Math 120 Homework 3 Solutions

Xiaoyu He, with edits by Prof. Church
April 21, 2018

[Note from Prof. Church: solutions to starred problems may not include all details or all portions of the
question.]

1.3.1%*

Let 0 be the permutation 1 — 3,2 — 4,3 — 5,4 — 2,5 — 1 and let 7 be the permutation
1— 52— 33— 24— 45— 1. Find the cycle decompositions of each of the following
permutations: o, 7,02, 01,70, 7%0.

The cycle decompositions are:

o (135)(24)
T = (15)(23)(4)
2 = (153)@))
or = (1)(2534)
To = (1243)(5)
20 = (135)(24)

1.3.7*

Write out the cycle decomposition of each element of order 2 in S,.
Elements of order 2 are also called involutions. There are six formed from a single transposition,
(12), (13), (14), (23), (24), (34), and three from pairs of transpositions: (12)(34), (13)(24), (14)(23).

3.1.6*

Define ¢ : R* — {1} by letting ¢(z) be x divided by the absolute value of z. Describe the
fibers of ¢ and prove that ¢ is a homomorphism.
The fibers of ¢ are p~1(1) = (0, 00) = {all positive reals} and p~1(—1) = (—o00,0) = {all negative reals}.

3.1.7*%

Define 7 : R? — R by 7((z,y)) = « + y. Prove that 7 is a surjective homomorphism and describe
the kernel and fibers of m geometrically.

The map 7 is surjective because e.g. 7((x,0)) = x. The kernel of 7 is the line y = —x through the origin.
The fibers of 7 are all the lines y = —x + ¢ of slope —1.



3.1.8%

Let ¢ : R* — R* be the map sending x to the absolute value of x. Prove that ¢ is a homomor-
phism and find the image of ¢. Describe the kernel and the fibers of .

The image of ¢ is the set of positive reals (0,00). The kernel of ¢ is {£1}. The fiber of ¢ over a point
x € (0,00) is the two-element set {£z}. The fibers over the negative reals are empty.

3.1.9%

Define ¢ : C* — R* by ¢(a + bi) = a® + b%. Prove that ¢ is a homomorphism and find the image
of ¢. Describe the kernel and fibers of ¢ geometrically (as subsets of the plane).

The image of ¢ is the set of positive reals (0,00). The kernel is the unit circle {z € C| z| = 1}. The
fibers are circles centered at the origin; if > 0 then p~1(x) is the circle {z € C||z| = z} of radius z.

3.1.41

Let G be a group. Prove that N = (7 !y lzy|z,y € G) is a normal subgroup of G and G/N is
abelian (N is called the commutator subgroup of G).

For a subgroup N to be normal means that gNg~! = N for all g € G. We first prove a lemma: actually,
it suffices to show that gINg~—! C N for all ¢ € G. Why? Suppose we have proved this for all elements g.
So for a given x € G, we know both zN2~! C N and 2~'Nz C N. Multiplying the second equation by z
on the left and by ! on the right, it becomes N C xNz~!. Combining this with the first equation shows
that tNz—! C N C zNz !, so a Nz~ ! = N as desired.

For readability, let’s introduce the notation [z,y] = 'y ~lzy. This is called the commutator of z and y.

We need to check that gNg=' C N for all g € G. Let h € N. Then,

1

ghg™" = ghg™'-1

= ghg '(h'h)
= ghg 'h7h
= (ghg~'h"")h,

which we recognize as the product [g71, A=tk of a commutator [g~1,h~!] and the element h. Since N is
the subgroup generated by commutators of G, we know that [g~!,h~!] € N by definition; and h € N by
assumption. Since N is a subgroup, their product ghg~' must therefore lie in N as well. This concludes the
proof that gNg~—! C N for any g € G, as desired. This shows NN is a normal subgroup of G.

To see that G/N is abelian, we need to check that (¢N)(hN) = (hN)(gN) for any two cosets gN and
hN of N. Since coset multiplication is given by multiplication of their representatives, we want ghN = hgN.
But the commutator [k, g] = h=1g~thg lies in N, so ghN = gh(h~g~thg)N = hgN, as desired.

Question 1

Let T C S, be the set of transpositions. (A transposition is a permutation of the form (i j),
which swaps two elements and fixes all others. Note that |T| = (}).)

Prove that the symmetric group 5, is generated by 7.

As in class, write (ajaz . .. ag) for the permutation with a single nontrivial cycle which sends a; — a;41for
1 < i < ¢, sends ay — a7, and fixes all the other elements of [n]. Since every permutation has a cycle
decomposition, the set C' of all such permutations (a; ...as) certainly generate S,. So it suffices to show
that every element of C' is a product of transpositions. [Note: Think about why this suffices, if you don’t
understand why.]

