Homework 4

Math 120 (Thomas Church, Spring 2018)

Due Thursday, April 26 at 11:59pm.

Write up only the unstarred exercises and questions below. (Starred questions are valuable and you really should do them, but they will not be collected or graded.)

4.2.8

$$
\begin{array}{ll}
4.3 .10^{*} & 4.3 .11^{*} \\
5.1 .1^{*} & 5.1 .5^{*}
\end{array}
$$

Recall that F_{n} denotes a free group on n elements.
Question 1. In at most two sentences, prove that F_{2} is not isomorphic to F_{3}.
Question 2. Given a group G, the center of G is the subgroup

$$
Z(G)=\{z \in G \mid z g=g z \text { for all } g \in G\}
$$

of elements that commute with every element of G. The center $Z(G)$ is an abelian subgroup of G. (You may assume this without proof, but you should understand why it is true.)
(a) Prove that $Z(G)$ is a normal subgroup of G.
(b) Prove that if the quotient group $G / Z(G)$ is cyclic, then G is abelian.
(c) (Optional) Is it true that if the quotient group $G / Z(G)$ is abelian, then G is abelian?

Prove or give a counterexample.
Question 3. Give a presentation for $G=\mathbb{Z} \times \mathbb{Z}$; i.e. fill in the blanks:

$$
\mathbb{Z} \times \mathbb{Z} \cong\langle\ldots \quad \mid \quad\rangle
$$

(You do not have to prove your presentation is correct.)
Question 4. (Optional) Prove that S_{3} has the presentation

$$
S_{3} \cong\left\langle a, b \mid a^{2}=1, b^{2}=1, a b a b a b=1\right\rangle
$$

(Double Optional) What additional relation(s) do you need to add to the following to get a presentation of S_{4} ?

$$
S_{4} \cong\left\langle a, b, c \mid a^{2}=1, b^{2}=1, c^{2}=1, a b a b a b=1, b c b c b c=1, \underline{ }\right\rangle
$$

Question 5. Do one of the following three questions on free groups, all marked "Hard" 1 If you solve more than one, please turn them all in; the additional problems will count as optional.

Question 5A. (Hard)
Let $F_{2}=\langle a, b\rangle$ be the free group on two generators. Let $\varphi: F_{2} \rightarrow Z_{2} \times Z_{2}$ be the homomorphism satisfying

$$
\varphi(a)=(x, 1) \text { and } \varphi(b)=(1, x)
$$

and let $K=\operatorname{ker} \varphi$ be its kernel.
a) Describe which elements of F_{2} lie in the subgroup K.
b) The group K itself is a free group of rank k for some $k \in \mathbb{N}$ (meaning it is freely generated by k elements; another way to define the rank is that $n(K, G)=|G|^{k}$ for all groups $\left.G\right)$.

What is its rank k ? Can you give a set of k generators for K ?
(If you can't find its rank exactly, perhaps you can bound it above or below?)

Question 5B. (Hard)
Let N denote the commutator subgroup of $F_{2}=\langle a, b\rangle$. Prove that N is not finitely generated. (You defined the commutator subgroup in Exercise 3.1.41 on HW3.)

Question 5C. (Hard)
Consider the 2×2 matrices $x=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $y=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ in $\mathrm{GL}_{2} \mathbb{R}$.
Prove that the group G generated by x and y is a free group of rank 2 on the generators x and y.

[^0]Question 6. No one's solution to Q6 on HW3 was perfect. By Sunday night, Prof. Church will post one of the following codes on Canvas as a comment on your submission of HW 3C. Do the corresponding assignment below.

Code A: your treatment of the homomorphism was fine, so you don't need to re-do anything there. You gave the correct definition of the elements of the group (at least mostly). However, you did not prove that these elements actually form a group.

A1: State precisely what the elements of your group are. (If the definition you gave previously was not correct, point out what the issues with it were.)

A2: State a precise definition of the group operation on your group.
A3: Give precise statements of the lemmas that you would need to prove to show that this operation is well-defined and that it makes your set into a group. (You do not need to prove these lemmas, as long as you give a precise statement of what properties you would need to check.)

Code B: You stated a few properties of your desired group K, but you did not give enough information to actually define a specific group.

B1: Give precise statements of the properties that your group K would need in order to prove that there is a homomorphism $K \rightarrow G$ for every pair of elements $x \in G$ and $y \in G$. (You do not need to prove these properties, as long as you give a precise statement of what properties you need.)

B2: Using these properties, give a complete and correct proof that the map $K \rightarrow G$ you define is actually a homomorphism.

Code C: You did not do Question 4.
Make sure you understand the discussion of free groups from class and/or Chapter 6.3. Then do B1 and B2 above.

Code D: You said (and claimed to prove) that $K=\mathbb{Z} \times \mathbb{Z}$ was a correct solution to the problem.
D0: Feel ashamed that you turned in a proof that you should have known was wrong, if you had been careful about what you said. [not to turn in]

D1: Turn in your proof again, along with clear explanations of precisely where the mistakes in your proof were. (It is not enough to just say "well, here's why $\mathbb{Z} \times \mathbb{Z}$ doesn't work"; I want to know where your proof went wrong.)

D2: Then do B1 and B2 above.

$$
\begin{array}{ll}
\text { HW 4A: } & 4.2 .8, \text { Q2, Q4 } \\
\text { HW 4B: } & \text { Q1, Q3, Q5 } \\
\text { HW 4C: } & \text { Q6 }
\end{array}
$$

[^0]: ${ }^{1}$ Recall that "Hard" means that these questions are especially valuable to figure out on your own; that neither Prof. Church nor Xiaoyu will give help with hard questions, except Prof. Church can clarify confusions about what the question is asking; and that if you're only able to partially solve a hard problem, you shouldn't feel too bad, and you should definitely turn in your partial solution.

