
Math 120 Homework 3 Solutions

Xiaoyu He, with edits by Prof. Church

April 21, 2018

[Note from Prof. Church: solutions to starred problems may not include all details or all portions of the
question.]

1.3.1*
Let σ be the permutation 1 7→ 3, 2 7→ 4, 3 7→ 5, 4 7→ 2, 5 7→ 1 and let τ be the permutation
1 7→ 5, 2 7→ 3, 3 7→ 2, 4 7→ 4, 5 7→ 1. Find the cycle decompositions of each of the following
permutations: σ, τ, σ2, στ, τσ, τ2σ.

The cycle decompositions are:

σ = (135)(24)

τ = (15)(23)(4)

σ2 = (153)(2)(4)

στ = (1)(2534)

τσ = (1243)(5)

τ2σ = (135)(24).

1.3.7*
Write out the cycle decomposition of each element of order 2 in S4.

Elements of order 2 are also called involutions. There are six formed from a single transposition,
(12), (13), (14), (23), (24), (34), and three from pairs of transpositions: (12)(34), (13)(24), (14)(23).

3.1.6*
Define ϕ : R× → {±1} by letting ϕ(x) be x divided by the absolute value of x. Describe the
fibers of ϕ and prove that ϕ is a homomorphism.

The fibers of ϕ are ϕ−1(1) = (0,∞) = {all positive reals} and ϕ−1(−1) = (−∞, 0) = {all negative reals}.

3.1.7*
Define π : R2 → R by π((x, y)) = x+ y. Prove that π is a surjective homomorphism and describe
the kernel and fibers of π geometrically.

The map π is surjective because e.g. π((x, 0)) = x. The kernel of π is the line y = −x through the origin.
The fibers of π are all the lines y = −x+ c of slope −1.
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3.1.8*
Let ϕ : R× → R× be the map sending x to the absolute value of x. Prove that ϕ is a homomor-
phism and find the image of ϕ. Describe the kernel and the fibers of ϕ.

The image of ϕ is the set of positive reals (0,∞). The kernel of ϕ is {±1}. The fiber of ϕ over a point
x ∈ (0,∞) is the two-element set {±x}. The fibers over the negative reals are empty.

3.1.9*
Define ϕ : C× → R× by ϕ(a+ bi) = a2 + b2. Prove that ϕ is a homomorphism and find the image
of ϕ. Describe the kernel and fibers of ϕ geometrically (as subsets of the plane).

The image of ϕ is the set of positive reals (0,∞). The kernel is the unit circle {z ∈ C| z| = 1}. The
fibers are circles centered at the origin; if x > 0 then ϕ−1(x) is the circle {z ∈ C||z| = x} of radius x.

3.1.41
Let G be a group. Prove that N = 〈x−1y−1xy|x, y ∈ G〉 is a normal subgroup of G and G/N is
abelian (N is called the commutator subgroup of G).

For a subgroup N to be normal means that gNg−1 = N for all g ∈ G. We first prove a lemma: actually,
it suffices to show that gNg−1 ⊆ N for all g ∈ G. Why? Suppose we have proved this for all elements g.
So for a given x ∈ G, we know both xNx−1 ⊆ N and x−1Nx ⊆ N . Multiplying the second equation by x
on the left and by x−1 on the right, it becomes N ⊆ xNx−1. Combining this with the first equation shows
that xNx−1 ⊆ N ⊆ xNx−1, so xNx−1 = N as desired.

For readability, let’s introduce the notation [x, y] = x−1y−1xy. This is called the commutator of x and y.
We need to check that gNg−1 ⊆ N for all g ∈ G. Let h ∈ N . Then,

ghg−1 = ghg−1 · 1
= ghg−1(h−1h)

= ghg−1h−1h

= (ghg−1h−1)h,

which we recognize as the product [g−1, h−1]h of a commutator [g−1, h−1] and the element h. Since N is
the subgroup generated by commutators of G, we know that [g−1, h−1] ∈ N by definition; and h ∈ N by
assumption. Since N is a subgroup, their product ghg−1 must therefore lie in N as well. This concludes the
proof that gNg−1 ⊆ N for any g ∈ G, as desired. This shows N is a normal subgroup of G.

