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Notes on k-wedge vectors, determinants,
and characteristic polynomials

1 The space of k-wedges
∧kV

Definition 1.1 (Space of k-wedges). Let V be a vector space, and let k ≥ 0. Then the

vector space of k-wedges from V is denoted
∧kV . It has the following properties:

• for every list w1, . . . , wk ∈ V , there is an element w1 ∧ · · · ∧ wk ∈
∧kV called a

“k-wedge”;

• the vector space
∧kV is spanned by all the k-wedges w1 ∧ · · · ∧ wk;

• the k-wedges satisfy the following three types of relations:

R1: The first relation says something like “if the symbol ∧ were actually an operation,

it would be distributive”:

w1 ∧ · · · ∧ (awi + bw′i) ∧ · · · ∧ wk = a · w1 ∧ · · · ∧ wi ∧ · · · ∧ wk

+ b · w1 ∧ · · · ∧ w′i ∧ · · · ∧ wk

For example, this is what tells us that we can “FOIL” out a product

(u+ v) ∧ (w + x) = u ∧ (w + x) + v ∧ (w + x) applying R1 to the first term

= u ∧ w + u ∧ x+ v ∧ w + v ∧ x applying R1 to the second term

This is also what tells us that if one of your k vectors is the zero vector ~0 ∈ V ,

then the k-wedge is zero in
∧kV :

w1 ∧ · · · ∧~0 ∧ · · · ∧ wk = w1 ∧ · · · ∧ (0 ·~0) ∧ · · · ∧ wk

= 0 · (w1 ∧ · · · ∧~0 ∧ · · · ∧ wk) = ~0 ∈
∧kV

R2: If two k-wedges involve the exact same list of k vectors, but in a different order

(like u, v, w versus w, v, u), the second relation says the first k-wedge is ±1 times

the second k-wedge. For example:

u ∧ v ∧ w = −v ∧ u ∧ w
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Whether the sign is +1 or −1 depends on how the vectors are rearranged. The

simplest way to describe this is to say that if just two vectors in the list are

swapped, then the k-wedges are negatives of each other:

w1 ∧ · · · ∧ wi ∧ · · · ∧ wj ∧ · · · ∧ wk = −w1 ∧ · · · ∧ wj ∧ · · · ∧ wi ∧ · · · ∧ wk

If you have a more complicated rearrangement, you can figure out whether the

sign is + or − by applying this rule multiple times. For example, if we want to

compare u ∧ v ∧ w with v ∧ w ∧ u:

u ∧ v ∧ w =− v ∧ u ∧ w (applying R2 to switch first two)

v ∧ u ∧ w = −v ∧ w ∧ u (applying R2 to switch last two)

so combining these we have

u ∧ v ∧ w = −v ∧ u ∧ w = v ∧ w ∧ u

R3: If your list of k vectors has a repetition, then the resulting k-wedge is equal to

zero:

w1 ∧ · · · ∧ wk = 0 if two entries wi and wj are equal

For example, u ∧ v ∧ u is always = 0, since the vector u occurs twice in the list.

• finally, there are no “hidden relations”; any relation that holds in
∧kV follows from

those relations listed above.

2 Wedge Dependence and Independence

There are two key theorems about
∧kV that we will find very useful.

Theorem 2.1 (Wedge Dependence Lemma). Let w1, . . . , wk be any list of k vectors

in V . Then

w1 ∧ · · · ∧ wk = 0 ∈
∧kV ⇐⇒ w1, . . . , wk is linearly dependent in V

Theorem 2.2 (Wedge Independence Lemma). Let B = (v1, . . . , vn) be a basis for V .

Then a basis for
∧kV is given by the set of “basic k-wedges”

Bk =
{
vi1 ∧ vi2 ∧ · · · ∧ vik

∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ n
}
.
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Proof of the Wedge Dependence Lemma (using WIL).

