
Math 120 HW 2

Xiaoyu He, edits by Prof. Church

April 13, 2018

1.1.12
Find the orders of the following elements of the multiplicative group (Z/12Z)×: 1̄,−1, 5, 7,−7, 13.

Recall that the order |g| of a group element g is the smallest positive integer n for which gn is the
multiplicative identity 1. In this case, 1 = 13 are already the identity, (−1)2 = 1, (5)2 = 25 = 1, (7)2 = 49 =
1, and (−7)2 = 49 = 1. Thus, |1| = |13| = 1 and |−1| = |5| = |7| = |−7| = 2.

1.1.13
Find the orders of the following elements of the additive group (Z/36Z): 1, 2, 6, 9, 10, 12, 5, 13,−13, 17.

Since the group operation is addition, the order of an element g is actually the smallest n for which ng
which is the additive identity 0. In other words, the order of |x| is the smallest n for which nx = 0, i.e. nx
is a multiple of 36. In general, the answer will be the smallest integer which contains all the prime factors
of 36 that x is missing, which is

|x| = 36

gcd(x, 36)
.

From this formula, we easily check that the orders are |1| = 36, |2| = 18, |6| = 6, |9| = 4, |10| = 18, |12| =
3, |5| = 36, |13| = 36, |−13| = 36, |17| = 36.

1.6.13
Let G and H be groups and let ϕ : G → H be a homomorphism. Prove that the image of ϕ,
ϕ(G), is a subgroup of H (cf. Exercise 26 of Section 1).

Recall (by 1.1.26 from the HW1) that to check a subset ϕ(G) ⊆ H is a subgroup of H, we only need to
verify three things:

1. ϕ(G) contains the identity. Since any homomorphism satisfies ϕ(1) = 1, indeed 1 ∈ ϕ(G).

2. If h, k ∈ ϕ(G), then so is hk. Since h, k ∈ ϕ(G), by the definition of image there exist gh, gk ∈ G such
that ϕ(gh) = h and ϕ(gk) = k. But then

hk = ϕ(gh)ϕ(gk)

= ϕ(ghgk)

because ϕ is a homomorphism. Thus hk ∈ ϕ(G).

3. If h ∈ ϕ(G), then so is h−1. Since h ∈ ϕ(G), by the definition of image there exists gh ∈ G such that
ϕ(gh) = h. But G is a group so gh has an inverse g−1h ∈ G. Thus,

ϕ(g−1h )h = ϕ(g−1h )ϕ(gh)

= ϕ(g−1h gh)

= ϕ(1G)

= 1H .
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The second inequality is the group homomorphism property, the third is by definition of inverses, and
the last is because homomorphisms take identity to identity. Thus, ϕ(g−1h ) = h−1 lies in ϕ(G).

Prove that if ϕ is injective then G ∼= ϕ(G).
If ϕ is injective, then we claim that the map ϕ : G → ϕ(G) is a isomorphism, so a homomorphism and

a bijection. To check that ϕ : G → ϕ(G) is a homomorphism, note that the group operation of ϕ(G) is
the same as the operation on H, so for any x, y ∈ G, ϕ(x)ϕ(y) = ϕ(xy) by the fact that ϕ : G → H is a
homomorphism. We are given that ϕ is injective, so it suffices to check that ϕ : G→ ϕ(G) is surjective. But
every h ∈ ϕ(G) is equal to ϕ(g) for some g ∈ G, by the definition of image. Thus ϕ is an isomorphism and
G ∼= ϕ(G).

1.6.14
Let G and H be groups and let ϕ : G → H be a homomorphism. Define the kernel of ϕ to be
{g ∈ G|ϕ(g) = 1H} (so the kernel is the set of elements in G which map to the identity of H, i.e.,
is the fiber over the identity of H). Prove that if the kernel of ϕ is a subgroup (cf. Exercise
26 of Section 1) of G.

Write kerϕ for the kernel of ϕ.We have to check three things:

1. kerϕ contains the identity. Since ϕ is a homomorphism, ϕ(1G) = 1H , so 1G ∈ kerϕ.

2. If h, k ∈ kerϕ, then hk ∈ kerϕ. By the definition of kernel, ϕ(h) = 1H and ϕ(k) = 1H . Thus,

ϕ(hk) = ϕ(h)ϕ(k) = 1H

as well, using the fact that ϕ is a homomorphism. Thus hk ∈ kerϕ as well.

3. If h ∈ kerϕ, then h−1 ∈ kerϕ. We know that for any homomorphism we have ϕ(h−1) = ϕ(h)−1. If
h ∈ kerϕ, then ϕ(h−1) = ϕ(h)−1 = 1−1H = 1H , so h−1 ∈ kerϕ.

Prove that ϕ is injective if and only if the kernel of ϕ is the identity subgroup of G.
(if direction.) If kerϕ = {1G}, then suppose for the sake of contradiction that ϕ is not injective. That

is, there exist two elements g 6= h ∈ G for which ϕ(g) = ϕ(h). But then

ϕ(gh−1) = ϕ(g)ϕ(h−1) = ϕ(g)ϕ(h)−1 = 1H ,

and since g 6= h this element gh−1 is not the identity but lies in kerϕ. This contradicts our assumption that
kerϕ = {1G}, so ϕ must be injective.

