Math 113 - Winter 2013 - Prof. Church Final Exam: due Monday, March 18 at 3:15pm

Name: \qquad

Student ID: \qquad

Signature: \qquad
Your exam should be turned in to me in my office, $383-\mathrm{Y}$ (third floor of the math building). If I am not there, slide your exam under the door. Your exam must be handed in by 3:15pm or you will receive a zero.

This exam is open-book and open-notes, but closed-everything-else. (Needless to say, you should not discuss this exam with anyone.) In your proofs you may use any theorem from class; from Chapters 1-7 of Axler (plus Theorems 8.34 and 8.36); or from the notes on wedge vectors and determinants (available on my website). You may read the homework/midterm solutions if you like (also on my website), but you cannot quote them as a reference. When giving counterexamples, you may describe your operators either by a formula or by a matrix.

There are 5 questions worth 100 points total on this exam, plus a 10 -point bonus question; you should finish the other questions before attempting the bonus question.

Questions? E-mail Prof. Church at church@math.stanford.edu.

1 a	1 b	2 a	2 b	3 a	3 b	4 a	4 b	4 c	5 a	5 b	5 c	5 d	Bonus

Question 1 (20 points). Let V be a finite-dimensional vector space over \mathbb{R} or \mathbb{C}, and let $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ be operators on V satisfying $S T=0$.

1a) Prove that Image $T \subset \operatorname{Null} S$.

Recall our assumptions: V is finite-dimensional;

$$
\begin{aligned}
& S \in \mathcal{L}(V), T \in \mathcal{L}(V) ; \\
& S T=0 .
\end{aligned}
$$

1b) For each of the following assertions, either prove that it must hold, or give a counterexample.
I. Either $S=0$ or $T=0$.
II. $T S=0$.
III. If $\operatorname{det}(S)=6$, then $T=0$.
IV. There exists a nonzero $v \in V$ such that $T S(v)=0$.

Question 2 (15 points). Let $V=\mathbb{R}^{2}$, and let $T \in \mathcal{L}(V)$ be an operator on V. Assume that $v \in V$ and $w \in V$ are two nonzero vectors satisfying

$$
T(v)=2 v \quad \text { and } \quad T(w)=-w .
$$

2a) Compute the determinant $\operatorname{det}\left(T^{4}+T\right)$.

2b) Do we have enough information to determine the minimal polynomial $m_{T}(x)$? If so, find the minimal polynomial; if not, explain why not.

Question 3 (20 points). Let V and W be finite-dimensional vector spaces over \mathbb{R}.
Assume that $Q \in \mathcal{L}(V, W), R \in \mathcal{L}(V, W)$, and $S \in \mathcal{L}(V, W)$ are each rank-1 transformations:

$$
\operatorname{rank}(Q)=1 \quad \operatorname{rank}(R)=1 \quad \operatorname{rank}(S)=1
$$

We'll be considering the transformation $Q+R+S \in \mathcal{L}(V, W)$, so let's give it a name: let $T \in \mathcal{L}(V, W)$ be the transformation

$$
T=Q+R+S \in \mathcal{L}(V, W)
$$

3a) Prove that $\operatorname{rank}(Q+R+S) \leq 3$.

Recall our assumptions: V and W are finite-dimensional;

$$
\begin{aligned}
& Q, R, S \in \mathcal{L}(V, W) \\
& \operatorname{rank}(Q)=1, \operatorname{rank}(R)=1, \operatorname{rank}(S)=1 ; \\
& T=Q+R+S
\end{aligned}
$$

3b) Is the following assertion (*) true?

$$
\begin{equation*}
\operatorname{rank}(Q+R+S)<3 \quad \Longleftrightarrow \quad(Q, R, S) \text { are linearly dependent in } \mathcal{L}(V, W) \tag{*}
\end{equation*}
$$

Prove or give a counterexample.

Question 4 (20 points). Let V be a finite-dimensional vector space over \mathbb{R} or \mathbb{C}, and let $S \in \mathcal{L}(V)$ and $T \in L(V)$ be operators on V satisfying $S^{2}=S$ and $T^{2}=T$. Additionally, assume that

$$
S+T=I
$$

4a) Prove that $S T=0$.

Recall our assumptions: $\quad V$ is finite-dimensional;

$$
S^{2}=S \text { and } T^{2}=T
$$

$S, T \in \mathcal{L}(V) ;$
$S+T=I$.

Let $U=$ Image S and $W=$ Image T.
4b) Prove that $W=\operatorname{Null} S$ and $U=\operatorname{Null} T$.

Recall our assumptions: $\quad V$ is finite-dimensional; $\quad S, T \in \mathcal{L}(V)$;

$$
S^{2}=S \text { and } T^{2}=T ; \quad S+T=I
$$

$$
U=\operatorname{Image} S \text { and } W=\operatorname{Image} T
$$

4c) Prove that $V=U \oplus W$.

Question 5 (25 points). If V is an inner product space over \mathbb{R} or \mathbb{C}, we define an operator $S \in \mathcal{L}(V)$ to be skew-self-adjoint if it is equal to the negative of its adjoint:

$$
S^{*}=-S
$$

5a) Prove that every operator $R \in \mathcal{L}(V)$ can be written as a sum $R=T+S$ where $T \in \mathcal{L}(V)$ is self-adjoint and $S \in \mathcal{L}(V)$ is skew-self-adjoint.

For the remaining parts, assume that V is an inner product space over \mathbb{R}, and $S \in \mathcal{L}(V)$ is skew-self-adjoint.

5b) Prove that if S is injective, then S has no eigenvectors.

Recall our assumptions: V is an finite-dimensional inner product space over \mathbb{R}, $S \in \mathcal{L}(V)$ is skew-self-adjoint.

5c) Prove that the operator $S^{2} \in \mathcal{L}(V)$ is diagonalizable.

5 d) Let $\operatorname{SSA}(V) \subset \mathcal{L}(V)$ be the subspace of skew-self-adjoint operators (you do not need to prove that this is a subspace).
Let V be a 3 -dimensional inner product space over \mathbb{R} with orthonormal basis v_{1}, v_{2}, v_{3}. Find an explicit basis for $\operatorname{SSA}(V)$. What is the dimension of $\operatorname{SSA}(V)$?

Question 6 (Bonus question, 10 points). Let V be a finite-dimensional inner product space over \mathbb{C}, and let $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ be operators on V.

6a) Assume that S and T are self-adjoint operators. Prove that if $S T=T S$, then there exists an orthonormal basis v_{1}, \ldots, v_{n} of V so that each basis vector v_{i} is both an eigenvector of S and an eigenvector of T.

Recall our assumption: V is a finite-dimensional inner product space over \mathbb{C}.
6b) If we only assume that S and T are normal operators satisfying $S T=T S$, is it true that there exists an orthonormal basis v_{1}, \ldots, v_{n} of V so that each basis vector v_{i} is both an eigenvector of S and an eigenvector of T ?

Either prove this or give a counterexample.

