Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 3

Due Wednesday, January 30 in class.

From Chapter 3 of the textbook: Exercises 4, 8, 9, 14, 22, 23, 24
Question 1. Assume that $T \in \mathcal{L}(V)$. Recall from class that T^{2} denotes the composition $T \circ T$.
a) Give an example of a vector space V and a linear operator $T \in \mathcal{L}(V)$ such that $T^{2}=T$ (an example other than $T=I$ or $T=0$, those are too easy).
b) Prove that if $T^{2}=T$, then $V=\operatorname{Null} T \oplus \operatorname{Null}(T-I)$.
c) Prove that if $V=\operatorname{Null} T+\operatorname{Null}(T-I)$, then $T^{2}=T$.
d) Give an example of a vector space V and a linear operator $T \in \mathcal{L}(V)$ such that $T^{2}=-I$.

Question 2. Let V and W be finite dimensional, and consider $T \in \mathcal{L}(V, W)$ and $S \in$ $\mathcal{L}(W, U)$.
a) Prove that $\operatorname{dim}(\operatorname{Image} S T) \leq \operatorname{dim}(\operatorname{Image} T)$.
b) Prove that $\operatorname{dim}(\operatorname{Image} S T)=\operatorname{dim}(\operatorname{Image} T)$ if and only if

$$
\text { Image } T+\operatorname{Null} S=\operatorname{Image} T \oplus \operatorname{Null} S
$$

c) Prove that $\operatorname{dim}(\operatorname{Null} S T) \leq \operatorname{dim}(\operatorname{Null} S)+\operatorname{dim}(\operatorname{Null} T)$.
d) Bonus question: can you give some description (in terms of conditions on T, S, V, etc.) of when we get equality in c): $\operatorname{dim}(\operatorname{Null} S T)=\operatorname{dim}(\operatorname{Null} S)+\operatorname{dim}(\operatorname{Null} T)$?

