Math 120 Homework 5 Solutions

May 8, 2018

Recall a group G is simple if it has no normal subgroups except itself and $\{1\}$.
We will be using all three parts of Sylow's theorem (Theorem 4.5.18 from Dummit and Foote) extensively. Here's the statement:

Theorem. (Sylow's Theorem) Let G be a group of order $p^{\alpha} m$, where p is a prime not dividing m.

1. Sylow p-subgroups of G (subgroups of order p^{α}) exist.
2. If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that $Q \leq g P g^{-1}$, i.e. Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G.
3. The number n_{p} of Sylow p-subgroups of G satisfies

$$
n_{p} \equiv 1 \quad(\bmod p)
$$

Further, n_{p} is the index $\left|G: N_{G}(P)\right|$ of the normalizer of any Sylow p-subgroup P, hence $n_{p} \mid m$.

Question 1

Prove that if $|G|=312=2^{3} \cdot 3 \cdot 13$ then G is not simple.
Let H be a Sylow 13-subgroup of G. Then, the number n_{13} of Sylow 13 -subgroups of G satisfies $n_{13} \equiv 1$ $(\bmod 1) 3$ and $n_{13} \mid 2^{3} \cdot 3=24$. But the only factor of 24 which is $1(\bmod 1) 3$ is 1 , so $n_{p}=1$. Therefore there is only one 13 -Sylow subgroup, which is therefore normal, so G is not simple.

Question 2

Suppose G is a simple group with $|G|=168=2^{3} \cdot 3 \cdot 7$. How many elements of order 7 does G contain? Justify your answer.

The number n_{7} of Sylow 7 -subgroups of G satisfies $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 2^{3} \cdot 3=24$. The only two factors of 24 which are $1(\bmod 7)$ are 1 and 8 , so these are the only possible values of n_{7}.

If $n_{7}=1$, then there is a unique Sylow 7 -subgroup H which is normal, contradicting the simplicity of G. Thus, $n_{7}=8$.

Notice that a group of order 7 is cyclic, and two distinct cyclic groups of order 7 intersect in only the identity. Also, every element of order 7 generates a cyclic subgroup of order 7 .

Putting these facts together, we see that there are 6 elements of order 7 in each of $n_{7}=8$ Sylow 7subgroups, and each such element is contained in a unique such group. The total number of elements of order 7 is therefore $6 \cdot 8=48$.

Question 3

Prove that if $|G|=56=2^{3} \cdot 7$ then G is not simple.

Let H be a Sylow 7 -subgroup of G. Then, the number n_{7} of Sylow 7 -subgroups of G satisfies $n_{7} \equiv 1$ $(\bmod 7)$ and $n_{7} \mid 2^{3}=8$. The only possibilities are $n_{7}=1,8$.

If $n_{7}=1$ then H is unique and normal, so G is not simple.
Otherwise, if $n_{7}=8$, then by the same argument as in Question 2, there are $6 \cdot 8=48$ elements of order 7 in G. Now, let K be a Sylow 8 -subgroup of G.

By Lagrange's theorem every element of K has order dividing 8. Thus, none of the 48 elements of order 7 lie in K. But $|K|=8$ and $|G|=56$, so if the 48 elements of order 7 lie outside K then they make up the entire complement $G \backslash K$. That is to say, every element $g \notin K$ has order 7 . We claim that K must therefore be normal. This is just because any conjugate $g K g^{-1}$ of K is also a group of order 8 and can't contain any of the 48 elements of order 7 . Thus if H is not normal, K is.

Either way, G has a normal subgroup and can't be simple.

Question 4

Prove that if $|G|=132=2^{2} \cdot 3 \cdot 11$ then G is not simple.
The numbers n_{2}, n_{3}, n_{11} of Sylow subgroups of G of orders $4,3,11$ satisfy:

- $n_{2} \equiv 1(\bmod 2)$ and $n_{2} \mid 3 \cdot 11=33$, so $n_{2} \in\{1,3,11,33\}$.
- $n_{3} \equiv 1(\bmod 3)$ and $n_{3} \mid 2^{2} \cdot 11=44$, so $n_{3} \in\{1,4\}$.
- $n_{11} \equiv 1(\bmod 1) 1$ and $n_{11} \mid 2^{2} \cdot 3=12$, so $n_{11}=\{1,12\}$.

If any of them equals 1 , then there is a unique Sylow p-subgroup for that p which is normal, so G would be simple.

Otherwise, $n_{3}=4$ and $n_{11}=12$. But then by the same argument as in Question 2, there must be $2 \cdot 4=8$ elements of order 3 and $10 \cdot 12=120$ elements of order 11 in G (Note: this uses the fact that groups of prime order are cyclic.) In total this makes 128 of the 132 elements of G.

This leaves 4 elements of G that can possibly lie in any Sylow 2-subgroup of order 4 . Thus, $n_{2}=1$ and G has a normal subgroup of order 4 anyway.

