Math 120 Homework 3 Solutions

Xiaoyu He, with edits by Prof. Church
April 21, 2018
[Note from Prof. Church: solutions to starred problems may not include all details or all portions of the question.]

1.3.1*

Let σ be the permutation $1 \mapsto 3,2 \mapsto 4,3 \mapsto 5,4 \mapsto 2,5 \mapsto 1$ and let τ be the permutation $1 \mapsto 5,2 \mapsto 3,3 \mapsto 2,4 \mapsto 4,5 \mapsto 1$. Find the cycle decompositions of each of the following permutations: $\sigma, \tau, \sigma^{2}, \sigma \tau, \tau \sigma, \tau^{2} \sigma$.

The cycle decompositions are:

$$
\begin{aligned}
\sigma & =(135)(24) \\
\tau & =(15)(23)(4) \\
\sigma^{2} & =(153)(2)(4) \\
\sigma \tau & =(1)(2534) \\
\tau \sigma & =(1243)(5) \\
\tau^{2} \sigma & =(135)(24) .
\end{aligned}
$$

1.3.7*

Write out the cycle decomposition of each element of order 2 in S_{4}.
Elements of order 2 are also called involutions. There are six formed from a single transposition, $(12),(13),(14),(23),(24),(34)$, and three from pairs of transpositions: $(12)(34),(13)(24),(14)(23)$.

3.1.6*

Define $\varphi: \mathbb{R}^{\times} \rightarrow\{ \pm 1\}$ by letting $\varphi(x)$ be x divided by the absolute value of x. Describe the fibers of φ and prove that φ is a homomorphism.

The fibers of φ are $\varphi^{-1}(1)=(0, \infty)=\{$ all positive reals $\}$ and $\varphi^{-1}(-1)=(-\infty, 0)=\{$ all negative reals $\}$.

3.1.7*

Define $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\pi((x, y))=x+y$. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically.

The map π is surjective because e.g. $\pi((x, 0))=x$. The kernel of π is the line $y=-x$ through the origin. The fibers of π are all the lines $y=-x+c$ of slope -1 .

3.1.8*

Let $\varphi: \mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}$be the map sending x to the absolute value of x. Prove that φ is a homomorphism and find the image of φ. Describe the kernel and the fibers of φ.

The image of φ is the set of positive reals $(0, \infty)$. The kernel of φ is $\{ \pm 1\}$. The fiber of φ over a point $x \in(0, \infty)$ is the two-element set $\{ \pm x\}$. The fibers over the negative reals are empty.

3.1.9*

Define $\varphi: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$by $\varphi(a+b i)=a^{2}+b^{2}$. Prove that φ is a homomorphism and find the image of φ. Describe the kernel and fibers of φ geometrically (as subsets of the plane).

The image of φ is the set of positive reals $(0, \infty)$. The kernel is the unit circle $\{z \in \mathbb{C}|z|=1\}$. The fibers are circles centered at the origin; if $x>0$ then $\varphi^{-1}(x)$ is the circle $\{z \in \mathbb{C} \| z \mid=x\}$ of radius x.

3.1.41

Let G be a group. Prove that $N=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle$ is a normal subgroup of G and G / N is abelian (N is called the commutator subgroup of G).

For a subgroup N to be normal means that $g N g^{-1}=N$ for all $g \in G$. We first prove a lemma: actually, it suffices to show that $g N g^{-1} \subseteq N$ for all $g \in G$. Why? Suppose we have proved this for all elements g. So for a given $x \in G$, we know both $x N x^{-1} \subseteq N$ and $x^{-1} N x \subseteq N$. Multiplying the second equation by x on the left and by x^{-1} on the right, it becomes $N \subseteq x N x^{-1}$. Combining this with the first equation shows that $x N x^{-1} \subseteq N \subseteq x N x^{-1}$, so $x N x^{-1}=N$ as desired.

