Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

 Homework 6 (complete)

 Homework 6 (complete)}

Due Wednesday, February 20 in class.

Questions A, B, and C added, covering the wedge vector space $\bigwedge^{k} V$ and determinants. Recall from class on Friday that the determinant $\operatorname{det}(T)$ of $T \in \mathcal{L}(V)$ is defined by

$$
\begin{equation*}
T\left(v_{1}\right) \wedge \cdots \wedge T\left(v_{n}\right)=\operatorname{det}(T) \cdot v_{1} \wedge \cdots \wedge v_{n} \tag{*}
\end{equation*}
$$

where v_{1}, \ldots, v_{n} is any basis for V.
At the very end of class on Friday, I showed the following. Assume that $\operatorname{dim} V=2$ and v_{1}, v_{2} is a basis for V, and that $T \in \mathcal{L}(V)$ satisfies $T\left(v_{1}\right)=a v_{1}+c v_{2}$ and $T\left(v_{2}\right)=b v_{1}+d v_{2}$. (The point of this labeling is that the matrix of T w.r.t the basis v_{1}, v_{2} is $M(T)=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.) Then:

$$
\begin{aligned}
T\left(v_{1}\right) \wedge T\left(v_{2}\right) & =\left(a v_{1}+c v_{2}\right) \wedge\left(b v_{1}+d v_{2}\right) \\
& =a b \cdot v_{1} \wedge v_{1}+a d \cdot v_{1} \wedge v_{2}+b c \cdot v_{2} \wedge v_{1}+a d \cdot v_{2} \wedge v_{2} \\
& =a d \cdot v_{1} \wedge v_{2}+b c \cdot v_{2} \wedge v_{1} \\
& =a d \cdot v_{1} \wedge v_{2}-b c \cdot v_{1} \wedge v_{2} \\
& =(a d-b c) v_{1} \wedge v_{2}
\end{aligned}
$$

By the defining property $(*)$ of the determinant this implies $\operatorname{det}(T)=a d-b c$.
Question A. Assume now that $\operatorname{dim} V=3$ and v_{1}, v_{2}, v_{3} is a basis for V. Let $T \in \mathcal{L}(V)$ be an operator defined by

$$
\begin{array}{ll}
T\left(v_{1}\right)=a v_{1}+d v_{2}+g v_{3} & \\
T\left(v_{2}\right)=b v_{1}+e v_{2}+h v_{3} & M(T)=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
T\left(v_{3}\right)=c v_{1}+f v_{2}+i v_{3} &
\end{array}
$$

Derive a formula for $\operatorname{det}(T)$ in terms of a, b, c, d, e, f, g, h, and i. (Hint: your formula should have six terms. It's easy to find the formula online, if you want to check that you got the right answer - but you need to derive it using wedge vectors, just as I did above.)

Question B. Prove that if v_{1}, \ldots, v_{k} are linearly dependent, then $v_{1} \wedge \cdots \wedge v_{k}=0$ in $\bigwedge^{k} V$.
(This is one direction of the Wedge Dependence Lemma I stated in class; for the other direction, we'll need a theorem that I'll cover on Wednesday.)

Question C. Assume that $\operatorname{dim} V=n$, and that v_{1}, \ldots, v_{n} is a basis for V. Prove that $\operatorname{dim} \bigwedge^{n} V \leq 1$ by finding a single wedge vector that spans $\bigwedge^{n} V$. (As I mentioned in class on Friday, in fact $\operatorname{dim} \bigwedge^{n} V=1$; we'll see this on Wednesday as well.)

A vector $v=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is called a probability vector ${ }^{1}$ if each entry v_{i} is ≥ 0, and $v_{1}+\cdots+v_{n}=1$.

Question 1. If you flip a quarter and a penny, what are the possible outcomes? Listing the quarter first, we could have $H H$ (both heads), $H T$ (quarter heads), $T H$ (penny heads), or $T T$ (both tails). If both coins are fair (probability vector $=\left(\frac{1}{2}, \frac{1}{2}\right)$ for both), the resulting probabilities are:

	H	T
H	$\frac{1}{4}$	$\frac{1}{4}$
T	$\frac{1}{4}$	$\frac{1}{4}$

We can write this as the probability vector $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \in \mathbb{R}^{4}$.
However, if both coins are weighted to come up Heads two-thirds of the time (probability vector $=\left(\frac{2}{3}, \frac{1}{3}\right)$ for both $)$, then the resulting probabilities are:

	H	T
H	$\frac{4}{9}$	$\frac{2}{9}$
T	$\frac{2}{9}$	$\frac{1}{9}$

We can write this as the probability vector $\left(\frac{4}{9}, \frac{2}{9}, \frac{2}{9}, \frac{1}{9}\right) \in \mathbb{R}^{4}$.
a) If the quarter is weighted to come up Heads four-fifths of the time, and the penny is weighted to come up Heads three-sevenths of the time, what is the resulting probability vector? $(H H, H T, T H, T T)=(?, ?, ?, ?)$ You do not have to justify your answer.

