Math 113 – Winter 2013 – Prof. Church Final Exam: due Monday, March 18 at 3:15pm

Name: _____

Student ID: _____

Signature: _____

Your exam should be turned in to me in my office, 383-Y (third floor of the math building). If I am not there, slide your exam under the door. Your exam **must** be handed in by 3:15pm or you will receive a zero.

This exam is open-book and open-notes, but closed-everything-else. (Needless to say, you should not discuss this exam with anyone.) In your proofs you may use any theorem from class; from Chapters 1–7 of Axler (plus Theorems 8.34 and 8.36); or from the notes on wedge vectors and determinants (available on my website). You may read the homework/midterm solutions if you like (also on my website), but you cannot quote them as a reference. When giving counterexamples, you may describe your operators either by a formula or by a matrix.

There are 5 questions worth 100 points total on this exam, plus a 10-point bonus question; you should finish the other questions before attempting the bonus question.

Questions? E-mail Prof. Church at church@math.stanford.edu.

1a	1b	2a	2b	3a	3b	4a	4b	4c	5a	5b	5c	5d	Bonus

Question 1 (20 points). Let V be a finite-dimensional vector space over \mathbb{R} or \mathbb{C} , and let $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ be operators on V satisfying ST = 0.

1a) Prove that Image $T \subset \text{Null } S$.

Recall our assumptions: V is finite-dimensional; $S \in \mathcal{L}(V), T \in \mathcal{L}(V);$ ST = 0.

- 1b) For each of the following assertions, either prove that it must hold, or give a counterexample.
 - I. Either S = 0 or T = 0.
 - II. TS = 0.
 - III. If det(S) = 6, then T = 0.
 - IV. There exists a nonzero $v \in V$ such that TS(v) = 0.

Question 2 (15 points). Let $V = \mathbb{R}^2$, and let $T \in \mathcal{L}(V)$ be an operator on V. Assume that $v \in V$ and $w \in V$ are two nonzero vectors satisfying

T(v) = 2v and T(w) = -w.

2a) Compute the determinant $det(T^4 + T)$.

2b) Do we have enough information to determine the minimal polynomial $m_T(x)$? If so, find the minimal polynomial; if not, explain why not.

Question 3 (20 points). Let V and W be finite-dimensional vector spaces over \mathbb{R} . Assume that $Q \in \mathcal{L}(V, W)$, $R \in \mathcal{L}(V, W)$, and $S \in \mathcal{L}(V, W)$ are each rank-1 transformations:

 $\operatorname{rank}(Q) = 1$ $\operatorname{rank}(R) = 1$ $\operatorname{rank}(S) = 1$

We'll be considering the transformation $Q + R + S \in \mathcal{L}(V, W)$, so let's give it a name: let $T \in \mathcal{L}(V, W)$ be the transformation

$$T = Q + R + S \in \mathcal{L}(V, W)$$

3a) Prove that $\operatorname{rank}(Q + R + S) \leq 3$.

Recall our assumptions: V and W are finite-dimensional; $Q, R, S \in \mathcal{L}(V, W)$ $\operatorname{rank}(Q) = 1, \operatorname{rank}(R) = 1, \operatorname{rank}(S) = 1;$ T = Q + R + S.

3b) Is the following assertion (*) true?

 $\operatorname{rank}(Q+R+S) < 3 \iff (Q, R, S)$ are linearly dependent in $\mathcal{L}(V, W)$ (*)

Prove or give a counterexample.

Question 4 (20 points). Let V be a finite-dimensional vector space over \mathbb{R} or \mathbb{C} , and let $S \in \mathcal{L}(V)$ and $T \in L(V)$ be operators on V satisfying $S^2 = S$ and $T^2 = T$. Additionally, assume that

$$S+T=I.$$

4a) Prove that ST = 0.

Recall our assumptions:	V is finite-dimensional;	$S, T \in \mathcal{L}(V);$
	$S^2 = S$ and $T^2 = T$;	S + T = I.

Let U = Image S and W = Image T.

4b) Prove that $W = \operatorname{Null} S$ and $U = \operatorname{Null} T$.

Recall our assumptions:	V is finite-dimensional;	$S, T \in \mathcal{L}(V);$
	$S^2 = S$ and $T^2 = T$;	S + T = I;
	U = Image S and W = Image T.	

4c) Prove that $V = U \oplus W$.

Question 5 (25 points). If V is an inner product space over \mathbb{R} or \mathbb{C} , we define an operator $S \in \mathcal{L}(V)$ to be *skew-self-adjoint* if it is equal to the *negative* of its adjoint:

$$S^* = -S$$

5a) Prove that every operator $R \in \mathcal{L}(V)$ can be written as a sum R = T + S where $T \in \mathcal{L}(V)$ is self-adjoint and $S \in \mathcal{L}(V)$ is skew-self-adjoint.

For the remaining parts, assume that V is an inner product space over \mathbb{R} , and $S \in \mathcal{L}(V)$ is skew-self-adjoint.

5b) Prove that if S is injective, then S has no eigenvectors.

Recall our assumptions: V is an finite-dimensional inner product space over \mathbb{R} , $S \in \mathcal{L}(V)$ is skew-self-adjoint.

5c) Prove that the operator $S^2 \in \mathcal{L}(V)$ is diagonalizable.

5d) Let $SSA(V) \subset \mathcal{L}(V)$ be the subspace of skew-self-adjoint operators (you do not need to prove that this is a subspace).

Let V be a 3-dimensional inner product space over \mathbb{R} with orthonormal basis v_1, v_2, v_3 . Find an explicit basis for SSA(V). What is the dimension of SSA(V)? Question 6 (Bonus question, 10 points). Let V be a finite-dimensional inner product space over \mathbb{C} , and let $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ be operators on V.

6a) Assume that S and T are self-adjoint operators. Prove that if ST = TS, then there exists an orthonormal basis v_1, \ldots, v_n of V so that each basis vector v_i is both an eigenvector of S and an eigenvector of T. Recall our assumption: V is a finite-dimensional inner product space over \mathbb{C} .

6b) If we only assume that S and T are *normal* operators satisfying ST = TS, is it true that there exists an orthonormal basis v_1, \ldots, v_n of V so that each basis vector v_i is both an eigenvector of S and an eigenvector of T?

Either prove this or give a counterexample.