Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 8

Due Wednesday, March 6 in class.

From Chapter 6 of the textbook: Exercises 2, 4, 5, 10, 15, 21, 24, 28, 29.
(In this chapter Axler has made the assumption that V is always a finite-dimensional inner product space over \mathbb{R} or \mathbb{C}.)
[Edit Friday 3/1: For Exercises 2 and 4 you may assume that V is an inner product space over \mathbb{R}. Exercises 10, 15, and 29 use material we will cover on Monday, namely the Gram-Schmidt algorithm and the orthogonal complement, respectively. If you want to get started on these early, they are covered in the book on page 108 and page 111, respectively.]

Question 1. Fix an integer $n \geq 1$, and let $V=\mathbb{C}^{n}$ with the standard inner product. We let $R: V \rightarrow V$ be the operator defined by

$$
R\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right) .
$$

a) Prove that the characteristic polynomial of R is $\chi_{R}(x)=x^{n}-1$.

This means that the eigenvalues of R are the roots of $x^{n}-1$; since you might not be familiar with these awesome numbers (called "roots of unity"), here are the relevant facts.

Let $\lambda \in \mathbb{C}$ be the complex number $\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$. Then $x^{n}-1$ factors as

$$
(x-1)(x-\lambda)\left(x-\lambda^{2}\right) \cdots\left(x-\lambda^{n-1}\right)
$$

All the roots $1, \lambda, \lambda^{2}, \ldots, \lambda^{n-1}$ are on the unit circle in \mathbb{C} (meaning $z \bar{z}=1$), and in fact they are equally spaced around the unit circle until you get back to $\lambda^{n}=1$.
b) Since $\chi_{R}(x)$ has n distinct roots, we know that R is diagonalizable.

Diagonalize R by finding a basis of eigenvectors v_{1}, \ldots, v_{n} for \mathbb{C}^{n} satisfying

$$
R\left(v_{i}\right)=\lambda^{i} \cdot v_{i} \quad \text { and } \quad\left\|v_{i}\right\|=1 .
$$

c) Prove that if $\mu \in \mathbb{C}$ satisfies $\mu^{n}=1$ but $\mu \neq 1$, then $1+\mu+\mu^{2}+\cdots+\mu^{n-1}=0$.
[Hint: multiply by $\mu-1$.]
d) Prove that your basis v_{1}, \ldots, v_{n} is orthonormal.
e) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coefficient b_{i} in terms of the coordinates a_{1}, \ldots, a_{n}. [Hint: use part d).]
f) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coordinate a_{i} in terms of the coefficients b_{1}, \ldots, b_{n}. [Hint: this is easy.]
g) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, prove that the coordinates a_{1}, \ldots, a_{n} and the coefficients b_{1}, \ldots, b_{n} satisfy the relation

$$
\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}=\left|b_{1}\right|^{2}+\cdots+\left|b_{n}\right|^{2}
$$

Historical Remark. The formula you found in e) is the Fourier transform, or rather a discretized version of it; the formula you found in f) is the inverse Fourier transform. The equality you proved in g) is a discrete version of the following famous theorem:

If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is a continuous function with $f(-\pi)=f(\pi)$, let $b_{k} \in \mathbb{C}$ be the sequence defined (for $k \in \mathbb{Z}$) by

$$
b_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

Then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{k=-\infty}^{\infty}\left|b_{k}\right|^{2}
$$

Question 2. Let V be a finite dimensional inner product space over \mathbb{F} (either \mathbb{R} or \mathbb{C}). If we are given a basis v_{1}, \ldots, v_{n} for V, let g_{1}, \ldots, g_{n} in V^{*} be the functions $g_{i}: V \rightarrow \mathbb{F}$ defined by $g_{i}(v)=\left\langle v, v_{i}\right\rangle$.
a) Prove that g_{i} is a basis for V^{*}.

For the next part, recall that the dual basis f_{1}, \ldots, f_{n} of V^{*} is given by $f_{i}\left(v_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$.
b) Prove that the basis $\left(f_{1}, \ldots, f_{n}\right)$ is equal to the basis $\left(g_{1}, \ldots, g_{n}\right)$ if and only if v_{1}, \ldots, v_{n} is an orthonormal basis for V.

