Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 2

Due Wednesday, January 23 in class.

From Chapter 2 of the textbook: Exercises 1, 5, 8, 9, 11, 14, 16, 17.

For the next two questions, recall that if X is a set and W is a vector space, then W^{X} is the set of all functions from X to W. You proved on HW1 that W^{X} is a vector space.

Question 1. If V is a vector space over the field \mathbb{F}, the dual vector space V^{*} is the set of all functions $f: V \rightarrow \mathbb{F}$ that satisfy

$$
\begin{aligned}
f(v+w) & =f(v)+f(w) & \forall v, w \in V \\
f(a \cdot v) & =a \cdot f(v) & \forall v \in V, a \in \mathbb{F}
\end{aligned}
$$

a) By definition, V^{*} is a subset of the vector space \mathbb{F}^{V} of functions from V to \mathbb{F}. Prove that V^{*} is a subspace of \mathbb{F}^{V}.
b) Assume that $\operatorname{dim} V=n$, and that $\left(v_{1}, \ldots, v_{n}\right)$ is a basis for V. Find a basis for V^{*}. What is $\operatorname{dim} V^{*}$?

Question 2. If V and W are both vector spaces over \mathbb{F}, we say that a function $T: V \rightarrow W$ is linear if it satisfies the two properties:

$$
\begin{array}{lrr}
L A: & T(v+w)=T(v)+T(w) & \forall v, w \in V \\
L M: & T(a \cdot v)=a \cdot T(v) & \forall v \in V, a \in \mathbb{F}
\end{array}
$$

We define $\mathcal{L}(V, W)$ to be the subset of W^{V} consisting of all linear functions $T: V \rightarrow W$.
a) Prove that $\mathcal{L}(V, W)$ is a subspace of W^{V}.
b) Assume that $\operatorname{dim} V=3$ and $\operatorname{dim} W=2$, and furthermore assume that $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis for V and $\left(w_{1}, w_{2}\right)$ is a basis for W. Find a basis for $\mathcal{L}(V, W)$. What is $\operatorname{dim} \mathcal{L}(V, W)$?

Question 3. Recall that \mathbb{R}^{∞} is the vector space whose elements are infinite sequences of real numbers $\left(v_{1}, v_{2}, \ldots\right)$, where each v_{i} is a real number $v_{i} \in \mathbb{R}$.

Let U be the subset of \mathbb{R}^{∞} consisting of all sequences that satisfy

$$
v_{i}+v_{i+2}=v_{i+1} \quad \text { for all } i
$$

a) Prove that U is a subspace of \mathbb{R}^{∞}.
b) Let $x, y \in U$ be the elements

$$
\begin{aligned}
& x=(0,1,1,0,-1,-1,0,1,1, \ldots) \\
& y=(1,0,-1,-1,0,1,1,0,-1, \ldots)
\end{aligned}
$$

Prove that (x, y) is a linearly independent set.
c) Prove that (x, y) is a basis for U.
d) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_{1}=0$ and $v_{2}=0$. (You do not have to prove that W is a subspace.) Prove that $\mathbb{R}^{\infty}=U \oplus W$.