For readability, let's introduce the notation $[x, y]=x^{-1} y^{-1} x y$. This is called the commutator of x and y. We need to check that $g N g^{-1} \subseteq N$ for all $g \in G$. Let $h \in N$. Then,

$$
\begin{aligned}
g h g^{-1} & =g h g^{-1} \cdot 1 \\
& =g h g^{-1}\left(h^{-1} h\right) \\
& =g h g^{-1} h^{-1} h \\
& =\left(g h g^{-1} h^{-1}\right) h
\end{aligned}
$$

which we recognize as the product $\left[g^{-1}, h^{-1}\right] h$ of a commutator $\left[g^{-1}, h^{-1}\right]$ and the element h. Since N is the subgroup generated by commutators of G, we know that $\left[g^{-1}, h^{-1}\right] \in N$ by definition; and $h \in N$ by assumption. Since N is a subgroup, their product $g h g^{-1}$ must therefore lie in N as well. This concludes the proof that $g N g^{-1} \subseteq N$ for any $g \in G$, as desired. This shows N is a normal subgroup of G.

To see that G / N is abelian, we need to check that $(g N)(h N)=(h N)(g N)$ for any two cosets $g N$ and $h N$ of N. Since coset multiplication is given by multiplication of their representatives, we want $g h N=h g N$. But the commutator $[h, g]=h^{-1} g^{-1} h g$ lies in N, so $g h N=g h\left(h^{-1} g^{-1} h g\right) N=h g N$, as desired.

Question 1

Let $T \subset S_{n}$ be the set of transpositions. (A transposition is a permutation of the form $(i j)$, which swaps two elements and fixes all others. Note that $|T|=\binom{n}{2}$.)

Prove that the symmetric group S_{n} is generated by T.
As in class, write ($a_{1} a_{2} \ldots a_{\ell}$) for the permutation with a single nontrivial cycle which sends $a_{i} \mapsto a_{i+1}$ for $1 \leq i<\ell$, sends $a_{\ell} \mapsto a_{1}$, and fixes all the other elements of [n]. Since every permutation has a cycle decomposition, the set C of all such permutations $\left(a_{1} \ldots a_{\ell}\right)$ certainly generate S_{n}. So it suffices to show that every element of C is a product of transpositions. [Note: Think about why this suffices, if you don't understand why.]

In fact, we can explicitly check that $\left(a_{1} a_{2} \ldots a_{\ell}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{\ell-1} a_{\ell}\right)$. Thus, T generates S_{n}.

Question 2

Let G be a finite group of order $|G|=n$. Prove that there exists a subgroup H of S_{n} which is isomorphic to G.

Informally, each element $g \in G$ acts by left-multiplication on the set of all other elements of G, permuting them. Here's how to make this explicit.

Instead of constructing a subgroup H of S_{n}, it's more natural to construct a subgroup H^{\prime} of Perm (G). Since $|G|=n$, we know that $\operatorname{Perm}(G)$ is isomorphic to S_{n} [there is an isomorphism for every bijection $G \rightarrow\{1, \ldots, n\}]$, and under this isomorphism the subgroup $H^{\prime}<\operatorname{Perm}(G)$ corresponds to an isomorphic subgroup $H<S_{n}$. [After constructing the subgroup H^{\prime}, we'll also show how you could directly construct H, if you wanted to.]

Construction of $H^{\prime}<\operatorname{Perm}(G)$ We construct a function $\alpha: G \rightarrow \operatorname{Perm}(G)$ as follows. Given $g \in G$, the permutation $\alpha_{g} \in \operatorname{Perm}(G)$ is defined by $\alpha_{g}(k)=g k$ for $k \in G$. We must first show that α_{g} really is a permutation. We also want to show that α is a homomorphism and is injective.

It turns out to be easier to start with the second point, by noting that $\alpha_{g} \circ \alpha_{h}=\alpha_{g h}$. We can verify this simply by checking on elements:

$$
\text { for any } k \in G, \quad \alpha_{g} \circ \alpha_{h}(k)=\alpha_{g}\left(\alpha_{h}(k)\right)=\alpha_{g}(h k)=g(h k)=(g h) k=\alpha_{g h}(k)
$$

We can now also check that α_{g} is indeed a permutation. Note that α_{1} is the identity permutation (since $\alpha_{1}(k)=1 \cdot k=k$ for all $\left.k\right)$. Therefore taking $h=g^{-1}$ in $\alpha_{g} \circ \alpha_{h}=\alpha_{g h}$ tells us that $\alpha_{g} \circ \alpha_{g^{-1}}=\alpha_{g g^{-1}}=$ $\alpha_{1}=\mathrm{id}$. Therefore α_{g} is an invertible function on a finite set, and thus is a bijection $\alpha_{g} \in \operatorname{Perm}(G)$.

