Homework 5

Math 120 (Thomas Church, Spring 2018)
Due Thursday, May 3 at 11:59pm.
Recall that a group G is simple if it has no normal subgroups except itself and $\{1\}$.
Question 1. Prove that if $|G|=312=2^{3} \cdot 3 \cdot 13$ then G is not simple.
Question 2. Suppose that G is a simple group with $|G|=168=2^{3} \cdot 3 \cdot 7$.
How many elements of order 7 does G contain? Justify your answer.
Question 3. Prove that if $|G|=56=2^{3} \cdot 7$ then G is not simple.
Question 4. Prove that if $|G|=132=2^{2} \cdot 3 \cdot 11$ then G is not simple.
Question 5. Prove that if $|G|=231=3 \cdot 7 \cdot 11$ then $|Z(G)| \geq 11$ (in particular, G is not simple).
Question 6. Prove that if $|G|=33=3 \cdot 11$ then G is abelian.
Question 7. If $|G|=39=3 \cdot 13$, does G have to be abelian? Prove or give a counterexample.