To see that G/N is abelian, we need to check that (gN)(hN) = (hN)(gN) for any two cosets gN and
hN of N . Since coset multiplication is given by multiplication of their representatives, we want ghN = hgN .
But the commutator [h, g] = h−1g−1hg lies in N , so ghN = gh(h−1g−1hg)N = hgN , as desired.

Question 1
Let T ⊂ Sn be the set of transpositions. (A transposition is a permutation of the form (i j),
which swaps two elements and fixes all others. Note that |T | =

(
n
2

)
.)

Prove that the symmetric group Sn is generated by T .
As in class, write (a1a2 . . . a`) for the permutation with a single nontrivial cycle which sends ai 7→ ai+1for

1 ≤ i < `, sends a` 7→ a1, and fixes all the other elements of [n]. Since every permutation has a cycle
decomposition, the set C of all such permutations (a1 . . . a`) certainly generate Sn. So it suffices to show
that every element of C is a product of transpositions. [Note: Think about why this suffices, if you don’t
understand why.]

In fact, we can explicitly check that (a1a2 . . . a`) = (a1a2)(a2a3) · · · (a`−1a`). Thus, T generates Sn.
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Question 2
Let G be a finite group of order |G| = n. Prove that there exists a subgroup H of Sn which is
isomorphic to G.

Informally, each element g ∈ G acts by left-multiplication on the set of all other elements of G, permuting
them. Here’s how to make this explicit.

Instead of constructing a subgroup H of Sn, it’s more natural to construct a subgroup H ′ of Perm(G).
Since |G| = n, we know that Perm(G) is isomorphic to Sn [there is an isomorphism for every bijection
G → {1, . . . , n}], and under this isomorphism the subgroup H ′ < Perm(G) corresponds to an isomorphic
subgroup H < Sn. [After constructing the subgroup H ′, we’ll also show how you could directly construct
H, if you wanted to.]

Construction of H ′ < Perm(G) We construct a function α : G → Perm(G) as follows. Given g ∈ G,
the permutation αg ∈ Perm(G) is defined by αg(k) = gk for k ∈ G. We must first show that αg really is a
permutation. We also want to show that α is a homomorphism and is injective.

It turns out to be easier to start with the second point, by noting that αg ◦αh = αgh. We can verify this
simply by checking on elements:

for any k ∈ G, αg ◦ αh(k) = αg(αh(k)) = αg(hk) = g(hk) = (gh)k = αgh(k)

We can now also check that αg is indeed a permutation. Note that α1 is the identity permutation (since
α1(k) = 1 · k = k for all k). Therefore taking h = g−1 in αg ◦ αh = αgh tells us that αg ◦ αg−1 = αgg−1 =
α1 = id. Therefore αg is an invertible function on a finite set, and thus is a bijection αg ∈ Perm(G).

Finally, we must check that α is injective. Suppose that αg and αh are the same function. In particular,
their values on the element 1 ∈ G are equal. But by definition αg(1) = g · 1 = g and αh(1) = h · 1 = h, so
this means g = h. This proves that α is injective.

Let H ′ = imα < Perm(G). Since α is an injective homomorphism, it is a bijection to its image H ′, so α
is an isomorphism between G and H ′.

Direct construction of H < Sn (Alternate approach) Number the elements of G arbitrarily: g1, . . . , gn.
Define the function f : [n]2 → [n] as f(i, j) = k iff gigj = gk. Then, define the map ϕ : G → Sn by
ϕ(gi)(j) = f(i, j). That is, ϕ(gi) is the permutation of [n] which sends j to f(i, j). [We must again check
here that φ(gi) is a permutation.] We claim that ϕ is an injective homomorphism.

