Math 113: Linear Algebra and Matrix Theory Thomas Church (church@math.stanford.edu) math.stanford.edu/~church/teaching/113/

Homework 9

Due Wednesday, March 13 in class.

From Chapter 6 of the textbook: Exercises 13, 31, 32 From Chapter 7 of the textbook: Exercises 1, 3, 6, 8, 16

Question 1.

a) Give an example of two self-adjoint operators $S \in \mathcal{L}(\mathbb{R}^2)$ and $T \in \mathcal{L}(\mathbb{R}^2)$ whose product ST is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ are self-adjoint.

- b) Prove that ST + TS is a self-adjoint operator.
- c) Prove that ST is self-adjoint if and only if ST = TS.

Question 2. Let $V = \mathbb{C}^2$, and define three operators on V by

$$S_z(a,b) = (a,-b)$$
 $S_x(a,b) = (b,a)$ $S_y(a,b) = (-ib,ia).$

The names are traditional, though these operators are usually described by giving their matrices w.r.t. the standard basis:

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- a) Prove by hand¹ that each of these operators is self-adjoint (w.r.t. the standard inner product on \mathbb{C}^2 given by $\langle (a, b), (c, d) \rangle = a\bar{c} + b\bar{d}$).
- b) Prove that each of these operators has minimal polynomial $x^2 1$.
- c) Find an orthonormal basis of eigenvectors v_1^z , v_2^z for S_z , and orthonormal basis of eigenvectors v_1^x , v_2^x for S_x , and an orthonormal basis of eigenvectors v_1^y , v_2^y for S_y .

¹meaning don't just say "the matrices are conjugate-symmetric"

d) Fill out the following table by computing (the absolute values of) the inner products:

$ \langle v_1^z, v_1^x \rangle =$	$ \langle v_2^z, v_1^x \rangle =$	$ \langle v_1^x, v_1^y \rangle =$
$ \langle v_1^z, v_2^x \rangle =$	$ \langle v_2^z, v_2^x \rangle =$	$ \langle v_1^x, v_2^y \rangle =$
$ \langle v_1^z, v_1^y \rangle =$	$ \langle v_2^z, v_1^y \rangle =$	$ \langle v_2^x, v_1^y \rangle =$
$ \langle v_1^z, v_2^y \rangle =$	$ \langle v_2^z, v_2^y \rangle =$	$ \langle v_2^x, v_2^y \rangle =$

[Hint: this will be much easier than you think.]

Question 3. Let V be the vector space of infinite sequences of real numbers:

$$V = \left\{ (a_1, a_2, a_3, \ldots) \mid a_i \in \mathbb{R} \right\}$$

This is an infinite-dimensional vector space over \mathbb{R} .

On Homework 4 we considered the backward shift on V, so now let's consider the forwards shift: let $T \in \mathcal{L}(V)$ be the operator defined by

$$T(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, \ldots).$$

a) The operator T + I is given by

$$(T+I)(a_1, a_2, a_3, a_4, \ldots) = (a_1, a_1 + a_2, a_2 + a_3, a_3 + a_4, \ldots).$$

Find an inverse $(T+I)^{-1}$ for this operator.

- b) For which values of $\lambda \in \mathbb{R}$ is the operator $T \lambda I$ non-invertible? Try to prove your answer is correct; if you cannot prove it completely, give as much justification as you can.
- c) What are the eigenvalues of T?
- d) Explain the discrepancy between your answers to b) and c).