(only if direction.) If ϕ is injective, then ϕ(g) 6= ϕ(h) for any g 6= h ∈ G. But ϕ(1G) = 1H , so that means
that if g 6= 1G, ϕ(g) 6= 1H and g doesn’t lie in kerϕ. Thus, kerϕ = {1G} is the identity subgroup of G.

1.6.18
Let G be any group. Prove that the map from G to itself defined by g 7→ g2 is a homomorphism
if and only if G is abelian.

Let ϕ be the map g 7→ g2.
(if direction.) Suppose G is abelian. We need to check the homomorphism property

ϕ(g)ϕ(h) = ϕ(gh)

for any two g, h ∈ G. But

ϕ(gh) = (gh)2

= ghgh

= g2h2

= ϕ(g)ϕ(h)
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as desired. In the middle step we used commutativity hg = gh.
(only if direction.) If ϕ is a homomorphism, then for any g, h ∈ G, we have

ϕ(g)ϕ(h) = ϕ(gh)

g2h2 = (gh)2.

Multiplying the above equation on the left by g−1 and on the right by h−1, we get

g−1(g2h2)h−1 = g−1(ghgh)h−1

gh = hg,

and so gh = hg for any g, h ∈ G, proving that G is abelian.

2.1.8
Let H and K be subgroups of G. Prove that H ∪K is a subgroup if and only if either H ⊆ K
or K ⊆ H.

(if direction.) If H ⊆ K, then H ∪K = K is a subgroup. If K ⊆ H, then H ∪K = H is a subgroup.
(only if direction.) Suppose H ∪ K is a subgroup, and that H 6⊆ K and K 6⊆ H. Then, there exists

elements h ∈ H\K and k ∈ K\H which both lie in H ∪K.
We claim that g = hk lies in neither H norK. Without loss of generality, suppose g ∈ H. Then, gh−1 = k

also lies in H since H is a subgroup, which contradicts the fact that k ∈ K\H. This is a contradiction,
which proves the claim.

It follows that H ∪ K is not a subgroup because it’s not closed under multiplication, and we have a
contradiction. Thus either H ⊆ K or K ⊆ H.

2.3.1
Find all subgroups of Z45 = 〈x〉, giving a generator for each. Describe the containments between
these subgroups.

By parts (1) and (3) of Theorem 2.3.7, every subgroup of a cyclic group is cyclic, and if K ≤ Z45 then
K = 〈xd〉 where d is a divisor of 45, and this subgroup is isomorphic to Z45/d. Thus, the subgroups are
〈x〉 ∼= Z45, 〈x3〉 ∼= Z15, 〈x5〉 ∼= Z9, 〈x9〉 ∼= Z5, 〈x15〉 ∼= Z3, and 〈x45〉 = {1}.

They are ordered by containment in the opposite direction of divisibility; that is, 〈xd〉 ⊆ 〈xe〉 if and only
if e is a divisor of d. One way to see the containments nicely is to arrange them in a divisibility lattice like
so:

〈x5〉 ⊂ 〈x〉
∪ ∪
〈x15〉 ⊂ 〈x3〉
∪ ∪
〈x45〉 ⊂ 〈x9〉.

Question 1
Does there exist some group K with the following property?

(∗) For every group G, the number of homomorphisms f : K → G is equal to the cardinality
|G| of G.

Describe such a group K and prove it has property (∗), or prove that no such group K
exists.

We prove that K = Z, the infinite cyclic group, has property (∗). For any group G, consider the function
{homomorphisms f : Z → G} α−→ G defined by α(f) = f(1). We will prove that α is a bijection, which will
show that n(Z, G) = |G|.
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First, we show that α is surjective; in other words, for any group G and any g ∈ G there exists a
homomorphism f : Z→ G with f(1) = g. Given g ∈ G, define the function fg : Z→ G by fg(n) = gn for all
n ∈ Z. Note that fg(1) = g by definition. We must check that fg is a homomorphism:

fg(m+ n) = gm+n = gm · gn = fg(m) · fg(n)

so fg is indeed a homomorphism. This shows that α is surjective.
Second, we show that α is injective; in other words, if f : Z→ G and f ′ : Z→ G are two homomorphisms

with f(1) = f ′(1), then f = f ′.
We prove by induction on n ≥ 0 that f(n) = f ′(n). Let g be the element g = f(1) = f ′(1). Our

base cases are n = 0, since f(0) = 1 = f ′(0) for any homomorphisms, and n = 1 which is our assumption.
Therefore assume by induction that f(n) = f ′(n). For the inductive step,

f(n+ 1) = f(n) · f(1) = f(n) · g = f ′(n) · g = f ′(n) · f ′(1) = f ′(n+ 1)

which completes the inductive step.
For any m ≥ 0 we conclude that

f(−m) = f(m)−1 6= f ′(m)−1 = f ′(−m)

so we also have f(n) = f ′(n) for all n < 0.
This proves that f = f ′ and thus concludes the proof that α is injective.

