Math 113: Linear Algebra and Matrix Theory Thomas Church (church@math.stanford.edu) math.stanford.edu/~church/teaching/113/

Homework 3

Due Wednesday, January 30 in class.

From Chapter 3 of the textbook: Exercises 4, 8, 9, 14, 22, 23, 24

Question 1. Assume that $T \in \mathcal{L}(V)$. Recall from class that T^2 denotes the composition $T \circ T$.

- a) Give an example of a vector space V and a linear operator $T \in \mathcal{L}(V)$ such that $T^2 = T$ (an example other than T = I or T = 0, those are too easy).
- b) Prove that if $T^2 = T$, then $V = \text{Null} T \oplus \text{Null} (T I)$.
- c) Prove that if V = Null T + Null (T I), then $T^2 = T$.
- d) Give an example of a vector space V and a linear operator $T \in \mathcal{L}(V)$ such that $T^2 = -I$.

Question 2. Let V and W be finite dimensional, and consider $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, U)$.

- a) Prove that $\dim(\operatorname{Image} ST) \leq \dim(\operatorname{Image} T)$.
- b) Prove that $\dim(\operatorname{Image} ST) = \dim(\operatorname{Image} T)$ if and only if

Image T + Null S = Image $T \oplus$ Null S.

- c) Prove that $\dim(\operatorname{Null} ST) \leq \dim(\operatorname{Null} S) + \dim(\operatorname{Null} T)$.
- d) Bonus question: can you give some description (in terms of conditions on T, S, V, etc.) of when we get equality in c): dim(Null ST) = dim(Null S) + dim(Null T)?