Finally, we must check that α is injective. Suppose that α_{g} and α_{h} are the same function. In particular, their values on the element $1 \in G$ are equal. But by definition $\alpha_{g}(1)=g \cdot 1=g$ and $\alpha_{h}(1)=h \cdot 1=h$, so this means $g=h$. This proves that α is injective.

Let $H^{\prime}=\operatorname{im} \alpha<\operatorname{Perm}(G)$. Since α is an injective homomorphism, it is a bijection to its image H^{\prime}, so α is an isomorphism between G and H^{\prime}.

Direct construction of $H<S_{n}$ (Alternate approach) Number the elements of G arbitrarily: g_{1}, \ldots, g_{n}. Define the function $f:[n]^{2} \rightarrow[n]$ as $f(i, j)=k$ iff $g_{i} g_{j}=g_{k}$. Then, define the map $\varphi: G \rightarrow S_{n}$ by $\varphi\left(g_{i}\right)(j)=f(i, j)$. That is, $\varphi\left(g_{i}\right)$ is the permutation of $[n]$ which sends j to $f(i, j)$. [We must again check here that $\phi\left(g_{i}\right)$ is a permutation.] We claim that φ is an injective homomorphism.

To show that φ is a homomorphism, note that $g_{i} g_{j} g_{k}=g_{i} g_{f(j, k)}=g_{f(i, f(j, k))}$ by the definition of f. Thus, $\varphi\left(g_{i} g_{j}\right)$ is the permutation which sends $k \mapsto f(i, f(j, k))$. On the other hand, group multiplication in S_{n} is just composition, so $\varphi\left(g_{i}\right) \varphi\left(g_{j}\right)$ is also the permutation which sends $k \mapsto f(j, k) \mapsto f(i, f(j, k))$. This shows φ is a homomorphism.

To show that φ is injective, suppose without loss of generality that g_{1} is the identity of G. Then, $g_{i} g_{1}=g_{i}$, so $f(i, 1)=i$ for all i. Thus, $\varphi\left(g_{i}\right)$ is a permutation which sends $1 \mapsto i$, and so each g_{i} is sent to a different permutation.

Let $H=\operatorname{im} \varphi$. Since φ is an injective homomorphism, it is a bijection to its image H, so φ is an isomorphism between G and H.

Question 3

Recall that a group G is finitely generated if there exists a finite subset $T \subset G$ such that $G=\langle T\rangle$. (a^{*}) Prove that every finite group is finitely generated.
Take $T=G$.
(b*) Prove that \mathbb{Z} is finitely generated.
Take $T=\{1\}$.
(c) Prove that every finitely generated subgroup of \mathbb{Q} is cyclic.

Lemma 1. Given two elements $a, b \in \mathbb{Z}$, the subgroup generated by a and b can be generated by a single element x

Proof. In fact, that single element will be the gcd of a and b. Let $x=\operatorname{gcd}(a, b)$.

Since x is a divisor of a, we know that $a \in\langle x\rangle$; similarly, since x is a divisor of b, we know that $b \in\langle x\rangle$. Since $\langle a, b\rangle$ is defined as the smallest subgroup containing both a and b, this tells us that $\langle a, b\rangle \subseteq\langle x\rangle$. (So far we have only used that x is a common divisor of a and b, not that it is the greatest common divisor.)

Now let us use that x is actually the gcd of a and b. By the Euclidean algorithm, there exists $c, d \in \mathbb{Z}$ for which $a c+b d=\operatorname{gcd}(a, b)=x$. This implies that x is contained in the subgroup generated by a and $b .{ }^{1}$ So $x \in\langle a, b\rangle$, and thus $\langle x\rangle \subseteq\langle a, b\rangle$. In light of the above, this shows that $\langle a, b\rangle=\langle x\rangle$, proving the lemma.

Lemma 2. Every finitely generated subgroup of \mathbb{Z} is cyclic.
Proof. Let H be a finitely generated subgroup of \mathbb{Z}, and let $n \geq 1$ be the minimum positive integer for which H has a generating set T of size n.

Suppose for the sake of contradiction that H is not cyclic, i.e. that $n \geq 2$. We may therefore choose two elements $a, b \in \mathbb{Z}$ of T. But Lemma 1 tells us that we can replace a and b in T by a single generator $x=\operatorname{gcd}(a, b)$ and still generate H. This gives a generating set for H of size $n-1$, contradicting the minimality of n. This contradiction implies that H must have been cyclic.