Question 2
Let S be the set S = Z/4Z = {0, 1, 2, 3}. Note that in this question we will not really be
considering S as a group, mostly just as a set. We’ll say that a bijection g : S → S is adjacency-
preserving if for all s ∈ S, either g(s+ 1) = g(s) + 1 or g(s+ 1) = g(s)− 1.

(a) How many adjacency-preserving bijections on S are there?
You do not have to list them all out (although you might want to give them names for the

later parts) but you do need to justify why your answer is correct.
There are 8 adjacency-preserving bijections. They are f0, f1, f2, f3 and g0, g1, g2, g3 where fi(s) = i + s

and gi(s) = i− s. The point is that once g(0) is chosen in one of |S| = 4 ways, there are two ways g(0)± 1
to choose g(1), and then the other values g(2), g(3) are determined by the adjacency-preserving property.
[Note from TC: a bit more detail here was probably necessary for students, but not a ton more.] Thus, there
are 8 total possibilities.

Let G be the set of adjacency-preserving bijections on S. You should convince yourself that
G is a group under composition, but you do not have to prove it.

(b) Does G have a subgroup isomorphic to Z/4Z? Prove or disprove.
The subgroupH = {f0, f1, f2, f3} is isomorphic to Z/4Z via the map ϕ(fi) = i. Note thatH is a subgroup

because it’s nonempty, closed under composition fi ◦ fj = fi+j , and closed under inverses f−1i = f−i. The
map is an isomorphism because it’s a bijection and ϕ(fi) + ϕ(fj) = i+ j = ϕ(fi ◦ fj).

(c) How many subgroups H of G containing 4 elements are there? (i.e. |H| = 4) Justify your
answer.

We know that every element h ∈ H has order dividing |H| = 4, so all elements have order 1 (for the
identity), order 2, or order 4. There are only two elements of order 4 (f1 and f3), and any subgroup which
contains one of them must be the subgroup {f0, f1, f2, f3} described above.

Therefore any other subgroup of order 4 consists of the identity together with three elements of order
2. There are five elements of order 2, namely f2, g0, g1, g2, g3. The key computation is that gi ◦ gj = fi−j
for any i and j. So for H to not contain f1 or f3, it must contain no pair {gi, gj} for which i − j is odd.
For H to contain three out of five of f2, g0, g1, g2, g3, it must therefore be either H ′ = {f0, f2, g0, g2} or
H ′′ = {f0, f2, g1, g3}. To check that H ′ and H ′′ are subgroups, the key computation is f2 ◦gi = gi ◦f2 = gi+2

(in addition to the computation gi ◦ gj = fi−j above).
There are three subgroups of order 4 in total.
(d) How many elements of G have order 1? order 2? order 3? order 4? order 5? and so on.
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The identity is f0, which is the unique element of order 1. The five elements f2, g0, g1, g2, g3 all have
order 2. The two elements f1, f3 have order 4. There are no elements of higher order.

(e) (open-ended, optional) Suppose that instead of S = Z/4Z we had taken S′ = Z/100Z, and
built the group G′ of adjacency-preserving bijections on S′ . If you wanted to describe the
structure of G′ to a friend, can you come up with a better way than listing out all its elements
and saying which ones multiply to what?

For the same reason as in (a), G′ will contain 200 total bijections fi, gi, 0 ≤ i ≤ 99, where fi(s) = i + s
and gi(s) = i−s. In other words, G′ ∼= D200, the dihedral group of order 200, which is the group of rotations
and reflections of the 100-gon. [See Section 1.2 of the book.] The fi correspond to rotations and the gi to
reflections.

Question 3
Let Z12 = 〈x〉 and Z9 = 〈y〉. (i.e. x12 = 1 and y9 = 1; see §2.3 for more on Zn.)

For which integers a ∈ Z does there exist an homomorphism f : Z12 → Z9 with f(x) = ya?
Since f is a homomorphism, it must be the case that 1 = f(1) = f(x12) = f(x)12, so f(x) must have

order dividing 12. Since y has order 9, ya has order dividing 12 if and only if a is divisible by 3, so f can
only exist if a is divisible by 3. Conversely, if a is divisible by 3, define f : Z12 → Z9 by f(xb) = yab. We
must check that this is well-defined and a homomorphism. Note that xb = xc in Z12 iff b ≡ c mod 12, i.e. if
c = b+12` for some `. To check that f is well-defined, we must check that f(xb) = yab is equal to yac = f(xc)
in Z9. Since a is divisible by 3, write a = 3k. Then we have

yac = y3kc = y3k(b+12`) = y3kb+36k` = y3kby36k` = y3kb(y9)4k` = y3kb · 1 = yab

so f is a well-defined function.
To check that f is a homomorphism is actually easier: we just check that

f(xi · xj) = f(xi+j) = ya(i+j) = yai+aj = yai · yaj = f(xi) · f(xj).

For which integers a ∈ Z does there exist more than one such homomorphism?
There are no such a. A homomorphism out of a cyclic group is always uniquely determined by the image

of any generator, so the condition f(x) = ya guarantees that there is always at most one such homomorphism.
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