
Math 120 Homework 5 Solutions

May 8, 2018

Recall a group G is simple if it has no normal subgroups except itself and {1}.
We will be using all three parts of Sylow’s theorem (Theorem 4.5.18 from Dummit and Foote) extensively.

Here’s the statement:

Theorem. (Sylow’s Theorem) Let G be a group of order pαm, where p is a prime not dividing m.

1. Sylow p-subgroups of G (subgroups of order pα) exist.

2. If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists g ∈ G such that
Q ≤ gPg−1, i.e. Q is contained in some conjugate of P . In particular, any two Sylow p-subgroups of
G are conjugate in G.

3. The number np of Sylow p-subgroups of G satisfies

np ≡ 1 (mod p).

Further, np is the index |G : NG(P )| of the normalizer of any Sylow p-subgroup P , hence np|m.

Question 1
Prove that if |G| = 312 = 23 · 3 · 13 then G is not simple.

Let H be a Sylow 13-subgroup of G. Then, the number n13 of Sylow 13-subgroups of G satisfies n13 ≡ 1
(mod 1)3 and n13|23 · 3 = 24. But the only factor of 24 which is 1 (mod 1)3 is 1, so np = 1. Therefore there
is only one 13-Sylow subgroup, which is therefore normal, so G is not simple.

Question 2
Suppose G is a simple group with |G| = 168 = 23 · 3 · 7. How many elements of order 7 does G
contain? Justify your answer.

The number n7 of Sylow 7-subgroups of G satisfies n7 ≡ 1 (mod 7) and n7|23 · 3 = 24. The only two
factors of 24 which are 1 (mod 7) are 1 and 8, so these are the only possible values of n7.

If n7 = 1, then there is a unique Sylow 7-subgroup H which is normal, contradicting the simplicity of G.
Thus, n7 = 8.

Notice that a group of order 7 is cyclic, and two distinct cyclic groups of order 7 intersect in only the
identity. Also, every element of order 7 generates a cyclic subgroup of order 7.

Putting these facts together, we see that there are 6 elements of order 7 in each of n7 = 8 Sylow 7-
subgroups, and each such element is contained in a unique such group. The total number of elements of
order 7 is therefore 6 · 8 = 48.

Question 3
Prove that if |G| = 56 = 23 · 7 then G is not simple.
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Let H be a Sylow 7-subgroup of G. Then, the number n7 of Sylow 7-subgroups of G satisfies n7 ≡ 1
(mod 7) and n7|23 = 8. The only possibilities are n7 = 1, 8.

If n7 = 1 then H is unique and normal, so G is not simple.
Otherwise, if n7 = 8, then by the same argument as in Question 2, there are 6 · 8 = 48 elements of order

7 in G. Now, let K be a Sylow 8-subgroup of G.
By Lagrange’s theorem every element of K has order dividing 8. Thus, none of the 48 elements of order

7 lie in K. But |K| = 8 and |G| = 56, so if the 48 elements of order 7 lie outside K then they make up the
entire complement G\K. That is to say, every element g 6∈ K has order 7. We claim that K must therefore
be normal. This is just because any conjugate gKg−1 of K is also a group of order 8 and can’t contain any
of the 48 elements of order 7. Thus if H is not normal, K is.

Either way, G has a normal subgroup and can’t be simple.

Question 4
Prove that if |G| = 132 = 22 · 3 · 11 then G is not simple.

The numbers n2, n3, n11 of Sylow subgroups of G of orders 4, 3, 11 satisfy:

• n2 ≡ 1 (mod 2) and n2|3 · 11 = 33, so n2 ∈ {1, 3, 11, 33}.

• n3 ≡ 1 (mod 3) and n3|22 · 11 = 44, so n3 ∈ {1, 4}.

• n11 ≡ 1 (mod 1)1 and n11|22 · 3 = 12, so n11 = {1, 12}.

If any of them equals 1, then there is a unique Sylow p-subgroup for that p which is normal, so G would be
simple.

Otherwise, n3 = 4 and n11 = 12. But then by the same argument as in Question 2, there must be 2 ·4 = 8
elements of order 3 and 10 ·12 = 120 elements of order 11 in G (Note: this uses the fact that groups of prime
order are cyclic.) In total this makes 128 of the 132 elements of G.