To show that ϕ is a homomorphism, note that gigjgk = gigf(j,k) = gf(i,f(j,k)) by the definition of f .
Thus, ϕ(gigj) is the permutation which sends k 7→ f(i, f(j, k)). On the other hand, group multiplication in
Sn is just composition, so ϕ(gi)ϕ(gj) is also the permutation which sends k 7→ f(j, k) 7→ f(i, f(j, k)). This
shows ϕ is a homomorphism.

To show that ϕ is injective, suppose without loss of generality that g1 is the identity of G. Then, gig1 = gi,
so f(i, 1) = i for all i. Thus, ϕ(gi) is a permutation which sends 1 7→ i, and so each gi is sent to a different
permutation.

Let H = imϕ. Since ϕ is an injective homomorphism, it is a bijection to its image H, so ϕ is an
isomorphism between G and H.

Question 3
Recall that a group G is finitely generated if there exists a finite subset T ⊂ G such that G = 〈T 〉.

(a*) Prove that every finite group is finitely generated.
Take T = G.
(b*) Prove that Z is finitely generated.
Take T = {1}.
(c) Prove that every finitely generated subgroup of Q is cyclic.

Lemma 1. Given two elements a, b ∈ Z, the subgroup generated by a and b can be generated by a single
element x

Proof. In fact, that single element will be the gcd of a and b. Let x = gcd(a, b).
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Since x is a divisor of a, we know that a ∈ 〈x〉; similarly, since x is a divisor of b, we know that b ∈ 〈x〉.
Since 〈a, b〉 is defined as the smallest subgroup containing both a and b, this tells us that 〈a, b〉 ⊆ 〈x〉. (So
far we have only used that x is a common divisor of a and b, not that it is the greatest common divisor.)

Now let us use that x is actually the gcd of a and b. By the Euclidean algorithm, there exists c, d ∈ Z for
which ac+ bd = gcd(a, b) = x. This implies that x is contained in the subgroup generated by a and b.1 So
x ∈ 〈a, b〉, and thus 〈x〉 ⊆ 〈a, b〉. In light of the above, this shows that 〈a, b〉 = 〈x〉, proving the lemma.

Lemma 2. Every finitely generated subgroup of Z is cyclic.

Proof. Let H be a finitely generated subgroup of Z, and let n ≥ 1 be the minimum positive integer for which
H has a generating set T of size n.

Suppose for the sake of contradiction that H is not cyclic, i.e. that n ≥ 2. We may therefore choose
two elements a, b ∈ Z of T . But Lemma 1 tells us that we can replace a and b in T by a single generator
x = gcd(a, b) and still generateH. This gives a generating set forH of size n−1, contradicting the minimality
of n. This contradiction implies that H must have been cyclic.

Given D 6= 0 ∈ N, let 1
DZ denote the subgroup of Q consisting of elements that can be written as n

D for
some n ∈ Z. Note that 1

DZ is isomorphic to Z under the isomorphism 1
DZ 3 n

D ↔ n ∈ Z.
Now, let H be a subgroup of Q generated by a finite set T = {p1

q1
, . . . , pk

qk
}. Let D = lcm(q1, . . . , qk) be

the lcm of all the denominators of elements of T (or if we want to be lazier, we could just take D = q1 · · · qk).
In either case, we see that pi

qi
∈ 1

DZ for all i.
Since 1

DZ is a subgroup of Q and every element of T lies in it, H = 〈T 〉 is a subgroup of 1
DZ. But 1

DZ is
isomorphic to Z as a group, so by Lemma 2 every finitely generated subgroup thereof is cyclic. Thus, H is
cyclic.

(d) Prove that Q is not finitely generated.
One way to see this is that any finite set T of rational numbers has a common denominator D, so that

〈T 〉 ⊆ 1
DZ. Thus no finite set of generators can generate the whole group of rational numbers additively.