( ⇐= ) One direction of the Wedge Dependence Lemma follows from the Wedge

Independence Lemma, as follows. If w1, . . . , wk are linearly independent, then we can extend

this list to a basis B = (w1, . . . , wn) of V . The Wedge Independence Lemma tells us the set

Bk is a basis for
∧kV . But the very first element of Bk is the basic k-wedge w1∧w2∧· · ·∧wk.

Since no element of a basis can ever be = 0, this implies that w1 ∧ · · · ∧ wk 6= 0.

( =⇒ ) Now assume that w1, . . . , wk are linearly dependent. To simplify the proof,

assume that wk is linearly dependent on the other vectors. (If this is not true, we can make

it true by switching wk with some vector w` that is linearly dependent on the others; by

R2 this multiplies the k-wedge by −1, which will not affect whether or not it is = 0 or not.)

Therefore we can write wk = c1w1 + c2w2 + · · ·+ ck−1wk−1. Therefore distributing using

R1 we have

w1 ∧ · · · ∧ wk−1 ∧ wk = w1 ∧ · · · ∧ wk−1 ∧ (c1w1 + c2w2 + · · ·+ ck−1wk−1)

=

k−1∑
i=1

w1 ∧ · · · ∧ wk−1 ∧ ciwi

=
k−1∑
i=1

ciw1 ∧ · · · ∧ wk−1 ∧ wi

In each term w1 ∧ · · · ∧ wk−1 ∧ wi the vector wi is repeated, so by R3 this k-wedge is zero.

Since every term in the sum is zero, w1 ∧ · · · ∧ wk−1 ∧ wk = 0, as desired.

Proof of the Wedge Independence Lemma. We first need to prove that Bk spans∧kV . The formal proof is below, but first let’s work out a concrete example in full detail:

Let’s say that V is 3-dimensional, so that B = (v1, v2, v3) is a basis for V . Then for

k = 2, the set B2 is just

B2 = { vi ∧ vj | 1 ≤ i < j ≤ 3 }.

= { v1 ∧ v2, v1 ∧ v3, v2 ∧ v3 }

Let w and u be any vectors in V ; we want to prove that w ∧ u ∈ span(B2). Since v1, v2, v3

is a basis, we can write w = a1v1 + a2v2 + a3v3 and u = b1v1 + b2v2 + b3v3. Therefore by
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applying R1 twice, we have:

w ∧ u = (a1v1 + a2v2 + a3v3) ∧ (b1v1 + b2v2 + b3v3)

= a1 · v1 ∧ (b1v1 + b2v2 + b3v3)

+ a2 · v2 ∧ (b1v1 + b2v2 + b3v3)

+ a3 · v3 ∧ (b1v1 + b2v2 + b3v3)

= a1b1 · v1 ∧ v1 + a1b2 · v1 ∧ v2 + a1b3 · v1 ∧ v3
+ a2b1 · v2 ∧ v1 + a2b2 · v2 ∧ v2 + a2b3 · v2 ∧ v3
+ a3b1 · v3 ∧ v1 + a3b2 · v3 ∧ v2 + a3b3 · v3 ∧ v3

Three of the terms here are already multiples of elements of B2:

a1b2 · v1 ∧ v2 a1b3 · v1 ∧ v3 OK OK

a2b3 · v2 ∧ v3 OK

But what can we do about the other six terms? Well, the relation R3 tells us that v1 ∧ v1
is just equal to 0, since it has a repeated vector. Similarly v2 ∧ v2 = 0 and v3 ∧ v3 = 0.