This leaves 4 elements of G that can possibly lie in any Sylow 2-subgroup of order 4. Thus, n2 = 1 and
G has a normal subgroup of order 4 anyway.

Question 5
Prove that if |G| = 231 = 3 · 7 · 11 then |Z(G)| ≥ 11 (in particular, G is not simple).

The number n11 of Sylow 11-subgroups of G satisfies n11 ≡ 1 (mod 1)1 and n11|32 · 7 = 63. The only
possibility is n11 = 1, so G has a unique normal Sylow 11-subgroup H. We claim that H ⊆ Z(G).

Suppose otherwise. Then, for some g ∈ G and h ∈ H, hg 6= gh. Right-multiplying by g−1, we get
h 6= ghg−1. But ghg−1 ∈ H because h ∈ H and H is normal, and since H is cyclic, ghg−1 = hm for some
m ∈ {2, . . . , 10}.

Applying the conjugation by g operation repeatedly, and noting that

ghng−1 = (ghg−1)n

= (hm)n

= hmn,

it follows that gkhg−k = hm
k

for any natural number k. In particular, taking k = |g| the order of g in G, we
have

h = 1 · h · 1
= g|g|hg−|g|

= hm
|g|
,

and since h has order 11, m|g| ≡ 1 (mod 1)1. In other words, |g| is divisible by the order of m as an element
of (Z/11Z)×. But this is a group of order 10, and m is not the identity, so by Lagrange’s theorem (or
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Fermat’s Little Theorem), the order of m in this group is 2, 5, or 10. By Lagrange’s theorem again, none
of these can divide the order of any element g of G, since |G| = 3 · 7 · 11, so we have a contradiction. Thus
H ⊆ Z(G) and |Z(G)| ≥ |H| = 11, as desired.

Question 6
Prove that if |G| = 33 = 3 · 11 then G is abelian.

The numbers n3 and n7 of Sylow 3- and 7-subgroups satisfy n3 ≡ 1 (mod 3), n3|11, n11 ≡ 1 (mod 1)1,
n11|3, and so n3 = n11 = 1 and there are unique normal Sylow 3- and 11-subgroups of G. Call them H3 and
H11, respectively. We claim that both lie in Z(G).

Suppose H3 is not in the center. Then, there is some g ∈ G and h ∈ H3 for which ghg−1 6= h. But
ghg−1 ∈ H3 since H3 is normal, and H3 has only one other non-identity element, h2. Thus, ghg−1 = h2.
Iterating conjugation by g once more, g2hg−2 = h.

Continuing in this fashion, g|g|hg−|g| = h if |g| is even and h2 if |g| is odd. Also, g|g| = 1 by definition,
so |g| is even. But G is a group of odd order so no element can have even order. Hence, H3 ⊆ Z(G).

Similarly, suppose H11 is not in the center. There is some g ∈ G and h ∈ H11 for which ghg−1 = hm for
some m ∈ {2, . . . , 10}. By the same argument as in Question 5, the order of g must be divisible by either 2
or 5. But neither is possible, since the order of g must divide |G| = 33. Thus H11 ⊆ Z(G) as well.

Now, Z(G) contains subgroups H3 and H11 of orders 3 and 11 respectively. By Lagrange’s theorem,
|Z(G)| must be divisible by 3 · 11 = 33, so Z(G) is the whole group G, and G is abelian.

Question 7
If |G| = 39 = 3 · 13, does G have to be abelian? Prove or give a counterexample.

No, let G = 〈a, b|a13 = 1, b3 = 1, bab−1 = a3〉. The hard part is to check that G has exactly 39 elements,
each of which can be represented uniquely as aibj for some 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2. Alternately, we can
just define the elements of our group to be the 39 symbols aibj for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2, and define the
group multiplication by

(axby) · (azbw) = ax+3yz mod 13by+w mod 2

[TC: this amounts to the semidirect product Z13oZ3 that we later saw in class.] This is a nonabelian group
because ab = b3a = b2(ba) and b2 6= 1.
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