Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 5

Due Wednesday, February 13 in class.

These questions address material covered on the midterm.

From Chapter 5 of the textbook: 7, 11.

Question 1.

a) Give an example of an operator T on $V=\mathbb{C}^{3}$ whose minimal polynomial is $(x-1)^{2}$.
b) Give an example of an operator S on $W=\mathbb{C}^{4}$ whose minimal polynomial is $(x-2)(x-3)^{2}$.

Question 2. Let V be a finite-dimensional vector space over \mathbb{F}. Recall that the dual vector space V^{*} is the vector space $V^{*}=\mathcal{L}(V, \mathbb{F})$ of linear functions $f: V \rightarrow \mathbb{F}$.
a) For a fixed vector $v \in V$, let $\operatorname{eval}_{v}: V^{*} \rightarrow \mathbb{F}$ be the function defined by

$$
\operatorname{eval}_{v}(f)=f(v)
$$

(Note that eval ${ }_{v}$ is a function from V^{*} to $\mathbb{F}-$ not a function from V to \mathbb{F}.)
Prove that eval ${ }_{v}$ is linear.
b) In part a) you proved that for any $v \in V$, we have eval $v \in \mathcal{L}\left(V^{*}, \mathbb{F}\right)$. Let $E: V \rightarrow \mathcal{L}\left(V^{*}, \mathbb{F}\right)$ be the function defined by

$$
E(v)=\operatorname{eval}_{v} .
$$

Prove that E is a linear transformation.
c) Prove that E is injective.
d) Prove that E is surjective.

Together, parts c) and d) show that E is an isomorphism between V and $\mathcal{L}\left(V^{*}, \mathbb{F}\right)$.