[^0]b) If $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$ represents the probability vector for the quarter, and $w=\left(w_{1}, w_{2}\right) \in$ \mathbb{R}^{2} represents the probability vector for the penny, let $J(v, w) \in \mathbb{R}^{4}$ denote the probability vector for both coins (J stands for the joint distribution). Give a formula for $J(v, w)$ in terms of v_{1}, v_{2}, w_{1}, and w_{2}. Is J a linear transformation?
c) Prove that $\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ is not in the image of J : there does not exist any $v, w \in \mathbb{R}^{2}$ such that $J(v, w)=\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$.
d) Is $u=(1,0,0,0)$ in the image of J ? How about $u^{\prime}=\left(\frac{1}{4}, \frac{1}{12}, \frac{1}{2}, \frac{1}{6}\right)$? How about $u^{\prime \prime}=\left(\frac{3}{10}, \frac{2}{10}, \frac{2}{10}, \frac{3}{10}\right)$?

Question 2. Let V be a finite-dimensional vector space over \mathbb{C}, and let $T \in \mathcal{L}(V)$. Let U and W be nonzero subspaces such that $V=U \oplus W$.

Assume that U and W are invariant under T, so we can restrict the operator $T: V \rightarrow V$ to an operator $\left.T\right|_{U}: U \rightarrow U$, and similarly we can restrict T to an operator $\left.T\right|_{W}: W \rightarrow W$.
a) Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of T, then either λ is an eigenvalue of $\left.T\right|_{U}$ or λ is an eigenvalue of $\left.T\right|_{W}$ (or both).
[Hint: start with a nonzero eigenvector $v \in V$ such that $T(v)=\lambda v$, and somehow construct either an eigenvector $u \in U$ such that $T(u)=\lambda u$, or an eigenvector $w \in W$ such that $T(w)=\lambda w$.]

Let $f(x)$ be the minimal polynomial of $\left.T\right|_{U}$, and let $g(x)$ be the minimal polynomial of $\left.T\right|_{W}$.
b) Prove that $f(T) g(T)=0$ in $\mathcal{L}(V)$.
c) Prove that if $f(x)$ and $g(x)$ have no shared roots (meaning no $\lambda \in \mathbb{C}$ is a root of both $f(x)$ and $g(x))$, then $f(x) g(x)$ is the minimal polynomial of T.
d) Prove that if $f(x)$ and $g(x)$ have a shared root $\lambda \in \mathbb{C}$, then $f(x) g(x)$ is not the minimal polynomial of T.

Question 3. Let X be a set. If Y_{1} and Y_{2} are two subsets of X, their exclusive union is the subset defined by:

$$
Y_{1} \Delta Y_{2}=\left\{x \in X \mid x \text { lies either in } Y_{1} \text { or } Y_{2} \text { but not both }\right\}
$$

For example, $\{A, B, C, D\} \Delta\{C, D, E, F\}=\{A, B, E, F\}$.
Let V_{X} be the collection of all subsets of X :

$$
V_{X}=\{Y \mid Y \subset X\}
$$

We can make V_{X} into a vector space over ${ }^{2}$ the field $\mathbb{F}_{2}=\{0, \mathbb{1}\}$, by defining addition of $Y_{1} \in V_{X}$ and $Y_{2} \in V_{X}$ to be $Y_{1} \Delta Y_{2}$ and defining scalar multiplication by:

$$
\mathbb{0} * Y=\emptyset \quad \mathbb{1} * Y=Y
$$

This makes V_{X} into a vector space (you may assume this without proof).
a) What is the additive identity in the vector space V_{X} ? Prove your answer.
b) Let Y be an element of V_{X} (in other words, Y is a subset of X).

What is the additive inverse of Y ? Prove your answer.
For the remaining two parts, let X be a set with three elements: $X=\{A, B, C\}$.
Note that V_{X} has eight elements:

$$
V_{X}=\{\{ \}, \quad\{A\}, \quad\{B\}, \quad\{C\}, \quad\{A, B\}, \quad\{A, C\}, \quad\{B, C\}, \quad\{A, B, C\}\}
$$

c) Let $Y_{1}=\{A, B\}, Y_{2}=\{A, C\}$, and $Y_{3}=\{B, C\}$. Are Y_{1}, Y_{2}, and Y_{3} linearly independent? Prove your answer.
d) Find a basis for V_{X} in this case. What is the dimension of V_{X} ? Prove your answer.

[^1]
[^0]: ${ }^{1}$ These vectors are used to model situations where n different possibilities occur with various probabilities. For example, for a fair coin, which comes up Heads half the time and Tails half the time (2 possibilities), we would take $n=2$, and use the vector $v=\left(\frac{1}{2}, \frac{1}{2}\right)$. If your coin was weighted to come up Heads two-thirds of the time (cheater!), you would use the vector $v=\left(\frac{2}{3}, \frac{1}{3}\right)$. Probability vectors are also used to model proportions in a large population: for example, if 0.36% of the population has HIV (2008 CDC statistics), we could denote this by $(0.9964,0.0036)$.

[^1]: ${ }^{2}$ Recall that \mathbb{F}_{2} is the field with two elements $\mathbb{F}_{2}=\{\mathbb{0}, \mathbb{1}\}$ with operations defined by

 $$
 \begin{array}{ll}
 \mathbb{0}+\mathbb{0}=\mathbb{0} & \mathbb{0} \cdot \mathbb{0}=\mathbb{0} \\
 \mathbb{0}+\mathbb{1}=\mathbb{1} & \mathbb{0} \cdot \mathbb{1}=\mathbb{0} \\
 \mathbb{1}+\mathbb{0}=\mathbb{1} & \mathbb{1} \cdot \mathbb{0}=\mathbb{0} \\
 \mathbb{1}+\mathbb{1}=\mathbb{0} & \mathbb{1} \cdot \mathbb{1}=\mathbb{1}
 \end{array}
 $$