Therefore we can just drop those three terms from the sum, since they’ll be equal to zero.

a1b1 · v1 ∧ v1 0

+ a2b2 · v2 ∧ v2 = + 0

+ a3b3 · v3 ∧ v3 + 0

For the last three terms, the relation R2 tells us that e.g. v3 ∧ v1 is equal to −v3 ∧ v1, since

swapping two vectors negates a k-wedge. Therefore we can replace them:

a2b1 · v2 ∧ v1 = − a2b1 · v1 ∧ v2
a3b1 · v3 ∧ v1 + a3b2 · v3 ∧ v2 − a3b1 · v1 ∧ v3 − a3b2 · v2 ∧ v3
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Therefore we can simplify the sum above as

w ∧ u = a1b1 · v1 ∧ v1 + a1b2 · v1 ∧ v2 + a1b3 · v1 ∧ v3
+ a2b1 · v2 ∧ v1 + a2b2 · v2 ∧ v2 + a2b3 · v2 ∧ v3
+ a3b1 · v3 ∧ v1 + a3b2 · v3 ∧ v2 + a3b3 · v3 ∧ v3

= (a1b2 − b2a1) · v1 ∧ v2 + (a1b3 − b3a1) · v1 ∧ v3
+ (a2b3 − a3b2) · v2 ∧ v3

This shows that w ∧ u ∈ span(v1 ∧ v2, v1 ∧ v3, v2 ∧ v3), as desired.

The argument in the general case is the same. We know that
∧kV is spanned by

k-wedges w1 ∧ · · · ∧ wk, so it suffices to prove that any such k-wedge is in the span of Bk.

Since v1, . . . , vn is a basis for V , we can write each wi as a linear combination of the basis

vectors v1, . . . , vn. If we then expand out w1 ∧ · · · ∧ wk using the distributivity from R1,

each term in the resulting sum will be some multiple of a k-wedge of the form

vi1 ∧ · · · ∧ vik for 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n. (1)

This is already enough to show that
∧kV is spanned by the nk fairly-simple k-wedges of

the form (1). So we just need to show that each of these is in the span of Bk.

Many of the k-wedges (1) are actually zero: if there is any repeated index (meaning

ij = i` for some j 6= `), the k-wedge is zero by R2. Therefore it remains only to handle

those k-wedges (1) where the indices i1, . . . , ik are all distinct. If the indices are not in

order, then we could rearrange the vectors in the k-wedge (1) so that they are in order; by

R2 this multiplies the k-wedge by ±1, so it does not change whether or not the k-wedge

lies in span(Bk). But this reduces us to those k-wedges (1) where the indices are in order

(meaning i1 < i2 < · · · < ik) — and this is exactly our purported generating set Bk! This

completes the proof that
∧kV is spanned by Bk.

The other half of the Wedge Independence Lemma is to prove that Bk is linearly

independent. However, this argument is quite complicated and somewhat unenlightening,

so we won’t do it in Math 113. The idea is to show that no linear dependence between the

vectors in Bk can possibly follow from the relations R1, R2, and R3 (since we know that all

relations in
∧kV follow from these). But there are infinitely many relations of the form R1,

R2, and R3, so it requires a fair bit of work to show that no linear dependence can follow

from them. I’m happy to talk about this with anyone who’s interested, but for class and

the homeworks, please just take my word for it.
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The dimension of
∧kV . Since the Wedge Independence Lemma gives us a basis for

∧kV ,

we can find the dimension of
∧kV .

Corollary 2.3. If dimV = n, then the dimension of
∧kV is

(
n
k

)
, the number of ways of

choosing a k-element subset from {1, . . . , n}.

Proof. The dimension dim
∧kV is the number of elements in any basis. If B = (v1, . . . , vn),

the Wedge Independence Lemma tells us that

Bk =
{
vi1 ∧ vi2 ∧ · · · ∧ vik

∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ n
}

is a basis for
∧kV , so we just need to count how many k-wedges are in Bk. The number of

k-wedges in this basis is the number of ways to pick k numbers i1, i2, . . . , ik between 1 and

n that are in increasing order. But if we are given k different numbers between 1 and n,

there is a unique way to put them in increasing order. Therefore we get one basis element

for each subset {i1, i2, . . . , ik} ⊂ {1, . . . , n} of size k— and the number of such subsets is(
n
k

)
by definition.

Since
(
n
n

)
= 1 (there’s only one way to pick an n-element subset of {1, . . . , n}), this

gives the following fact.

