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Question 1 (20 points). Let V' be a finite-dimensional vector space, and let T € L(V, W).
Assume that vy, ..., v, is a basis for V. (For this question only, do not use the Rank-Nullity

Theorem.)

a)

Prove that T is injective if and only if T'(v1), ..., T (vy) are linearly independent in W.

Proof. (=) Assume that T is injective. Consider a linear dependence a1T'(v1) + -+ +
a,T(vy) = 0. If we set v = ajv] + -+ + apvp, we have T'(v) = T'(a1v1 + -+ + apvy) =
a1l (vi) + -+ apT(vy), so our assumption says that T'(v) = 0. Since T is injective, this
implies that v = 0. But since vy,...,v, is linearly independent (since it is a basis), the
only way we can have aqvy + --- 4+ apv, = 0isif ag = 0,...,a, = 0. This shows that
ar T (v1) + -+ + apT(vy,) = 0 implies a; = 0,...,a, = 0, which is the definition of linear
independence.

( <= ) Assume that T'(v1),...,T(v,) are linearly independent. Consider u € ker T, so
that T'(u) = 0. Since vy, ..., v, spans V (it is a basis), we can write u = bjvy + - - - + by vy,.
Therefore

0="T(u) =T(byvi + -+ byvy) = b1T(v1) + -+ + b, T (vp).
Since T'(v1),...,T(vy,) are linearly independent, this is only possible if by = 0,...,b, = 0.
Therefore
u=bvy+--+byv,=0-v1+---+0-v, =0.

Therefore u € kerT = u = 0, or in other words ker " = {0}. By Proposition 3.2, this is

equivalent to injectivity of T O
Prove that T is surjective if and only if T'(v1),...,T(v,) spans W.

Proof. (=) Assume that T is surjective. Therefore for any w € W there exists v € V

such that T'(v) = w. Since vy, ..., v, is a basis, we can write v = ajv1 + - - - + apv,. Then
w=TwW)=T(a1v1 + -+ apvy) = a1T(v1) + -+ + ap T (vy).

This shows that w € span (T'(v1),...,T(vy)). Since this holds for any w € W, we conclude

that span (T(vl), . ,T(vn)) =W as desired.

( <) Assume that T'(v1),...,T(v,) spans W. Then for any w € W there exist a1, ..., a,
such that w = a1T(v1) + -+ - + a,T(vy,). Then if we set v = ajvy + -+ + a,v, we have
T(v) = w. Therefore every w € W is in the image of T', and T is surjective. O



Question 2 (20 points). We consider a linear transformation T’ € £(P<2(R), P<3(R)). Assume

that we are given partial data about T"

T(x*+1)=2%—2
T(1) =2z +1

Given this partial data, answer the following questions. Justify your answers.

a)

Could T be injective?

Answer. Yes. For example, consider the transformation 7' defined by the formula
T(az? + bz +¢) = ax® + (b — 3a + 2¢)z + (c — a)

We check: T(22+1) =22+ (-3+2)x+(1—-1)=22 -2z and T(1) =0+22+1 =2z +1,

so this fits the partial data. This map is injective: if ax? + bz + ¢ € ker T, we must have

a=20
az® 4+ (b—3a+2c)z + (c—a)xr =0 - b—3a+2c=0
c—a=0

The first equation implies a = 0; given this, the third becomes ¢ = 0; given these, the

second becomes b = 0. Therefore ker "= {0} and T is injective. O
Could T be surjective?

Answer. No. We know that dim P<3(R) = 3 and dim P<3(R) = 4. However Corollary 3.6
states that T: V' — W cannot be surjective if dim V' < dim W. 0

Can we determine T'(z? + = + 1) from the given data?

Answer. No. For the T given in a) we compute T'(xz? + x + 1) = 22. However we could also
define

T(az? + bz + ¢) = bz + az® + (—3a + 2¢)x + (c — a),
(again we can check that T'(z2+1) = 22—z and T(1) = 2x+1), in which case T'(z?+x+1) =
23 + 22 — . Therefore T(2? 4+ x + 1) cannot be definitively determined from the given
data. O

Can we determine whether 22 + 2 + 1 € Image(7T') from the given data?