Given $D \neq 0 \in \mathbb{N}$, let $\frac{1}{D} \mathbb{Z}$ denote the subgroup of \mathbb{Q} consisting of elements that can be written as $\frac{n}{D}$ for some $n \in \mathbb{Z}$. Note that $\frac{1}{D} \mathbb{Z}$ is isomorphic to \mathbb{Z} under the isomorphism $\frac{1}{D} \mathbb{Z} \ni \frac{n}{D} \leftrightarrow n \in \mathbb{Z}$.

Now, let H be a subgroup of \mathbb{Q} generated by a finite set $T=\left\{\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{k}}{q_{k}}\right\}$. Let $D=\operatorname{lcm}\left(q_{1}, \ldots, q_{k}\right)$ be the lcm of all the denominators of elements of T (or if we want to be lazier, we could just take $D=q_{1} \cdots q_{k}$). In either case, we see that $\frac{p_{i}}{q_{i}} \in \frac{1}{D} \mathbb{Z}$ for all i.

Since $\frac{1}{D} \mathbb{Z}$ is a subgroup of \mathbb{Q} and every element of T lies in it, $H=\langle T\rangle$ is a subgroup of $\frac{1}{D} \mathbb{Z}$. But $\frac{1}{D} \mathbb{Z}$ is isomorphic to \mathbb{Z} as a group, so by Lemma 2 every finitely generated subgroup thereof is cyclic. Thus, H is cyclic.
(d) Prove that \mathbb{Q} is not finitely generated.

One way to see this is that any finite set T of rational numbers has a common denominator D, so that $\langle T\rangle \subseteq \frac{1}{D} \mathbb{Z}$. Thus no finite set of generators can generate the whole group of rational numbers additively.

Another way to see this is to use part (c). If \mathbb{Q} is finitely generated, then it would be a finitely generated subgroup of itself, so by part (c) \mathbb{Q} would have to be cyclic. Suppose for a contradiction that $x \in \mathbb{Q}$ is a purported generator of \mathbb{Q}. Then $y=\frac{1}{2} x$ cannot be obtained from x by addition/subtraction, so $y \notin\langle x\rangle$. This contradiction shows that \mathbb{Q} is not cyclic.

Question 4

Let G be a finite group of order $|G|=n$, and suppose that p is a prime number dividing n. In this question you will prove that G has an element z of order $|z|=p$. Let

$$
S=\left\{\left(g_{1}, \ldots, g_{p}\right) \mid g_{1} \cdot g_{2} \cdots g_{p}=1\right\}
$$

be the set of p-tuples of group elements whose product is equal to 1.
(a) Show that $|S|=|G|^{p-1}$. (Since $|G|$ is divisible by p by assumption, (a) implies that $|S|$ is divisible by p.)

Let

$$
S^{\prime}=G^{p-1}
$$

be the set of all $(p-1)$-tuples of elements of G. We claim that the map $S \rightarrow S^{\prime}$ which sends $\left(g_{1}, \ldots, g_{p}\right) \mapsto$ $\left(g_{1}, \ldots, g_{p-1}\right)$ by dropping the last coordinate is a bijection.

It is a surjection because for every $\left(g_{1}, \ldots, g_{p-1}\right) \in S^{\prime}$, we can exhibit the tuple $\left(g_{1}, \ldots, g_{p-1},\left(g_{1} \cdots g_{p-1}\right)^{-1}\right) \in$ G which maps to it. It is an injection because if two p-tuples in S have the first same $p-1$ coordinates $\left(g_{1}, \ldots, g_{p-1}\right)$, then the last coordinate is uniquely determined by $g_{1} \cdot g_{2} \cdots g_{p}=1$ to be $g_{p}=\left(g_{1} \cdots g_{p-1}\right)^{-1}$, so the two p-tuples must be identical.

Thus $|S|=\left|S^{\prime}\right|=|G|^{p-1}$.