Corollary 2.4. If dimV = n, then
∧nV is 1-dimensional.

Moreover if k is greater than n, there is no way to pick numbers 1 ≤ i1 < · · · < ik ≤ n.

Therefore Bk is the empty set, and so
∧kV must be the zero vector space.

Corollary 2.5. If dimV = n and k > n, then
∧kV = {0}.

3 Determinants

Definition 3.1 (Induced operator T∗). If T : W → U is a linear transformation, there is

an “induced transformation” T∗ :
∧kW →

∧kU defined1 on k-wedges by

T∗(w1 ∧ · · · ∧ wk) = T (w1) ∧ · · · ∧ T (wk)

In particular, if T ∈ L(V ) is an operator on V , there is an induced operator T∗ :
∧kV →

∧kV

defined by the above formula.

1One slightly tricky point is showing that this formula is well-defined, i.e. gives an unambiguous linear

transformation T∗ :
∧kW →

∧kU . This just requires checking that T∗ preserves the relations R1, R2, and

R3, which follows from the linearity of T . However I will skip the details of this computation.
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Determinant. If dimV = n, for any operator T ∈ L(V ) we have the induced operator

T∗ :
∧nV →

∧nV . By Corollary 2.4,
∧nV is 1-dimensional, so if ω ∈

∧nV is any nonzero

element, we must have T∗(ω) = d · ω for some unique d ∈ F. This leads to the general

mathematical definition of the determinant:

Definition 3.2. If dimV = n and T ∈ L(V ), the determinant det(T ) ∈ F is the unique

number such that

T∗(ω) = det(T ) · ω for any ω ∈
∧nV.

Concretely, if v1, . . . , vn is any basis for V , then we have

T (v1) ∧ · · · ∧ T (vn) = det(T ) · v1 ∧ · · · ∧ vn. (∗)

We can now verify all the standard properties of the determinant.

The determinant does not depend on basis. The determinant of T does not depend

on the basis v1, . . . , vn we choose; this is implicit in the definition above, but we can check

it directly. If we picked a different basis w1, . . . , wn, since dim
∧nV = 1 we know that

w1 ∧ · · · ∧ wn = c · v1 ∧ vn for some c ∈ F. Therefore

T∗(w1 ∧ · · · ∧ wn) = T∗(c · v1 ∧ · · · ∧ vn)

= c · T∗(v1 ∧ · · · ∧ vn)

= c · det(T ) · v1 ∧ · · · ∧ vn
= det(T ) · (c · v1 ∧ · · · ∧ vn)

= det(T ) · w1 ∧ · · · ∧ wn

This shows that we can compute the determinant using any basis for V that we like.

Invertibility and determinants.

Proposition 3.3. If dimV = n and T ∈ L(V ), then

det(T ) 6= 0 ⇐⇒ T is invertible.

Proof. Let v1, . . . , vn be a basis for V . Since v1, . . . , vn is linearly independent, the Wedge

Dependence Lemma tells us that v1∧· · ·∧vn 6= 0 ∈
∧nV . We know that T (v1)∧· · ·∧T (vn) =

det(T ) · v1 ∧ · · · ∧ vn, so

det(T ) 6= 0 ⇐⇒ T (v1) ∧ · · · ∧ T (vn) 6= 0.

However, the Wedge Dependence Lemma tells us that

T (v1) ∧ · · · ∧ T (vn) 6= 0 ⇐⇒ T (v1), . . . , T (vn) are linearly independent.
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Question 1 on the midterm states that

T (v1), . . . , T (vn) are linearly independent ⇐⇒ T is injective.

Finally, since T is an operator on V , Theorem 3.21 from the book says that

T is injective ⇐⇒ T is invertible.

