Homework 2

Math 120 (Thomas Church, Spring 2018)

Due Thursday, April 12 at 11:59pm.

Do all the following exercises:

1.1 .12	1.1 .13	
1.6 .13	1.6 .14	1.6 .18
2.1 .8		
2.3 .1		

For 1.1.12, 1.1.13, and 2.3.1 you do not have to justify your answers.
Question 1. Does there exist some group K with the following property?
For every group G,
the number of homomorphisms $f: K \rightarrow G$ is equal to the cardinality $|G|$ of G.
Describe such a group K and prove it has the property $(*)$, or prove that no such group K exists.
Question 2. Let S be the set $S=\mathbb{Z} / 4 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Note that in this question we will not really be considering S as a group, mostly just as a set. We'll say that a bijection $g: S \rightarrow S$ is adjacency-preserving if

$$
\text { for all } s \in S \text {, either } g(s+\overline{1})=g(s)+\overline{1} \text { or } g(s+\overline{1})=g(s)-\overline{1}
$$

(a) How many adjacency-preserving bijections on S are there?

You do not have to list them all out (although you might want to give them names for the later parts) but you do need to justify why your answer is correct.

Let G be the set of adjacency-preserving bijections on S. You should convince yourself that G is a group under composition, but you do not have to prove it.
(b) Does G have a subgroup isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$? Prove or disprove.
(c) How many subgroups H of G containing 4 elements are there? (i.e. $|H|=4$) Justify your answer.
(d) How many elements of G have order 1? order 2? order 3 ? order 4 ? order 5 ? and so on.
(e) (open-ended, optional) Suppose that instead of $S=\mathbb{Z} / 4 \mathbb{Z}$ we had taken $S^{\prime}=\mathbb{Z} / 100 \mathbb{Z}$, and built the group G^{\prime} of adjacency-preserving bijections on S^{\prime}. If you wanted to describe the structure of G^{\prime} to a friend, can you come up with a better way than listing out all its elements and saying which ones multiply to what?

Question 3. Let $Z_{12}=\langle x\rangle$ and $Z_{9}=\langle y\rangle$. (i.e. $x^{12}=1$ and $y^{9}=1$; see $\S 2.3$ for more on Z_{n}.) For which integers $a \in \mathbb{Z}$ does there exist an homomorphism $f: Z_{12} \rightarrow Z_{9}$ with $f(x)=y^{a}$? For which integers $a \in \mathbb{Z}$ does there exist more than one such homomorphism?

HW 2A: $\quad 1.6 .13,1.6 .14,2.1 .8$, Q1, Q3
HW 2B: $\quad 1.1 .12,1.1 .13,1.6 .18,2.3 .1$, Q2