In fact, we can explicitly check that (ajas...ar) = (a1az2)(azas) - - (ag—1a¢). Thus, T generates S,.



Question 2

Let G be a finite group of order |G| = n. Prove that there exists a subgroup H of S, which is
isomorphic to G.

Informally, each element g € G acts by left-multiplication on the set of all other elements of G, permuting
them. Here’s how to make this explicit.

Instead of constructing a subgroup H of S, it’s more natural to construct a subgroup H' of Perm(G).
Since |G| = n, we know that Perm(G) is isomorphic to S, [there is an isomorphism for every bijection
G — {1,...,n}], and under this isomorphism the subgroup H’ < Perm(G) corresponds to an isomorphic
subgroup H < S,. [After constructing the subgroup H’, we’ll also show how you could directly construct
H, if you wanted to.]

Construction of H' < Perm(G) We construct a function a: G — Perm(G) as follows. Given g € G,
the permutation ay € Perm(G) is defined by a4(k) = gk for k € G. We must first show that a4 really is a
permutation. We also want to show that a is a homomorphism and is injective.

It turns out to be easier to start with the second point, by noting that oy o oy, = agp,. We can verify this
simply by checking on elements:

for any k € G, 40 an(k) = aglan(k)) = ay(hk) = g(hk) = (gh)k = agn(k)

We can now also check that oy is indeed a permutation. Note that oy is the identity permutation (since
a1(k) =1k =k for all k). Therefore taking h = g~ in ay o a, = gy, tells us that ag o ay-1 = g1 =
ay = id. Therefore oy is an invertible function on a finite set, and thus is a bijection ay € Perm(G).

Finally, we must check that « is injective. Suppose that oy and oy, are the same function. In particular,
their values on the element 1 € G are equal. But by definition a4(1) =¢-1 =g and ap(1) =h-1=h, so
this means g = h. This proves that « is injective.

Let H' = ima < Perm(G). Since « is an injective homomorphism, it is a bijection to its image H’, so «
is an isomorphism between G and H’.

Direct construction of H < S,, (Alternate approach) Number the elements of G arbitrarily: ¢1,...,gn-
Define the function f : [n]* — [n] as f(i,j) = k iff gigj = gx. Then, define the map ¢ : G — S, by
©(9:)(7) = f(i,7). That is, ¢(g;) is the permutation of [n] which sends j to f(i,5). [We must again check
here that ¢(g;) is a permutation.]| We claim that ¢ is an injective homomorphism.

To show that ¢ is a homomorphism, note that g;g;gx = 9i9r(j,k) = 9r@i,f(,k)) by the definition of f.
Thus, ¢(g:9,) is the permutation which sends k — f(i, f(j,k)). On the other hand, group multiplication in
Sy, is just composition, so ¢(g;)¢(g;) is also the permutation which sends k — f(j,k) — f(¢, f(j,k)). This
shows ¢ is a homomorphism.

To show that ¢ is injective, suppose without loss of generality that g; is the identity of G. Then, g;g1 = g,
so f(i,1) =i for all . Thus, ¢(g;) is a permutation which sends 1 — ¢, and so each g; is sent to a different
permutation.

Let H = imy. Since ¢ is an injective homomorphism, it is a bijection to its image H, so ¢ is an
isomorphism between G and H.

Question 3

Recall that a group G is finitely generated if there exists a finite subset 7' C G such that G = (T).
(a*) Prove that every finite group is finitely generated.

Take T'= G.
(b*) Prove that Z is finitely generated.
Take T' = {1}.

(c) Prove that every finitely generated subgroup of Q is cyclic.

Lemma 1. Given two elements a,b € Z, the subgroup generated by a and b can be generated by a single
element x

Proof. In fact, that single element will be the ged of a and b. Let x = ged(a, b).



Since z is a divisor of a, we know that a € (x); similarly, since z is a divisor of b, we know that b € (x).
Since (a, b) is defined as the smallest subgroup containing both a and b, this tells us that {(a,b) C {(x). (So
far we have only used that x is a common divisor of a and b, not that it is the greatest common divisor.)

Now let us use that x is actually the ged of a and b. By the Euclidean algorithm, there exists ¢, d € Z for
which ac + bd = ged(a,b) = 2. This implies that x is contained in the subgroup generated by a and b.! So
x € {a, by, and thus (x) C (a,b). In light of the above, this shows that (a,b) = (z), proving the lemma. O

Lemma 2. FEvery finitely generated subgroup of Z is cyclic.

