Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 1

Due Wednesday, January 16 in class.

From Chapter 1 of the textbook: Exercises 3, 9, 14, 15.
Question 1. Let X be a set, and let W be a vector space over \mathbb{F}. Recall from class that W^{X} is the set of functions $f: X \rightarrow W$. Given functions $f, g \in W^{X}$ and $a \in \mathbb{F}$, we define $f+g \in W^{X}$ and $a \cdot f \in W^{X}$ by

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
(a \cdot f)(x)=a \cdot(f(x))
\end{gathered}
$$

Prove that W^{X} is a vector space over \mathbb{F}.

Question 2. Let U be the following subset of \mathbb{F}^{∞} :

$$
U=\left\{\left(v_{1}, v_{2}, v_{3}, \ldots\right) \in \mathbb{F}^{\infty} \mid v_{i+2}=v_{i} \text { for all } i\right\}
$$

Prove that U is a subspace of \mathbb{F}^{∞}.

Question 3. Let U_{1}, \ldots, U_{m} be subspaces of a vector space V. As we said in class, the set $U_{1}+\cdots+U_{m}$ is defined to be

$$
U_{1}+\cdots+U_{m}=\left\{u_{1}+\cdots+u_{m} \mid u_{i} \in U_{i} \text { for each } i=1, \ldots, m\right\} .
$$

Prove that $U_{1}+\cdots+U_{m}$ is a subspace of V.

Question 4. Let $U_{1}=\{(a, 0,0) \mid a \in \mathbb{F}\}$ and $U_{2}=\{(b, b, 0) \mid b \in \mathbb{F}\}$. These are both subsets of \mathbb{F}^{3}.
a) Prove that U_{1} and U_{2} are subspaces of \mathbb{F}^{3}.
b) Prove that $U_{1}+U_{2}=\{(x, y, 0) \mid x, y \in \mathbb{F}\}$.

Question 5. Let $U_{1}=\{(a,-a, 0) \mid a \in \mathbb{F}\}$, let $U_{2}=\{(0, b,-b) \mid b \in \mathbb{F}\}$, and let $U_{3}=\{(c, 0,-c) \mid c \in \mathbb{F}\}$. These are all subspaces of \mathbb{F}^{3} (you may assume this without proof).
a) Describe the subspace $U_{1}+U_{2}+U_{3}$.
b) Let $W=U_{1}+U_{2}+U_{3}$. Is W the direct sum of U_{1}, U_{2}, and U_{3} ? Prove or disprove.

Question 6. Let V be a vector space, and let \mathcal{U} be a collection of subspaces of V (meaning that \mathcal{U} is a set, each of whose elements $U \in \mathcal{U}$ is a subspace U of V). The intersection $\bigcap \mathcal{U}$ is by definition

$$
\bigcap \mathcal{U}=\{v \in V \mid v \in U \text { for every } U \in \mathcal{U}\} .
$$

a) Prove that $\bigcap \mathcal{U}$ is a subspace of V.
b) Now let W_{1}, \ldots, W_{m} be subspaces of V, and let \mathcal{U} is the collection of subspaces containing each W_{i} : that is,

$$
\mathcal{U}=\left\{U \subset V \mid U \text { is a subspace of } V, \text { and } W_{i} \subset U \text { for each } i=1, \ldots, m\right\}
$$

Prove that in this case $\bigcap \mathcal{U}=W_{1}+\cdots+W_{m}$.
(Hint for b: first prove that $\bigcap \mathcal{U} \subset W_{1}+\cdots+W_{m}$, then prove that $W_{1}+\cdots+W_{m} \subset \bigcap \mathcal{U}$.)