Explicit formula for det(T ) when dimV = 2. Assume dimV = 2 and v1, v2 is a basis

for V , and that T ∈ L(V ) satisfies T (v1) = av1 + cv2 and T (v2) = bv1 + dv2. (The point of

this labeling is that the matrix of T w.r.t. the basis v1, v2 is M(T ) =

[
a b

c d

]
.) Then:

T∗(v1 ∧ v2) = T (v1) ∧ T (v2)

= (av1 + cv2) ∧ (bv1 + dv2)

= ab · v1 ∧ v1 + ad · v1 ∧ v2 + bc · v2 ∧ v1 + ad · v2 ∧ v2
= ad · v1 ∧ v2 + bc · v2 ∧ v1
= ad · v1 ∧ v2 − bc · v1 ∧ v2
= (ad− bc)v1 ∧ v2

By the defining property (∗) of the determinant this implies det(T ) = ad− bc. In particular,

we find that a 2-by-2 matrix

[
a b

c d

]
is invertible if and only if ad− bc 6= 0.

Determinant is multiplicative.

Proposition 3.4. If T ∈ L(V ) and S ∈ L(V ) are operators on V , then

det(ST ) = det(S) · det(T ) = det(TS).

Proof. We first note that (S ◦ T )∗ = (S∗) ◦ (T∗) ∈ L(
∧nV ):

(S∗) ◦ (T∗)(v1 ∧ · · · ∧ vn) = (S∗)(T (v1) ∧ · · · ∧ T (vn))

= S(T (v1)) ∧ · · · ∧ S(T (vn))

= (S ◦ T )∗(v1 ∧ · · · ∧ vn)

Therefore for any ω ∈
∧nV we have

(S ◦ T )∗(ω) = S∗(T∗(ω)) = S∗(det(T ) · ω) = det(T ) · S∗(ω) = det(T ) · det(S) · ω.

Determinant of a diagonalizable operator is product of eigenvalues.
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Proposition 3.5. If T ∈ L(V ) is diagonalizable, let v1, . . . , vn be a basis of eigenvectors,

so that T (vi) = λi · vi. Then det(T ) = λ1λ2 · · ·λn is the product of these eigenvalues.

Proof.

T (v1) ∧ T (v2) ∧ · · · ∧ T (vn) = (λ1v1) ∧ (λ2v2) ∧ · · · ∧ (λnvn)

= (λ1λ2 · · ·λn) · v1 ∧ v2 ∧ · · · ∧ vn.

The simplicity of this proof shows how useful it is that we can compute det(T ) using

any basis of V .

Determinant of an upper-triangular operator is product of diagonal entries.

Definition 3.6. Let v1, . . . , vn be a basis of V . We say that an operator T ∈ L(V ) is

upper-triangular with respect to this basis

T (vi) ∈ span(v1, . . . , vi) for all i = 1, . . . , n.

In this case we can write

T (vi) = di · vi + wi for some di ∈ F and wi ∈ span(v1, . . . , vi−1).

Proposition 3.7. If T ∈ L(V ) is upper-triangular with respect to the basis v1, . . . , vn,

write T (vi) = di · vi + wi for wi ∈ span(v1, . . . , vi−1). Then det(T ) = d1d2 · · · dn is the

product of these “diagonal entries”.

Proof.

T (v1) ∧ T (v2) ∧ · · · ∧ T (vn) = (d1v1) ∧ (d2v2 + w2) ∧ (d3v3 + w3) ∧ · · · ∧ (dnvn + wn)

= d1d2v1 ∧ v2 ∧ (d3v3 + w3) ∧ · · · ∧ (dnvn + wn)

+ d1v1 ∧ w2 ∧ (d3v3 + w3) ∧ · · · ∧ (dnvn + wn)

however since w2 ∈ span(v1), the vectors in the second n-wedge are linearly dependent,

so this second n-wedge is 0 by the WDL

= d1d2v1 ∧ v2 ∧ (d3v3 + w3) ∧ · · · ∧ (dnvn + wn)

= d1d2d3v1 ∧ v2 ∧ v3 ∧ · · · ∧ (dnvn + wn)

+ d1d2v1 ∧ v2 ∧ w3 ∧ · · · ∧ (dnvn + wn)

however since ww ∈ span(v1, v2), the vectors in the second n-wedge are linearly dependent,

so this second n-wedge is 0 by the WDL

=
...