Answer. Yes, and it is indeed in the image. We have T'(z? +2) = T(z? + 1) + T(1) =
(22 —2)+ (2x+1) =2+ 2+ 1,50 22 + 2 + 1 € Image(T). O



Question 3 (20 points). Let V be a finite-dimensional vector space, and let T" € L(V).

Assume that
Image(T) # Image(T?).

a) Prove that T is not diagonalizable.

Proof. If T is diagonalizable, then there exists a basis vy, ..., v, for V such that T'(v;) = A\v;

for alli =1,...,n. For each i, let!
L ifA#£0
c; = ¢
0 if \; =0

Note that in either case we have ¢; - /\12 = \; (in the first case /\%)\12 = ), in the second case
0-02=0).

We know that Image(T?) C Image(T) (since ImageTS C ImageT for any S € L(V),
including S = T'). We will prove that Image(T) C Image(T?) (for a contradiction). Assume
that w € Image(T"), so we can write w = T'(v) for some v € V. Since vy, ..., v, is a basis

for V, we can write v = a1v; + - - - 4+ a,v,. We can then calculate

w=T(v)=T(arv1 + - + a,vy)
=a T (v1) + -+ a,T(vy)

= a1 \Mv1 + -+ ap AUy

Now define

U= a1C1v1 + -+ + ApCnpUn.

I claim that T2%(u) = w. Indeed,

T2(u) = T2(a101v1 + - Fapcivy)
= alclTQ(vl) 4+ -+ anch2(vn)
= alcl)\%vl + -+ ancn)\%vn
= a1 Av1 + -+ apApvy

= w.

Since w = T?(u), we conclude that w € Image(T?). Since w was an arbitrary element of
Image T, this shows that Image(T) C Image(7?). Combined with Image(T?) C Image(T)
this implies that Image(T) = Image(T?), contradicting the hypothesis of the question.

Therefore T' must not be diagonalizable. O

'Many students forgot to consider the case A; = 0. Since part b tells us that T must have 0 as an eigenvalue,

this is an important case!



b) Which of the following is true?

(I) T must be invertible.
(IT) T must be non-invertible.

(ITT) T could be invertible or non-invertible.
Prove your answer.

Answer. (II) is correct. If T is invertible, then T is surjective, so Image(T") = V. Separately,

if T is invertible, then so is T2. (Its inverse is given by (71)2, as we can check by
rY=r.r.7t 17l =717 ' =TT =1)

But if T2 is invertible, then it is surjective, and so Image(T?) = V as well. This contradicts
the hypothesis that Image(T") # Image(T?). O



Question 4 (20 points). Let V' be a finite-dimensional vector space over C, and let T € L(V).
Let U and W be subspaces such that V = U®W. Assume that U and W are invariant under 7.

(Recall that when U is an invariant subspace, T'|i7: U — U is the restriction of 7" to U.)

a) Prove that:
if the minimal polynomial of 7|y is  — 2 and the minimal polynomial of T'|y is (x — 3)2,
then the minimal polynomial of T is (z — 2)(z — 3)2.
Proof. Let p(z) = (z — 2)(z — 3)%. We first check that p(T) = 0 on all of V. Since

mrp, (z) = — 2 we know that
(T'=2I)(u) = (T|v = 2I)(u) =0

for all u € U, and similarly since mqy,, (z) = (z — 3)* we know that (T — 31)*(w) =
(T|w —31)*(w) = 0 for all w € W. Since V = U @ W, we can write any v € V as v = u+w
for some u € U and w € W. Therefore

p(T)(v) = p(T)(u + w)
= p(T)(u) + p(T)(w)
= (T — 30)*(T — 2I)(u) + (T — 2I)(T — 31)*(w)
= (T —31)*(0) + (T — 2I)(0) = 0.

This shows that p(7") = 0. We need to show that p(x) is the minimal such polynomial.

