Math 113: Linear Algebra and Matrix Theory Thomas Church (church@math.stanford.edu) math.stanford.edu/~church/teaching/113/

Homework 5

Due Wednesday, February 13 in class.

These questions address material covered on the midterm.

From Chapter 5 of the textbook: 7, 11.

Question 1.

- a) Give an example of an operator T on $V = \mathbb{C}^3$ whose minimal polynomial is $(x-1)^2$.
- b) Give an example of an operator S on $W = \mathbb{C}^4$ whose minimal polynomial is $(x-2)(x-3)^2$.

Question 2. Let V be a finite-dimensional vector space over \mathbb{F} . Recall that the *dual vector* space V^* is the vector space $V^* = \mathcal{L}(V, \mathbb{F})$ of linear functions $f: V \to \mathbb{F}$.

a) For a fixed vector $v \in V$, let $eval_v \colon V^* \to \mathbb{F}$ be the function defined by

$$\operatorname{eval}_v(f) = f(v).$$

(Note that eval_v is a function from V^* to \mathbb{F} —not a function from V to \mathbb{F} .)

Prove that $eval_v$ is linear.

b) In part a) you proved that for any $v \in V$, we have $\operatorname{eval}_v \in \mathcal{L}(V^*, \mathbb{F})$. Let $E: V \to \mathcal{L}(V^*, \mathbb{F})$ be the function defined by

$$E(v) = \operatorname{eval}_v$$
.

Prove that E is a linear transformation.

- c) Prove that E is injective.
- d) Prove that E is surjective.

Together, parts c) and d) show that E is an isomorphism between V and $\mathcal{L}(V^*, \mathbb{F})$.