Homework 2

Math 120 (Thomas Church, Spring 2018)

Due Thursday, April 12 at 11:59pm.

Do all the following exercises:

1.1.12	1.1.13	
1.6.13	1.6.14	1.6.18
2.1.8		
2.3.1		

For 1.1.12, 1.1.13, and 2.3.1 you do not have to justify your answers.

Question 1. Does there exist some group K with the following property?

For every group G,

the number of homomorphisms $f: K \to G$ is equal to the cardinality |G| of G. (*)

Describe such a group K and prove it has the property (*), or prove that no such group K exists.

Question 2. Let S be the set $S = \mathbb{Z}/4\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Note that in this question we will not really be considering S as a group, mostly just as a set. We'll say that a bijection $g: S \to S$ is adjacency-preserving if

for all
$$s \in S$$
, either $g(s + \overline{1}) = g(s) + \overline{1}$ or $g(s + \overline{1}) = g(s) - \overline{1}$

(a) How many adjacency-preserving bijections on S are there?

You do not have to list them all out (although you might want to give them names for the later parts) but you *do* need to justify why your answer is correct.

Let G be the set of adjacency-preserving bijections on S. You should convince yourself that G is a group under composition, but you do not have to prove it.

- (b) Does G have a subgroup isomorphic to $\mathbb{Z}/4\mathbb{Z}$? Prove or disprove.
- (c) How many subgroups H of G containing 4 elements are there? (i.e. |H| = 4) Justify your answer.
- (d) How many elements of G have order 1? order 2? order 3? order 4? order 5? and so on.
- (e) (open-ended, optional) Suppose that instead of $S = \mathbb{Z}/4\mathbb{Z}$ we had taken $S' = \mathbb{Z}/100\mathbb{Z}$, and built the group G' of adjacency-preserving bijections on S'. If you wanted to describe the structure of G' to a friend, can you come up with a better way than listing out all its elements and saying which ones multiply to what?

Question 3. Let $Z_{12} = \langle x \rangle$ and $Z_9 = \langle y \rangle$. (i.e. $x^{12} = 1$ and $y^9 = 1$; see §2.3 for more on Z_n .) For which integers $a \in \mathbb{Z}$ does there exist an homomorphism $f: Z_{12} \to Z_9$ with $f(x) = y^a$? For which integers $a \in \mathbb{Z}$ does there exist more than one such homomorphism?

HW 2A:	1.6.13,	1.6.14,	2.1.8, 0	Q1, Q3	
HW 2B:	1.1.12,	1.1.13,	1.6.18,	2.3.1,	Q2