Math 113: Linear Algebra and Matrix Theory Thomas Church (church@math.stanford.edu) math.stanford.edu/~church/teaching/113/

Homework 2

Due Wednesday, January 23 in class.

From Chapter 2 of the textbook: Exercises 1, 5, 8, 9, 11, 14, 16, 17.

For the next two questions, recall that if X is a set and W is a vector space, then W^X is the set of all functions from X to W. You proved on HW1 that W^X is a vector space.

Question 1. If V is a vector space over the field \mathbb{F} , the *dual vector space* V^* is the set of all functions $f: V \to \mathbb{F}$ that satisfy

$$\begin{split} f(v+w) &= f(v) + f(w) & \forall v, w \in V \\ f(a \cdot v) &= a \cdot f(v) & \forall v \in V, \ a \in \mathbb{F} \end{split}$$

- a) By definition, V^* is a subset of the vector space \mathbb{F}^V of functions from V to \mathbb{F} . Prove that V^* is a subspace of \mathbb{F}^V .
- b) Assume that dim V = n, and that (v_1, \ldots, v_n) is a basis for V. Find a basis for V^* . What is dim V^* ?

Question 2. If V and W are both vector spaces over \mathbb{F} , we say that a function $T: V \to W$ is *linear* if it satisfies the two properties:

$$LA: T(v+w) = T(v) + T(w) \forall v, w \in V$$

$$LM: T(a \cdot v) = a \cdot T(v) \forall v \in V, a \in \mathbb{F}$$

We define $\mathcal{L}(V, W)$ to be the subset of W^V consisting of all linear functions $T: V \to W$.

- a) Prove that $\mathcal{L}(V, W)$ is a subspace of W^V .
- b) Assume that dim V = 3 and dim W = 2, and furthermore assume that (v_1, v_2, v_3) is a basis for V and (w_1, w_2) is a basis for W. Find a basis for $\mathcal{L}(V, W)$. What is dim $\mathcal{L}(V, W)$?

Question 3. Recall that \mathbb{R}^{∞} is the vector space whose elements are infinite sequences of real numbers (v_1, v_2, \ldots) , where each v_i is a real number $v_i \in \mathbb{R}$.

Let U be the subset of \mathbb{R}^∞ consisting of all sequences that satisfy

$$v_i + v_{i+2} = v_{i+1} \qquad \text{for all } i.$$

a) Prove that U is a subspace of \mathbb{R}^{∞} .

b) Let $x, y \in U$ be the elements

$$x = (0, 1, 1, 0, -1, -1, 0, 1, 1, \ldots)$$

$$y = (1, 0, -1, -1, 0, 1, 1, 0, -1, \ldots)$$

Prove that (x, y) is a linearly independent set.

- c) Prove that (x, y) is a basis for U.
- d) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_1 = 0$ and $v_2 = 0$. (You do not have to prove that W is a subspace.) Prove that $\mathbb{R}^{\infty} = U \oplus W$.