= (d1d2 · · · dn) · v1 ∧ v2 ∧ · · · ∧ vn.
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Proposition 3.8. Each “diagonal entry” dj of an upper-triangular operator T is an

eigenvalue of T , and each eigenvalue of T appears as one of the diagonal entries.

Proof. We assume that T is upper-triangular w.r.t. the basis v1, . . . , vn, and writeT (vi) =

di · vi + wi as above. Given λ ∈ F, consider the operator T − λI. We have

(T − λI)(vi) = T (vi)− λ · vi = (di − λ) · vi + wi.

Therefore T − λI is also upper-triangular w.r.t. the basis v1, . . . , vn, and the “diagonal

entries” of T − λI are the coefficients di − λ for i = 1, . . . , n. By Proposition 3.7, we have

det(T − λI) = (d1 − λ)(d2 − λ) · · · (dn − λ).

We already know that λ is an eigenvalue of T ⇐⇒ det(T − λI) = 0, and from this formula

we see that this holds exactly when λ is equal to one of the diagonal entries di. (Otherwise

each factor di − λ would be nonzero, so the product det(T ) would be nonzero as well.)

4 Characteristic polynomials

Definition 4.1. Let T ∈ L(V ) be an operator on a finite-dimensional vector space V .

Then the characteristic polynomial χT (x) is the function (of x ∈ F) defined by

χT (x) = det(xI − T ).

The characteristic polynomial χT (x) is a polynomial in x (with coefficients in F); if

dimV = n, then χT (x) has degree n.

Proposition 4.2. The roots of χT (x), meaning the set of λ ∈ F such that χT (λ) = 0, are

the eigenvalues of T .

Proof. Note that xI−T is just (−1) times T−xI, so det(xI−T ) = ±det(T−xI). Therefore

χT (λ) = 0 ⇐⇒ det(xI − T ) = 0

⇐⇒ det(T − xI) = 0

⇐⇒ T − xI is not invertible, by Prop 3.3

⇐⇒ T − xI is not injective

⇐⇒ ∃v 6= 0 ∈ V s.t. (T − xI)(v) = 0,

and this last condition says precisely that v is a nonzero eigenvector with eigenvalue λ.

Theorem 4.3 (Cayley–Hamilton Theorem). χT (T ) = 0.
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The Cayley–Hamilton theorem finally gives us the following corollary, which we have

been waiting a long time for.

Corollary 4.4. The degree of the minimal polynomial mT (x) is ≤ dimV .

Proof. Since χT (T ) = 0 by the Cayley–Hamilton theorem, the degree of the minimal

polynomial must be ≤ the degree of χT (x) [otherwise it wouldn’t be minimal!]. Since

degχT (x) = dimV , this shows that degmT (x) ≤ dimV .

Although the Cayley–Hamilton theorem does hold over arbitrary fields (including weird

ones like F2), we will only prove it for real and complex operators. For complex operators

this will be easy, once we know that every complex operator is upper-triangular w.r.t. some

basis.

Proposition 4.5. If T ∈ L(V ) is an operator on a finite-dimensional vector space V over

C, there exists a basis v1, . . . , vn for V w.r.t. which T is upper-triangular.

Proof. We prove this proposition by induction on the dimension of V . The base case is

when dimV = 1, in which case T = λI for some λ, so any nonzero vector v1 ∈ V works.

Now let dimV = n; by induction, we can assume that Proposition 4.5 (this proposition!)

can be safely applied to any complex vector space of dimension < n. Our goal is to find a

basis v1, . . . , vn so that T (vi) ∈ span(v1, . . . , vi) for all i = 1, . . . , n.