Proof. Let H be a finitely generated subgroup of Z, and let n > 1 be the minimum positive integer for which
H has a generating set T of size n.

Suppose for the sake of contradiction that H is not cyclic, i.e. that n > 2. We may therefore choose
two elements a,b € Z of T. But Lemma 1 tells us that we can replace a and b in T" by a single generator
x = ged(a, b) and still generate H. This gives a generating set for H of size n— 1, contradicting the minimality
of n. This contradiction implies that H must have been cyclic. O

Given D # 0 € N, let %Z denote the subgroup of Q consisting of elements that can be written as % for
some n € Z. Note that %Z is isomorphic to Z under the isomorphism %Z > 5 & nel.

Now, let H be a subgroup of Q generated by a finite set T = {%, e %}. Let D = lem(q, ..., qx) be
the lem of all the denominators of elements of T (or if we want to be lazier, we could just take D = q; - - - qx).
In either case, we see that % € %Z for all 7.

Since %Z is a subgroup of Q and every element of T lies in it, H = (T') is a subgroup of %Z. But %Z is
isomorphic to Z as a group, so by Lemma 2 every finitely generated subgroup thereof is cyclic. Thus, H is
cyclic.

(d) Prove that Q is not finitely generated.

One way to see this is that any finite set T' of rational numbers has a common denominator D, so that
(T) C %Z. Thus no finite set of generators can generate the whole group of rational numbers additively.

Another way to see this is to use part (c). If Q is finitely generated, then it would be a finitely generated
subgroup of itself, so by part (¢) Q would have to be cyclic. Suppose for a contradiction that € Q is a
purported generator of Q. Then y = Jx cannot be obtained from x by addition/subtraction, so y ¢ (z).
This contradiction shows that Q is not cyclic.

Question 4

Let G be a finite group of order |G| = n, and suppose that p is a prime number dividing n. In
this question you will prove that G has an element z of order |z| = p. Let

S={(g1,--59)g1- 92 9p = 1}

be the set of p-tuples of group elements whose product is equal to 1.
(a) Show that |S| = |G|P~!. (Since |G| is divisible by p by assumption, (a) implies that |S| is
divisible by p.)
Let
S =qgr!

be the set of all (p — 1)-tuples of elements of G. We claim that the map S — S’ which sends (g1,...,9p) —
(915 --,9p—1) by dropping the last coordinate is a bijection.

It is a surjection because for every (g1,...,gp—1) € S’, we can exhibit the tuple (g1,...,9p—1,(g1 - gp—1)" 1) €
G which maps to it. It is an injection because if two p-tuples in S have the first same p — 1 coordinates
(g1,--.,9p—1), then the last coordinate is uniquely determined by g1 -g2---g, =1to be g, = (g1 gp—1) ",
so the two p-tuples must be identical.

Thus |S| = |9'| = |G|P~ L.

LIf this confuses you, imagine we were writing the group operation multiplicatively: then the equation ac 4 bd = 2 would
instead be written in the form a¢g8% = £.



Consider the equivalence relation on S defined by a ~ § if § is obtained by “rotating’ «; in
other words, for some k, o = (z1,...,2,) and 8 = (Tk, Th+1, .- Tp, L1y - -+, Th—1)-

(b*) Convince yourself that this is an equivalence relation.

(c) Prove that every equivalence class has size 1 or p (using that p is a prime). Conclude
that |S| = a + pb, where a is the number of classes of size 1 and b is the number of classes of
size p.

First, note that if o € S then any rotation of « is also in .S. For example, suppose z;x3 - -z, = 1. Then,
multiplying on the left by acl_l and on the right by x; (this is called conjugation by xl_l) gives

mflxlxg CTpTy = xflxl

To---xTpr; = 1.

Repeating this conjugation process, we see that if a product of elements in a group is 1, then any rotation
also has product 1.

So we may simply prove the same statement about equivalence classes of p-tuples in the larger set G?
containing S.

Suppose @ = (21,...,%,). We will show that either all p rotations of « are different, in which case the
equivalence class of « has size p, or they are all the same, in which case the equivalence class has size 1. If
1 =Xy = -+ = Tp, then all rotations of o are the same, so the equivalence class containing « has size 1.

Otherwise, suppose « is not constant, i.e. there exist some x; # ;. We claim that all p rotations of «
are different tuples.

