Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 7

Due Wednesday, February 27 in class.

Question 1. Let V be a vector space with $\operatorname{dim} V=n$. Let U be a subspace of V with $\operatorname{dim} U=k$, and assume that u_{1}, \ldots, u_{k} is a basis for U.
a) Prove that if w_{1}, \ldots, w_{k} is another basis for U, then

$$
w_{1} \wedge \cdots \wedge w_{k}=a \cdot u_{1} \wedge \cdots \wedge u_{k} \quad \text { for some nonzero } a \in \mathbb{F} \text {. }
$$

b) Let W be another subspace of V, and assume that w_{1}, \ldots, w_{k} is a basis for W. (We have dropped the assumption from part a) that $w_{i} \in U$.)

Prove that if

$$
w_{1} \wedge \cdots \wedge w_{k}=a \cdot u_{1} \wedge \cdots \wedge u_{k} \quad \text { for some nonzero } a \in \mathbb{F},
$$

then $U=W$.
[Hint: start with a basis v_{1}, \ldots, v_{ℓ} for $U \cap W$, then extend it to a basis v_{1}, \ldots, v_{n} for V.]
Question 2. Let v_{1}, \ldots, v_{n} be a basis for V. We say that an operator $T \in \mathcal{L}(V)$ is "upper-triangular with respect to the basis v_{1}, \ldots, v_{n} " if

$$
T\left(v_{i}\right) \in \operatorname{span}\left(v_{1}, \ldots, v_{i}\right) \text { for all } i=1, \ldots, n .
$$

Assume that T is upper-triangular w.r.t. the basis v_{1}, \ldots, v_{n}, so for each i we can write

$$
T\left(v_{i}\right)=d_{i} \cdot v_{i}+w_{i} \quad \text { for some } d_{i} \in \mathbb{F} \text { and } w_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right) .
$$

a) Prove that $\operatorname{det}(T)=d_{1} \cdot d_{2} \cdots \cdot d_{n}$.
b) Prove that each number d_{i} is an eigenvalue of T. Note that the vectors v_{i} are almost certainly not eigenvectors of T !
[Hint: I do not think a direct approach is best here. First think about how you would prove it when $d_{i}=0$, then reduce the general case to this.]

Question 3. Let V and W be finite-dimensional vector spaces, and let $S: V \rightarrow W$ be a linear transformation. Let $S^{\top}: W^{*} \rightarrow V^{*}$ (pronounced " S-transpose") be defined as follows. ${ }^{1}$ If $f \in W^{*}$ is a linear transformation $f: W \rightarrow \mathbb{F}$, then $S^{\top}(f) \in V^{*}$ is the linear transformation $V \rightarrow \mathbb{F}$ defined by

$$
S^{\top}(f)(v)=f(S(v))
$$

(You do not need to prove that $S^{\top}(f): V \rightarrow \mathbb{F}$ is linear, though you should understand why this is true.)
a) Prove that S^{\top} is a linear transformation from W^{*} to V^{*}.
b) Let Transpose: $\mathcal{L}(V, W) \rightarrow \mathcal{L}\left(W^{*}, V^{*}\right)$ be the function defined by

$$
\operatorname{Transpose}(S)=S^{\top}
$$

Prove that Transpose is a linear transformation from $\mathcal{L}(V, W)$ to $\mathcal{L}\left(V^{*}, W^{*}\right)$.
c) Prove that $0^{\top}=0$ and $I^{\top}=I$ (this should not be difficult).
d) If $S \in \mathcal{L}(V, W)$ and $R \in \mathcal{L}(W, U)$, prove that

$$
(R \circ S)^{\top}=S^{\top} \circ R^{\top}
$$

Question 4. Let V be a finite-dimensional vector space. Given an operator $S \in \mathcal{L}(V)$, we have the operator $S^{\top} \in \mathcal{L}\left(V^{*}\right)$ defined in Question 2.
a) Prove that $\operatorname{det}\left(S^{\top}\right)=\operatorname{det}(S)$. [Hint: choose a basis v_{1}, \ldots, v_{n} for V, and let f_{1}, \ldots, f_{n} be the dual basis for V^{*} defined by $f_{i}\left(v_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array} \quad\right.$ that you found on HW2, Question 1b.]
b) Prove that S^{\top} has the same minimal polynomial as S : i.e. prove that $m_{S^{\top}}(x)=m_{S}(x)$. (Note that this implies that S and S^{\top} have the same eigenvalues!)

[^0]Question 5. Recall from HW6 that a vector $v=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is called a probability vector if each entry v_{i} is ≥ 0, and $v_{1}+\cdots+v_{n}=1$. A matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is called a probability matrix if each column of A is a probability vector.
a) Prove that if A and B in $\operatorname{Mat}_{n \times n}(\mathbb{R})$ are both probability matrices, then their product $A B$ is also a probability matrix. [Hint: there is a smarter solution than just multiplying out the matrices.]
b) Let $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, and let A be its matrix (w.r.t. the standard basis $\left.e_{1}, \ldots, e_{n}\right)$. Prove that if A is a probability matrix, then 1 is an eigenvalue of T.
c) Bonus question, for no points: prove that 1 is the largest eigenvalue of T.

[^0]: ${ }^{1}$ Recall that $V^{*}=\mathcal{L}(V, \mathbb{F})$.