Since T is a complex operator, we know that T has at least one eigenvalue. So let λ be

some eigenvalue of T , and let U = Image(T − λI). Note that for any v ∈ V we have the

decomposition (essentially tautologically)

T (v) = λv + (T − λI)v

where the second term (T−λI)v is obviously contained in U = Image(T−λI). In particular,

this shows that the subspace U is invariant under T , since for any u ∈ U we have

T (u) = λu+ (T − λI)u ∈ U

(the first term lies in U because u ∈ U , and the second term lies in U by definition).

So far this hasn’t even used that λ is an eigenvalue! So let’s use that. Since λ is an

eigenvalue of T , we know that ker(T − λI) 6= {0}. Applying the Rank-Nullity theorem to

T − λI, this implies that Image(T − λI) 6= V . In particular, dimU is strictly smaller than

dimV . Therefore by our inductive hypothesis we may apply Proposition 4.5 to the operator

T |U : U → U . This gives us a basis v1, . . . , vk of U so that U = span(v1, . . . , vk) and

T |U (vi) ∈ span(v1, . . . , vi) for all i = 1, . . . , k.

11



Now extend this basis to a basis v1, . . . , vk, vk+1, . . . , vn for V . Since T (vi) = T |U (vi),

we’ve already verified the condition

T (vi) ∈ span(v1, . . . , vi) for all i = 1, . . . , k.

And for the remaining basis vectors vi with i = k + 1, . . . , n we have the tautological

equation

T (vi) = λvi + (T − λI)vi.

Since (T − λI)vi ∈ U by definition of U , and U = span(v1, . . . , vk), this shows that

T (vi) ∈ span(v1, . . . , vk, vi).

The span span(v1, . . . , vk, vi) is automatically contained in the larger span

span(v1, . . . , vk, vk+1, . . . , vi), so we have that

T (vi) ∈ span(v1, . . . , vk, vi) ⊂ span(v1, . . . , vk, vk+1, . . . , vi).

Since for all i = 1, . . . , n we have T (vi) ∈ span(v1, . . . , vi), the operator T is upper-triangular

w.r.t. the basis v1, . . . , vn that we have constructed.

We can now prove the Cayley–Hamilton theorem for complex operators.

Proof of Cayley–Hamilton Theorem over C. Sketch of proof: Find an upper-triangular ba-

sis with

T (vi) = di · vi + wi.

The operator xI − T is still upper-triangular, with diagonal entries x − d1, . . . , x − dn.

Therefore by Proposition 3.7,

χT (x) = det(xI − T ) = (x− d1) · · · (x− dn).

Therefore our goal is to prove that

(T − d1I) · · · (T − dnI) = 0.

Define Ui = span(v1, . . . , vi). Since T − diI is upper-triangular, we know that

(T − diI)(vj) ∈ Uj for any j. However, we also have that

(T − diI)(vi) = T (vi)− di · vi = (di · vi + wi)− di · vi = wi

for wi ∈ Ui−1. This implies that

(T − diI)(Ui) ⊂ Ui−1 for all i (∗)
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Since V = Un, taking i = n in (∗) implies that (T −dnI)(V ) ⊂ Un−1. Therefore applying

(∗) again with i = n − 1 shows that that (T − dn−1I)(T − dnI)(V ) ⊂ Un−2; and so on.

Repeatedly applying (∗) shows that

(T − dkI)(T − dk+1I) · · · (T − dnI)(V ) ⊂ Uk−1.

Therefore after applying (∗) a full n times, we have

(T − d1I)(T − d2I) · · · (T − dnI)(V ) ⊂ U0 = {0}.

This shows that (T − d1I) · · · (T − dnI) = 0, as desired.

5 Complexification

If V is a vector space over R, we can define its complexification VC, which is a complex

vector space, as follows. The elements of VC are pairs (v, w) where v ∈ V and w ∈W , with

addition defined component-wise: (v, w) + (v′, w′) = (v + v′, w + w′). Scalar multiplication

by real numbers a ∈ R is similarly easy: we set a · (v, w) = (a · v, a · w).

However, to make VC into a vector space over C, we need to define scalar multiplication

by complex numbers, not just real. The key is to define multiplication by i ∈ C, which we

define by

i · (v, w) = (−w, v).