If not, there are two rotations (x, Tk+1,...,Lp, 1, ..., Tk—1) and (e, Tey1,...,Tp,&1,...,To—1) Which
are the same p-tuple. This implies that x; = x;1 ¢ for all 4, where addition of indices is taken mod p. But
then,

1 = Ti4e—k

= T142(4—k)

= Ti4+m(L—k)

for all m. It is easy to check that if £ — k £ 0 (mod p), then the multiples of ¢ — k cycle through all residue
classes mod p (this is a consequence of Z/pZ* being a group, for example). Thus, for all i € [p], there exists
m for which 1 + m(¢ — k) = 4, and so 1 = z; for all i. This contradicts the fact that « is not constant.
What we have shown is that any nonconstant « has a full set of p distinct rotations in its equivalence class.
To see that |S| = a+pbd, divide S into the equivalence classes of size 1 and those of size p. This completely
partitions S, so |S| = a + pb.
(d) Show that an equivalence class contains a single element if and only if that element is

of the form (z,z,...,z) with 2P = 1.

We showed in the last part that a singleton equivalence class in GP must be constant o = (z,...,z). If
in addition this element is to lie in S, it must have product 1, i.e. 2P = 1. Conversely, any x with 2P =
gives a singleton equivalence class (z,z,...,z) which lies in S.

(e) Finish the proof (i.e. prove that G contains an element of order p) by showing that
there must be at least one class of size 1 besides (1,1,...,1), A la HW1 Q3A.

Since |S| = |G[P~! by part (a), and p divides the order of G, p divides |S|. On the other hand, by part
(¢) |S] = a+ pb where a is the number of equivalence classes of size 1 and b is the number of equivalence
classes of size p. Thus p|a + pb, which implies p|a. In particular, since all primes satisfy p > 2, there must
be at least two classes of size 1, and therefore at least one such class a = (z,...,x) with 27 = 1 and z # 1.
This shows the existence of an element x of order exactly p, as desired.

Question 5

Notation: For any groups H and G, write n(H,G) for the number of homomorphisms from H
to G.



Say you are given two groups A and B. Your goal is to find a new group C with the new
property (*) that for every group H,

n(H,C)=n(H,A) -n(H,B).

Construct such a group C (it will depends on the groups A and B you are given!) and prove
it has the property (*).

The group C we define is called the direct product (or simply product) of A and B, written C' = A x B.
The underlying set of C' is just the Cartesian product {(a,b) : a € A,b € B} of A and B as sets, and the
group operation of C' is given by coordinate-wise multiplication. Explicitly, if - 4, - g are the group operations
of A, B, then the group operation -¢ on C = A x B is given by

(a1,b1) -¢ (az,b2) = (a1 -4 az, b1 - b2).

It is easy to check that C is also a group.

Write Hom(G, H) for the set of homomorphisms from G to H. Thus, n(G, H) = [Hom(G, H)|.

To prove C' has property (*), we construct a bijection ¢ between Hom(H,C') and the product set
Hom(H, A) x Hom(H, B). To construct this bijection, define two projection homomorphisms 74 : C' — A
and 7 : C — B by ma((a,b)) = a and 75((a,b)) = b. Thus 74 projects to the first coordinate and 7p to the
second. Then, if f € Hom(H, C), define ¢(f) = (mao f,mpof). Notice that compositions of homomorphisms
are homomorphisms, so w4 o f is a homomorphism H — A and 7wg o f is a homomorphism H — B, as we
wanted.

To prove that ¢ is a bijection, we can just construct a two-sided inverse for it.

In the other direction, if (fa, fp) € Hom(H, A) x Hom(H, B), then define ¢((fa, fB)) to be the “product
homomorphism” map f: H — C which sends h € H to (fa(h), fe(h)). It is easy to check that this map f
is itself a homomorphism H — C.

Finally, notice that ¢ and 4 are mutually inverse functions. Given f € Hom(H,C), the map ¥ (po(f))
sends h € H to (ma(f(h)),75(f(Rh))), which is just f(h), so ¥ (o(f)) = f for all f € Hom(H,C), and ¢ is a
left-inverse for .

Similarly, given (fa, fg) € Hom(H, A)xHom(H, B), the ordered pair ¢(¢(fa, fg)) is the pair of functions
(h = ma(f(h),h— 7(f(h))), where f(h) = (fa(h), fe(h)). But then w4 (f(h)) = fa(h) and 7p(f(h)) =
fB(h), and so (¥ (fa, fB)) = (fa, fB). Thus ¢ is a two-sided inverse for ¢, showing that ¢ is a bijection.
The existence of this bijection then proves that

|Hom(H,C)| = |Hom(H,A)x Hom(H, B)|
n(H,C) = n(H,A) -n(H,B),

where C is the product group A x B.



