Math 113-40, Mr. Church, Second Midterm Review

Here are some questions to help study for the second midterm. Due to obvious technical
difficulties I can’t include example graphs for the questions below, but you can take pretty
much any examples from the homeworks, or from the book, or just make up some graphs.
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Given a planar graph, draw the dual graph.
Decide whether two graphs are isomorphic (as in Q1 on HW 3A).

Given a graph, find a planar graph isomorphic to it. (That is, draw the graph without
edges crossing, as in Q1 on HW 3C.)

Given a graph, determine whether it has an Eulerian circuit. If so, find one. Does the
answer depend on how the graph is drawn?

Given a graph, reduce it down to the graph with one vertex.
Given a graph, find a 4-coloring, or 5-coloring, etc.

What is the relation between the number of vertices/edges/faces of a planar graph and
the number of vertices/edges/faces of its dual graph?

Prove that a graph without circuits must have at least one vertex with degree 1.
Given a graph, find a spanning tree.

Does every tree have some vertex with degree > 37 If not, give an example of a tree
where every vertex has degree < 2.

Given a graph, calculate its Betti number (without finding a spanning tree).

Draw a frieze pattern with a translation and a horizontal reflection as symmetries, but
not a rotation or a vertical reflection. Does your example have any glide-reflection as a
symmetry?

Given a frieze pattern, identify all the kinds of symmetry it has. (Start with the examples
in Exercise 15.18.)

The frieze pattern --- XXX XXX XXX XXX--- has all the possible symmetries that
a frieze pattern can have (type VII). Are there any other letters for which this is true
(replacing X with the other letter)?

Exercise 14.6.

Draw a graph that requires at least 7 colors to color legally (recall that in a coloring two
adjacent vertices are not allowed to have the same color).



