Math 113: Linear Algebra and Matrix Theory
 Thomas Church (church@math.stanford.edu)
 math.stanford.edu/~church/teaching/113/

Homework 9

Due Wednesday, March 13 in class.

From Chapter 6 of the textbook: Exercises 13, 31, 32
From Chapter 7 of the textbook: Exercises 1, 3, 6, 8, 16

Question 1.

a) Give an example of two self-adjoint operators $S \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ and $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ whose product $S T$ is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ are self-adjoint.
b) Prove that $S T+T S$ is a self-adjoint operator.
c) Prove that $S T$ is self-adjoint if and only if $S T=T S$.

Question 2. Let $V=\mathbb{C}^{2}$, and define three operators on V by

$$
S_{z}(a, b)=(a,-b) \quad S_{x}(a, b)=(b, a) \quad S_{y}(a, b)=(-i b, i a)
$$

The names are traditional, though these operators are usually described by giving their matrices w.r.t. the standard basis:

$$
\sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

a) Prove by hand ${ }^{1}$ that each of these operators is self-adjoint (w.r.t. the standard inner product on \mathbb{C}^{2} given by $\left.\langle(a, b),(c, d)\rangle=a \bar{c}+b \bar{d}\right)$.
b) Prove that each of these operators has minimal polynomial $x^{2}-1$.
c) Find an orthonormal basis of eigenvectors v_{1}^{z}, v_{2}^{z} for S_{z}, and orthonormal basis of eigenvectors v_{1}^{x}, v_{2}^{x} for S_{x}, and an orthonormal basis of eigenvectors v_{1}^{y}, v_{2}^{y} for S_{y}.

[^0]d) Fill out the following table by computing (the absolute values of) the inner products:
\[

$$
\begin{array}{lll}
\left|\left\langle v_{1}^{z}, v_{1}^{x}\right\rangle\right|= & \left|\left\langle v_{2}^{z}, v_{1}^{x}\right\rangle\right|= & \left|\left\langle v_{1}^{x}, v_{1}^{y}\right\rangle\right|= \\
\left|\left\langle v_{1}^{z}, v_{2}^{x}\right\rangle\right|= & \left|\left\langle v_{2}^{z}, v_{2}^{x}\right\rangle\right|= & \left|\left\langle v_{1}^{x}, v_{2}^{y}\right\rangle\right|= \\
\left|\left\langle v_{1}^{z}, v_{1}^{y}\right\rangle\right|= & \left|\left\langle v_{2}^{z}, v_{1}^{y}\right\rangle\right|= & \left|\left\langle v_{2}^{x}, v_{1}^{y}\right\rangle\right|= \\
\left|\left\langle v_{1}^{z}, v_{2}^{y}\right\rangle\right|= & \left|\left\langle v_{2}^{z}, v_{2}^{y}\right\rangle\right|= & \left|\left\langle v_{2}^{x}, v_{2}^{y}\right\rangle\right|=
\end{array}
$$
\]

[Hint: this will be much easier than you think.]
Question 3. Let V be the vector space of infinite sequences of real numbers:

$$
V=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{R}\right\}
$$

This is an infinite-dimensional vector space over \mathbb{R}.
On Homework 4 we considered the backward shift on V, so now let's consider the forwards shift: let $T \in \mathcal{L}(V)$ be the operator defined by

$$
T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

a) The operator $T+I$ is given by

$$
(T+I)\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)=\left(a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{4}, \ldots\right) .
$$

Find an inverse $(T+I)^{-1}$ for this operator.
b) For which values of $\lambda \in \mathbb{R}$ is the operator $T-\lambda I$ non-invertible? Try to prove your answer is correct; if you cannot prove it completely, give as much justification as you can.
c) What are the eigenvalues of T ?
d) Explain the discrepancy between your answers to b) and c).

[^0]: ${ }^{1}$ meaning don't just say "the matrices are conjugate-symmetric"