[^0]Consider the equivalence relation on S defined by $\alpha \sim \beta$ if β is obtained by "rotating" α; in other words, for some $k, \alpha=\left(x_{1}, \ldots, x_{p}\right)$ and $\beta=\left(x_{k}, x_{k+1}, \ldots, x_{p}, x_{1}, \ldots, x_{k-1}\right)$.
(b^{*}) Convince yourself that this is an equivalence relation.
(c) Prove that every equivalence class has size 1 or p (using that p is a prime). Conclude that $|S|=a+p b$, where a is the number of classes of size 1 and b is the number of classes of size p.

First, note that if $\alpha \in S$ then any rotation of α is also in S. For example, suppose $x_{1} x_{2} \cdots x_{p}=1$. Then, multiplying on the left by x_{1}^{-1} and on the right by x_{1} (this is called conjugation by x_{1}^{-1}) gives

$$
\begin{aligned}
x_{1}^{-1} x_{1} x_{2} \cdots x_{p} x_{1} & =x_{1}^{-1} x_{1} \\
x_{2} \cdots x_{p} x_{1} & =1 .
\end{aligned}
$$

Repeating this conjugation process, we see that if a product of elements in a group is 1 , then any rotation also has product 1 .

So we may simply prove the same statement about equivalence classes of p-tuples in the larger set G^{p} containing S.

Suppose $\alpha=\left(x_{1}, \ldots, x_{p}\right)$. We will show that either all p rotations of α are different, in which case the equivalence class of α has size p, or they are all the same, in which case the equivalence class has size 1 . If $x_{1}=x_{2}=\cdots=x_{p}$, then all rotations of α are the same, so the equivalence class containing α has size 1 .

Otherwise, suppose α is not constant, i.e. there exist some $x_{i} \neq x_{j}$. We claim that all p rotations of α are different tuples.

If not, there are two rotations $\left(x_{k}, x_{k+1}, \ldots, x_{p}, x_{1}, \ldots, x_{k-1}\right)$ and $\left(x_{\ell}, x_{\ell+1}, \ldots, x_{p}, x_{1}, \ldots, x_{\ell-1}\right)$ which are the same p-tuple. This implies that $x_{i}=x_{i+\ell-k}$ for all i, where addition of indices is taken mod p. But then,

$$
\begin{aligned}
x_{1} & =x_{1+\ell-k} \\
& =x_{1+2(\ell-k)} \\
& =x_{1+m(\ell-k)}
\end{aligned}
$$

for all m. It is easy to check that if $\ell-k \not \equiv 0(\bmod p)$, then the multiples of $\ell-k$ cycle through all residue classes $\bmod p$ (this is a consequence of $\mathbb{Z} / p \mathbb{Z}^{\times}$being a group, for example). Thus, for all $i \in[p]$, there exists m for which $1+m(\ell-k)=i$, and so $x_{1}=x_{i}$ for all i. This contradicts the fact that α is not constant. What we have shown is that any nonconstant α has a full set of p distinct rotations in its equivalence class.

To see that $|S|=a+p b$, divide S into the equivalence classes of size 1 and those of size p. This completely partitions S, so $|S|=a+p b$.
(d) Show that an equivalence class contains a single element if and only if that element is of the form (x, x, \ldots, x) with $x^{p}=1$.

We showed in the last part that a singleton equivalence class in G^{p} must be constant $\alpha=(x, \ldots, x)$. If in addition this element is to lie in S, it must have product 1, i.e. $x^{p}=1$. Conversely, any x with $x^{p}=1$ gives a singleton equivalence class (x, x, \ldots, x) which lies in S.
(e) Finish the proof (i.e. prove that G contains an element of order p) by showing that there must be at least one class of size 1 besides $(1,1, \ldots, 1), \tilde{A}$ la HW1 Q3A.

Since $|S|=|G|^{p-1}$ by part (a), and p divides the order of G, p divides $|S|$. On the other hand, by part (c) $|S|=a+p b$ where a is the number of equivalence classes of size 1 and b is the number of equivalence classes of size p. Thus $p \mid a+p b$, which implies $p \mid a$. In particular, since all primes satisfy $p \geq 2$, there must be at least two classes of size 1 , and therefore at least one such class $\alpha=(x, \ldots, x)$ with $x^{p}=1$ and $x \neq 1$. This shows the existence of an element x of order exactly p, as desired.

Question 5

Notation: For any groups H and G, write $n(H, G)$ for the number of homomorphisms from H to G.

