T^3 would be invertible (with inverse $(T^{-1})^3$); this contradicts the assumption that $T^3=0$, so we conclude that rank $T\neq 2$. It remains to consider the case rank T=1.

If dim Image T = 0, the intersection Image $T \cap \ker T$ either has dimension 0 or 1; we consider each case separately.

In the first case Image $T \cap \ker T = \{0\}$. Choose a nonzero $v \in \operatorname{Image} T$. Since $v \notin \ker T$ we have $T(v) \neq 0$. But of course T(v) lies in Image T. Since Image T is 1-dimensional we must have $T(v) = \lambda v$ for some nonzero λ . But then $T^3(v) = \lambda^3 v \neq 0$, contradicting the assumption that $T^3 = 0$.

In the second case Image $T \cap \ker T = \operatorname{Image} T$, which means that Image $T \subset \ker T$. Therefore for any $v \in V$ the element $T(v) \in \operatorname{Image} T$ lies in $\ker T$. This means precisely that $T^2(v) = 0$ for all $v \in V$, or in other words $T^2 = 0$, as desired.