Another way to see this is to use part (c). If Q is finitely generated, then it would be a finitely generated
subgroup of itself, so by part (c) Q would have to be cyclic. Suppose for a contradiction that x ∈ Q is a
purported generator of Q. Then y = 1

2x cannot be obtained from x by addition/subtraction, so y /∈ 〈x〉.
This contradiction shows that Q is not cyclic.

Question 4
Let G be a finite group of order |G| = n, and suppose that p is a prime number dividing n. In
this question you will prove that G has an element z of order |z| = p. Let

S = {(g1, . . . , gp)|g1 · g2 · · · gp = 1}

be the set of p-tuples of group elements whose product is equal to 1.
(a) Show that |S| = |G|p−1. (Since |G| is divisible by p by assumption, (a) implies that |S| is

divisible by p.)
Let

S′ = Gp−1

be the set of all (p− 1)-tuples of elements of G. We claim that the map S → S′ which sends (g1, . . . , gp) 7→
(g1, . . . , gp−1) by dropping the last coordinate is a bijection.

It is a surjection because for every (g1, . . . , gp−1) ∈ S′, we can exhibit the tuple (g1, . . . , gp−1, (g1 · · · gp−1)−1) ∈
G which maps to it. It is an injection because if two p-tuples in S have the first same p − 1 coordinates
(g1, . . . , gp−1), then the last coordinate is uniquely determined by g1 · g2 · · · gp = 1 to be gp = (g1 · · · gp−1)−1,
so the two p-tuples must be identical.

Thus |S| = |S′| = |G|p−1.
1If this confuses you, imagine we were writing the group operation multiplicatively: then the equation ac + bd = x would

instead be written in the form αcβd = ξ.
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Consider the equivalence relation on S defined by α ∼ β if β is obtained by “rotating” α; in
other words, for some k, α = (x1, . . . , xp) and β = (xk, xk+1, . . . , xp, x1, . . . , xk−1).

(b*) Convince yourself that this is an equivalence relation.
(c) Prove that every equivalence class has size 1 or p (using that p is a prime). Conclude

that |S| = a + pb, where a is the number of classes of size 1 and b is the number of classes of
size p.

First, note that if α ∈ S then any rotation of α is also in S. For example, suppose x1x2 · · ·xp = 1. Then,
multiplying on the left by x−11 and on the right by x1 (this is called conjugation by x−11 ) gives

x−11 x1x2 · · ·xpx1 = x−11 x1

x2 · · ·xpx1 = 1.

Repeating this conjugation process, we see that if a product of elements in a group is 1, then any rotation
also has product 1.

So we may simply prove the same statement about equivalence classes of p-tuples in the larger set Gp

containing S.
Suppose α = (x1, . . . , xp). We will show that either all p rotations of α are different, in which case the

equivalence class of α has size p, or they are all the same, in which case the equivalence class has size 1. If
x1 = x2 = · · · = xp, then all rotations of α are the same, so the equivalence class containing α has size 1.

Otherwise, suppose α is not constant, i.e. there exist some xi 6= xj . We claim that all p rotations of α
are different tuples.

If not, there are two rotations (xk, xk+1, . . . , xp, x1, . . . , xk−1) and (x`, x`+1, . . . , xp, x1, . . . , x`−1) which
are the same p-tuple. This implies that xi = xi+`−k for all i, where addition of indices is taken mod p. But
then,

x1 = x1+`−k

= x1+2(`−k)

= x1+m(`−k)

for all m. It is easy to check that if `− k 6≡ 0 (mod p), then the multiples of `− k cycle through all residue
classes mod p (this is a consequence of Z/pZ× being a group, for example). Thus, for all i ∈ [p], there exists
m for which 1 +m(` − k) = i, and so x1 = xi for all i. This contradicts the fact that α is not constant.
What we have shown is that any nonconstant α has a full set of p distinct rotations in its equivalence class.

To see that |S| = a+pb, divide S into the equivalence classes of size 1 and those of size p. This completely
partitions S, so |S| = a+ pb.

(d) Show that an equivalence class contains a single element if and only if that element is
of the form (x, x, . . . , x) with xp = 1.