Since mry, () =z — 2, we know that 2 is the only eigenvalue of T'|y7, and in fact T'|y = 2/
when restricted to U! Therefore for any u € U we have T'(u) = T'|y(u) = 2u; in particular,

this shows that 2 is an eigenvalue of T

Similarly, mgy, () = (z — 3)? implies that 3 is the only eigenvalue of 7' on W. This gives
three things: first, there exists a nonzero w € W such that T'|y (w) = 3w, so that 3 is
an eigenvalue of T'. Second, ker T'|yy — 21 = {0} (since 2 is not an eigenvalue of T'|y), so
T|w — 2I is invertible as an operator on W. Third, there exists some w’ € W so that
T(w'") # 3w, since if T'(w') = 3w’ were true for all w’ € W then T'|y would have minimal

polynomial z — 3.

Since 2 and 3 are eigenvalues of T', they must be roots of mp(z). Assume for a contradiction
that the degree of mp(z) is < 3. Since myp(x) has two roots, its degree must be > 2. But
the only quadratic polynomial with 2 and 3 as roots is (x —2)(z — 3). Therefore it suffices to
prove that (T'— 2I)(T — 3I) # 0. Consider the w’ € W from above with T'(w’) # 3w’. Let
w” = (T —=3I)(w'") # 0. Since (T|w —2I) is invertible, we have (T'—2I)(w) #0 <= w #0
for w € W. Applying this to w”, we conclude that (7' — 2I)(T — 3I)(w') # 0. Therefore
(x — 2)(x — 3) cannot be the minimal polynomial of 7. Therefore the minimal polynomial
has degree 3, and therefore must be p(x) = (z — 2)(z — 3)%. O



b) Prove or give a counterexample to the following statement:
if the minimal polynomial of T'|;; is f(z) and the minimal polynomial of T'|y is g(x), then
the minimal polynomial of T is f(z)g(x).

Counterexample. The statement is false. For a counter-example, let V = R?, and let U =
{(z,0)} and W = {(0,y)}; we have seen before that V =U & W.

Let T =1 € L(V). Every subspace is invariant under I, so this fits the setup of the
question. We have Ty = I and T'|y = I. Note that the minimal polynomial of the identity is
my(x) = x — 1, no matter what vector space we work on. (Proof: plugging in I to x — 1 gives
I — I =0. Since the minimal polynomial of I cannot be constant, x — 1 must be the minimal
polynomial.)

Therefore we have f(z) = mp), (r) = — 1 and g(z) = mp),, (¥) = z — 1. However we also

have mp(z) = x — 1, showing that

mr(z) = (z —1) # (z = 1)* = f(2)g(x). =



Question 5 (20 points). Let V =R? and T € £(V). Prove that if 7% = 0, then T? = 0.

Proof. [There are a number of different ways to prove this; here’s one that arises naturally by
splitting up the possibilities case-by-case.]

Since dimV = 2, we know that rankT = 0, 1, or 2; we consider these cases one at a
time. If rank 7" = 0 we have T' = 0, which certainly implies 72 = 0. If rank T = 2 we have
ImageT =V, so T is invertible. But then 7% would be invertible (with inverse (771)3); this
contradicts the assumption that 7% = 0, so we conclude that rank 7" # 2. It remains to consider
the case rankT = 1.

If dim Image T' = 0, the intersection Image T'Nker T either has dimension 0 or 1; we consider
each case separately.

In the first case Image T'Nker T' = {0}. Choose a nonzero v € ImageT'. Since v ¢ ker T" we
have T'(v) # 0. But of course T'(v) lies in ImageT'. Since Image T is 1-dimensional we must
have T'(v) = v for some nonzero A. But then 73(v) = A3v # 0, contradicting the assumption
that 7% = 0.

In the second case ImageT N kerT" = ImageT, which means that ImageT C kerT.
Therefore for any v € V' the element T'(v) € Image T lies in ker T. This means precisely that
T?(v) =0 for all v € V, or in other words T2 = 0, as desired. O