Since every complex number can be written as a+ bi, and scalar multiplication is supposed

to be distributive, this tells us how we must define multiplication by a+ bi:

(a+ bi) · (v, w) = (a · v − b · w, b · v + a · w).

This is what we take as the formal definition of scalar multiplication; however multiplication

by i is really the heart of it. Anyway, you can check without difficulty that this definition

makes VC into a vector space over C.

Notation v + iw for elements of VC. There is a more natural notation that we can use

for the elements of VC. Let us slightly abuse notation and denote the element (v, 0) ∈ VC
simply as v. If we make this convention, then i · v would be the element

i · v = i · (v, 0) = (−0, v) = (0, v)

by applying the definition above. Therefore instead of writing (v, w) ∈ VC, we can denote

this element by v + iw, since

(v, w) = (v, 0) + (0, w) = v + iw.
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This leads us to think of v ∈ V as the “real part” of v + iw ∈ VC, and w ∈ V as the

“imaginary part”; this analogy will not have many mathematical consequences for us, but it

is a useful metaphor.

Proposition 5.1. If v1, . . . , vn is a basis for V , then v1, . . . , vn is a basis for VC.

Proof. Consider an arbitrary element (v, w) = v+ iw ∈ VC. We know that v can be uniquely

written as v = a1v1 + · · ·+ anvn, and w can be uniquely written as w = b1v1 + · · ·+ bnvn.

Set z1 = a1 + ib1 ∈ C, . . . , zn = an + ibn ∈ C. Then we can write v + iw as

v + iw = (a1v1 + · · ·+ anvn) + i(b1v1 + · · ·+ bnvn)

= (a1 + ib1)v1 + · · ·+ (an + ibn)vn

= z1v1 + · · ·+ znvn,

and it is easy to check that this representation is unique.

Complexification of linear transformations. If V and U are real vector spaces and

T : V → U is a linear transformation, we can define a linear transformation

TC : VC → UC

by TC(v + iw) = T (v) + iT (w).

This will be most useful for us when T ∈ L(V ) is a real operator on V , in which case

TC ∈ L(VC) is a complex operator on the complexification VC. The complexified operator

TC has some elementary properties that will be very useful; I will not give proofs for all of

them, but

Proposition 5.2.

(i) TC = 0 ⇐⇒ T = 0. (This is obvious from the definition of TC.)

(ii) (T + S)C = TC + SC. (This is also obvious from the definition.)

(iii) For any real polynomial p(x) ∈ P(R), we have p(TC) =
(
p(T )

)
C. For example, taking

p(x) = x2 this means that (TC)2 = (T 2)C, which we can check as follows:

T 2
C(v + iw)) = TC

(
T (v) + iT (w)

)
= T 2(v) + iT 2(w) = (T 2)C(v + iw).

(iv) mTC(x) = mT (x). (This is not as easy as I said in class, but it is true.)

(v) det(TC) = det(T ). (This is pretty easy just using the definition of determinant.)
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(vi) χTC(x) = χT (x). (This follows from (v).)

Proof of Cayley–Hamilton over R. We can now immediately deduce the Cayley–

Hamilton theorem for real operators from the theorem for complex operators. Let V be

a finite-dimensional real vector space, and let T ∈ L(V ) be a real operator on V . Let

p(x) ∈ P(R) be the characteristic polynomial of T :

p(x) = χT (x)

Our goal is to prove that p(T ), or in other words χT (T ), is 0.

Let TC ∈ L(VC) be the complexification of the operator T . By Proposition 5.2(vi), p(x)

is also the characteristic polynomial of TC:

p(x) = χTC(x) = χT (x)

Therefore by the Cayley–Hamilton theorem for the complex operator TC, we know that

p(TC) = 0.

By Proposition 5.2(iii), this is equivalent to(
p(T )

)
C = 0.

But then Proposition 5.2(i) implies that p(T ) = 0, as desired.
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