We showed in the last part that a singleton equivalence class in Gp must be constant α = (x, . . . , x). If
in addition this element is to lie in S, it must have product 1, i.e. xp = 1. Conversely, any x with xp = 1
gives a singleton equivalence class (x, x, . . . , x) which lies in S.

(e) Finish the proof (i.e. prove that G contains an element of order p) by showing that
there must be at least one class of size 1 besides (1, 1, . . . , 1), Ã la HW1 Q3A.

Since |S| = |G|p−1 by part (a), and p divides the order of G, p divides |S|. On the other hand, by part
(c) |S| = a + pb where a is the number of equivalence classes of size 1 and b is the number of equivalence
classes of size p. Thus p|a + pb, which implies p|a. In particular, since all primes satisfy p ≥ 2, there must
be at least two classes of size 1, and therefore at least one such class α = (x, . . . , x) with xp = 1 and x 6= 1.
This shows the existence of an element x of order exactly p, as desired.

Question 5
Notation: For any groups H and G, write n(H,G) for the number of homomorphisms from H
to G.
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Say you are given two groups A and B. Your goal is to find a new group C with the new
property (*) that for every group H,

n(H,C) = n(H,A) · n(H,B).

Construct such a group C (it will depends on the groups A and B you are given!) and prove
it has the property (*).

The group C we define is called the direct product (or simply product) of A and B, written C = A×B.
The underlying set of C is just the Cartesian product {(a, b) : a ∈ A, b ∈ B} of A and B as sets, and the
group operation of C is given by coordinate-wise multiplication. Explicitly, if ·A, ·B are the group operations
of A,B, then the group operation ·C on C = A×B is given by

(a1, b1) ·C (a2, b2) = (a1 ·A a2, b1 ·B b2).

It is easy to check that C is also a group.
Write Hom(G,H) for the set of homomorphisms from G to H. Thus, n(G,H) = |Hom(G,H)|.
To prove C has property (*), we construct a bijection ϕ between Hom(H,C) and the product set

Hom(H,A) × Hom(H,B). To construct this bijection, define two projection homomorphisms πA : C → A
and πB : C → B by πA((a, b)) = a and πB((a, b)) = b. Thus πA projects to the first coordinate and πB to the
second. Then, if f ∈ Hom(H,C), define ϕ(f) = (πA◦f, πB ◦f). Notice that compositions of homomorphisms
are homomorphisms, so πA ◦ f is a homomorphism H → A and πB ◦ f is a homomorphism H → B, as we
wanted.

To prove that ϕ is a bijection, we can just construct a two-sided inverse for it.
In the other direction, if (fA, fB) ∈ Hom(H,A)×Hom(H,B), then define ψ((fA, fB)) to be the “product

homomorphism” map f : H → C which sends h ∈ H to (fA(h), fB(h)). It is easy to check that this map f
is itself a homomorphism H → C.

Finally, notice that ϕ and ψ are mutually inverse functions. Given f ∈ Hom(H,C), the map ψ(ϕ(f))
sends h ∈ H to (πA(f(h)), πB(f(h))), which is just f(h), so ψ(ϕ(f)) = f for all f ∈ Hom(H,C), and ψ is a
left-inverse for ϕ.

Similarly, given (fA, fB) ∈ Hom(H,A)×Hom(H,B), the ordered pair ϕ(ψ(fA, fB)) is the pair of functions
(h 7→ πA(f(h)), h 7→ πB(f(h))), where f(h) = (fA(h), fB(h)). But then πA(f(h)) = fA(h) and πB(f(h)) =
fB(h), and so ϕ(ψ(fA, fB)) = (fA, fB). Thus ψ is a two-sided inverse for ϕ, showing that ϕ is a bijection.
The existence of this bijection then proves that

|Hom(H,C)| = |Hom(H,A)×Hom(H,B)|
n(H,C) = n(H,A) · n(H,B),

where C is the product group A×B.
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