Say you are given two groups A and B. Your goal is to find a new group C with the new property (*) that for every group H,

$$
n(H, C)=n(H, A) \cdot n(H, B)
$$

Construct such a group C (it will depends on the groups A and B you are given!) and prove it has the property (*).

The group C we define is called the direct product (or simply product) of A and B, written $C=A \times B$. The underlying set of C is just the Cartesian product $\{(a, b): a \in A, b \in B\}$ of A and B as sets, and the group operation of C is given by coordinate-wise multiplication. Explicitly, if $\cdot A, \cdot B$ are the group operations of A, B, then the group operation $\cdot C$ on $C=A \times B$ is given by

$$
\left(a_{1}, b_{1}\right) \cdot{ }_{C}\left(a_{2}, b_{2}\right)=\left(a_{1} \cdot{ }_{A} a_{2}, b_{1} \cdot{ }_{B} b_{2}\right)
$$

It is easy to check that C is also a group.
Write $\operatorname{Hom}(G, H)$ for the set of homomorphisms from G to H. Thus, $n(G, H)=|\operatorname{Hom}(G, H)|$.
To prove C has property $\left(^{*}\right)$, we construct a bijection φ between $\operatorname{Hom}(H, C)$ and the product set $\operatorname{Hom}(H, A) \times \operatorname{Hom}(H, B)$. To construct this bijection, define two projection homomorphisms $\pi_{A}: C \rightarrow A$ and $\pi_{B}: C \rightarrow B$ by $\pi_{A}((a, b))=a$ and $\pi_{B}((a, b))=b$. Thus π_{A} projects to the first coordinate and π_{B} to the second. Then, if $f \in \operatorname{Hom}(H, C)$, define $\varphi(f)=\left(\pi_{A} \circ f, \pi_{B} \circ f\right)$. Notice that compositions of homomorphisms are homomorphisms, so $\pi_{A} \circ f$ is a homomorphism $H \rightarrow A$ and $\pi_{B} \circ f$ is a homomorphism $H \rightarrow B$, as we wanted.

To prove that φ is a bijection, we can just construct a two-sided inverse for it.
In the other direction, if $\left(f_{A}, f_{B}\right) \in \operatorname{Hom}(H, A) \times \operatorname{Hom}(H, B)$, then define $\psi\left(\left(f_{A}, f_{B}\right)\right)$ to be the "product homomorphism" map $f: H \rightarrow C$ which sends $h \in H$ to $\left(f_{A}(h), f_{B}(h)\right)$. It is easy to check that this map f is itself a homomorphism $H \rightarrow C$.

Finally, notice that φ and ψ are mutually inverse functions. Given $f \in \operatorname{Hom}(H, C)$, the map $\psi(\varphi(f))$ sends $h \in H$ to $\left(\pi_{A}(f(h)), \pi_{B}(f(h))\right)$, which is just $f(h)$, so $\psi(\varphi(f))=f$ for all $f \in \operatorname{Hom}(H, C)$, and ψ is a left-inverse for φ.

Similarly, given $\left(f_{A}, f_{B}\right) \in \operatorname{Hom}(H, A) \times \operatorname{Hom}(H, B)$, the ordered pair $\varphi\left(\psi\left(f_{A}, f_{B}\right)\right)$ is the pair of functions $\left(h \mapsto \pi_{A}(f(h)), h \mapsto \pi_{B}(f(h))\right)$, where $f(h)=\left(f_{A}(h), f_{B}(h)\right)$. But then $\pi_{A}(f(h))=f_{A}(h)$ and $\pi_{B}(f(h))=$ $f_{B}(h)$, and so $\varphi\left(\psi\left(f_{A}, f_{B}\right)\right)=\left(f_{A}, f_{B}\right)$. Thus ψ is a two-sided inverse for φ, showing that φ is a bijection. The existence of this bijection then proves that

$$
\begin{aligned}
|\operatorname{Hom}(H, C)| & =|\operatorname{Hom}(H, A) \times \operatorname{Hom}(H, B)| \\
n(H, C) & =n(H, A) \cdot n(H, B),
\end{aligned}
$$

where C is the product group $A \times B$.

[^0]: ${ }^{1}$ If this confuses you, imagine we were writing the group operation multiplicatively: then the equation $a c+b d=x$ would instead be written in the form $\alpha^{c} \beta^{d}=\xi$.

