Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 4

Due Wednesday, February 6 in class.

From Chapter 5 of the textbook: Exercises 1, 2, 4, 5, 6, 8, 12.
Question 1. Let $C^{\infty}(\mathbb{R})$ denote the vector space (over \mathbb{R}) of infinitely-differentiable realvalued functions $f: \mathbb{R} \rightarrow \mathbb{R}$. ${ }^{1}$
a) Let U denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which vanish at 2 and at 7 (you do not have to prove that U is a subspace):

$$
U=\left\{f \in C^{\infty}(\mathbb{R}) \mid f(2)=0, f(7)=0\right\}
$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R}) / U$ is finite-dimensional. What is its dimension? (Note that $C^{\infty}(\mathbb{R})$ itself is very infinite-dimensional!)
b) Let W denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which "vanish to second order at 0 ":

$$
W=\left\{f \in C^{\infty}(\mathbb{R}) \mid f(0)=0, f^{\prime}(0)=0, f^{\prime \prime}(0)=0\right\}
$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R}) / W$ is finite-dimensional, and find a basis for $C^{\infty}(\mathbb{R}) / W$.

Question 2. Let $C^{\infty}(\mathbb{R}, \mathbb{C})$ be the vector space (over \mathbb{C}) of complex-valued functions $f: \mathbb{R} \rightarrow \mathbb{C}$ that are infinitely differentiable. Let V be the space of functions $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ satisfying the differential equation $f^{\prime \prime}=-f$:

$$
V=\left\{f \in C^{\infty}(\mathbb{R}, \mathbb{C}) \mid f^{\prime \prime}=-f\right\}
$$

a) Prove that V is a subspace of $C^{\infty}(\mathbb{R}, \mathbb{C})$.

[^0]b) If you take a course on differential equations, you'll learn how to prove that the space of solutions V is at most 2-dimensional, from the form of the differential equation $f^{\prime \prime}=-f$. However, since this is a linear algebra course, just trust me on this, and assume without proof that $\operatorname{dim} V \leq 2$.
Prove that the functions $\sin x$ and $\cos x$ both lie in V, and moreover that $(\sin x, \cos x)$ forms a basis for V. ${ }^{2}$
c) Let D be the operator on $C^{\infty}(\mathbb{R}, \mathbb{C})$ defined by $D(f)=f^{\prime}$. Prove that V is an invariant subspace for D.
d) Now consider $D \in \mathcal{L}(V)$ as an operator on V (still defined by $D(f)=f^{\prime}$). Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

[^1]
[^0]: ${ }^{1}$ A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is "infinitely differentiable" if f is continuous, its derivative f^{\prime} exists and is continuous, its derivative $f^{\prime \prime}$ exists and is continuous, and so on. Almost all the standard functions you know are infinitely differentiable: for example, all polynomials, exponentials, sin, cos, etc. You do not need to prove that $C^{\infty}(\mathbb{R})$ or $C^{\infty}(\mathbb{R}, \mathbb{C})$ is a vector space; in fact, you shouldn't have to worry about the details of $C^{\infty}(\mathbb{R})$ at all.

[^1]: ${ }^{2}$ Remember your derivatives: $(\sin x)^{\prime}=\cos x$, and $(\cos x)^{\prime}=-\sin x$.