Question 5

Prove that if $|G|=231=3 \cdot 7 \cdot 11$ then $|Z(G)| \geq 11$ (in particular, G is not simple).
The number n_{11} of Sylow 11-subgroups of G satisfies $n_{11} \equiv 1(\bmod 1) 1$ and $n_{11} \mid 3^{2} \cdot 7=63$. The only possibility is $n_{11}=1$, so G has a unique normal Sylow 11-subgroup H. We claim that $H \subseteq Z(G)$.

Suppose otherwise. Then, for some $g \in G$ and $h \in H, h g \neq g h$. Right-multiplying by g^{-1}, we get $h \neq g h g^{-1}$. But $g h g^{-1} \in H$ because $h \in H$ and H is normal, and since H is cyclic, $g h g^{-1}=h^{m}$ for some $m \in\{2, \ldots, 10\}$.

Applying the conjugation by g operation repeatedly, and noting that

$$
\begin{aligned}
g h^{n} g^{-1} & =\left(g h g^{-1}\right)^{n} \\
& =\left(h^{m}\right)^{n} \\
& =h^{m n},
\end{aligned}
$$

it follows that $g^{k} h g^{-k}=h^{m^{k}}$ for any natural number k. In particular, taking $k=|g|$ the order of g in G, we have

$$
\begin{aligned}
h & =1 \cdot h \cdot 1 \\
& =g^{|g|} h g^{-|g|} \\
& =h^{m^{|g|}}
\end{aligned}
$$

and since h has order $11, m^{|g|} \equiv 1(\bmod 1) 1$. In other words, $|g|$ is divisible by the order of m as an element of $(\mathbb{Z} / 11 \mathbb{Z})^{\times}$. But this is a group of order 10 , and m is not the identity, so by Lagrange's theorem (or

Fermat's Little Theorem), the order of m in this group is 2, 5, or 10. By Lagrange's theorem again, none of these can divide the order of any element g of G, since $|G|=3 \cdot 7 \cdot 11$, so we have a contradiction. Thus $H \subseteq Z(G)$ and $|Z(G)| \geq|H|=11$, as desired.

Question 6

Prove that if $|G|=33=3 \cdot 11$ then G is abelian.
The numbers n_{3} and n_{7} of Sylow 3 - and 7 -subgroups satisfy $n_{3} \equiv 1(\bmod 3), n_{3} \mid 11, n_{11} \equiv 1(\bmod 1) 1$, $n_{11} \mid 3$, and so $n_{3}=n_{11}=1$ and there are unique normal Sylow 3 - and 11-subgroups of G. Call them H_{3} and H_{11}, respectively. We claim that both lie in $Z(G)$.

Suppose H_{3} is not in the center. Then, there is some $g \in G$ and $h \in H_{3}$ for which $g h g^{-1} \neq h$. But $g h g^{-1} \in H_{3}$ since H_{3} is normal, and H_{3} has only one other non-identity element, h^{2}. Thus, $g h g^{-1}=h^{2}$. Iterating conjugation by g once more, $g^{2} h g^{-2}=h$.

Continuing in this fashion, $g^{|g|} h g^{-|g|}=h$ if $|g|$ is even and h^{2} if $|g|$ is odd. Also, $g^{|g|}=1$ by definition, so $|g|$ is even. But G is a group of odd order so no element can have even order. Hence, $H_{3} \subseteq Z(G)$.

Similarly, suppose H_{11} is not in the center. There is some $g \in G$ and $h \in H_{11}$ for which $g h g^{-1}=h^{m}$ for some $m \in\{2, \ldots, 10\}$. By the same argument as in Question 5 , the order of g must be divisible by either 2 or 5 . But neither is possible, since the order of g must divide $|G|=33$. Thus $H_{11} \subseteq Z(G)$ as well.

Now, $Z(G)$ contains subgroups H_{3} and H_{11} of orders 3 and 11 respectively. By Lagrange's theorem, $|Z(G)|$ must be divisible by $3 \cdot 11=33$, so $Z(G)$ is the whole group G, and G is abelian.

Question 7

If $|G|=39=3 \cdot 13$, does G have to be abelian? Prove or give a counterexample.
No, let $G=\left\langle a, b \mid a^{13}=1, b^{3}=1, b a b^{-1}=a^{3}\right\rangle$. The hard part is to check that G has exactly 39 elements, each of which can be represented uniquely as $a^{i} b^{j}$ for some $0 \leq i \leq 12$ and $0 \leq j \leq 2$. Alternately, we can just define the elements of our group to be the 39 symbols $a^{i} b^{j}$ for $0 \leq i \leq 12$ and $0 \leq j \leq 2$, and define the group multiplication by

$$
\left(a^{x} b^{y}\right) \cdot\left(a^{z} b^{w}\right)=a^{x+3^{y} z \bmod 13} b^{y+w \bmod 2}
$$

[TC: this amounts to the semidirect product $\mathbb{Z}_{13} \rtimes \mathbb{Z}_{3}$ that we later saw in class.] This is a nonabelian group because $a b=b^{3} a=b^{2}(b a)$ and $b^{2} \neq 1$.

