
Math 120: Groups and Rings

http://math.stanford.edu/~church/teaching/120-S18

Homework 6 Solutions by Prof. Church

Let R denote the set of infinite-integers. For example, here are some elements of R:
a = · · · 000000001

b = · · · 000000021

c = · · · 000000049

d = · · · 123123123

e = · · · 593593593

f = · · · 999999999

g = · · · 562951413 (digits of π, backwards)

Question 1. Compute a + f , c + f , and d + f .

Solution.

a

+ f

=

· · ·
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
01

+ · · · 999999999

· · · 000000000

c

+ f

=

· · ·
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
49

+ · · · 999999999

· · · 000000048

d

+ f

=

· · ·
1
1
1
2
1
3
1
1
1
2
1
3
1
1
1
23

+ · · · 999999999

· · · 123123122

In other words, the element f = · · · 999999999 behaves like “−1”.
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Question 2. Find an element h ∈ R such that d + h = · · · 000000000.

Show that for any element x ∈ R, there exists some y ∈ R such that x + y = · · · 000000000.

Solution. Set h = · · · 876876877. Then we can check that h behaves as “−d”, i.e. that d + h = 0,

as follows:

d

+ h

=

· · ·
1
1
1
2
1
3
1
1
1
2
1
3
1
1
1
23

+ · · · 876876877

· · · 000000000

In general, given x ∈ R, we can produce its additive inverse y = “− x” as follows. Let’s say that xi
is the ith digit of x, starting with x0 being the rightmost digit: x = · · ·x8x7x6x5x4x3x2x1x0. Let n

be the smallest number with xn 6= 0, so that x ends with a string of n consecutive 0s. (so n could

be zero if x ends with a nonzero digit).

Define y as follows:

• The rightmost n digits of y are 0.

• The next digit yn is 10− xn (note that yn ∈ {1, . . . , 9} since xn 6= 0).

• For the remaining digits, we set yk = 9− xk for all k > n (note that yk ∈ {0, 1, . . . , 9} since

xk ∈ {0, 1, . . . , 9}).

For example, if x = · · · 35353535000, we would set y = · · · 64646465000. When we add these, we

get

x

+ y

=

· · ·
1
3
1
5
1
3
1
5
1
3
1
5
1
35000

+ · · · 64646465000

· · · 00000000000

Why does this work in general? Say that y is defined in terms of x as above, and set z = x + y.

• The last n digits of x and y are 0, so the last n digits of z are 0.

• In the next digit we have yn = 10− xn. When we add these, we get xn + yn = 10; therefore

zn is 0, and we carry a 1 to the next digit.

• In the next digit to the left, we have yn+1 = 9− xn+1, plus the 1 that we just carried. So we

add these and get xn+1 + yn+1 + 1 = 10; therefore zn+1 = 0, and we carry a 1 to the next

digit to the left.

• This pattern continues to all following digits; we always carry a 1 from the digit on the right,

and xk + yk = 9; so zk = 0 and we carry a 1 to the next digit to the left.

Therefore all the digits of z = x + y are 0, as desired.
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Question 3. Find an element s ∈ R with the property that

s

× · · · 000003

= · · · 000001

In other words, thinking of natural numbers n ∈ N as elements of R, we’re looking for a solution to

the equation s× 3 = 1 in R, i.e. a multiplicative inverse of 3 in R.

Solution. The easiest way to do this is to note that it’s very easy to find an element r ∈ R for

which r× 3 = · · · 999999, namely r = · · · 333333. We saw in Question 1 that f = · · · 999999 behaves

like −1; so if r × 3 = −1, the natural guess is that (−r)× 3 = 1. And we know from Question 2

how to find the additive inverse of r; it’s · · · 666667.

Once we’ve found this, we don’t have to worry about whether it’s legal to manipulate negatives

like this (although it is); if we set

s = · · · 666667,

we can just compute that
3

× s

=

· · · 000003

× · · · 666667

· · ·
1
0
1
0
1
0
1
021

· · · 00018

· · · 0018

· · · 018

· · · 18

+ · · · 8
= · · · 000001
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Question 4. Show that 2 does not have a multiplicative inverse in R;

that is, there is no element t ∈ R satisfying t× 2 = 1.

Solution. The key is to notice that the last digit of t× 2 only depends on the last digit of t. (This

is implicit in the italicized hint on page 2.) Indeed, we have the following pattern for any t ∈ R:

last digit of t 0 1 2 3 4 5 6 7 8 9

last digit of t× 2 0 2 4 6 8 0 2 4 6 8

Therefore it is impossible to find any element t ∈ R for which t× 2 ends with 1.
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Question 5. (Hard)

Which natural numbers n ∈ N have a multiplicative inverse in R? Can you prove it?

(Can you describe which x ∈ R have a multiplicative inverse in R?)

Solution. It is not actually any harder to do this for general x ∈ R. The answer is that

x ∈ R has a multiplicative inverse ⇐⇒ the last digit of x is a 1, 3, 7, or 9.

( =⇒ ): The forwards implication is the easier direction. We can prove this with the same ideas

as (d). Assume that x has a multiplicative inverse y with x× y = 1. The key is that the last digit

of x× y only depends on the last digit of x and the last digit of y.

In particular, if the last digit of x were even (0, 2, 4, 6, or 8), then the last digit of x× y would

be even. Similarly, if the last digit of x were 0 or 5, then the last digit of x × y would be 0 or 5.

Therefore if x× y = 1, the last digit of x must be 1, 3, 7, or 9.

(⇐= ): We now have to prove the opposite implication: if the last digit of x is 1, 3, 7, or 9,

then we can find some multiplicative inverse y with x× y = · · · 00000001.

The key idea here is this: if we only forget about everything but the last digit, it’s like we’re

working in Z/10Z. (After all, that’s how you define modular arithmetic.) If we forget about

everything but the last two digits, it’s like we’re working in Z/100Z. In general, if we forget about

everything but the last k digits, it’s like we’re working in Z/10kZ.

To make this more precise, let’s say that f1 : R → Z/10Z is the function that takes x ∈ R to

its last digit (modulo 10). Similarly f2 : R→ Z/100Z takes x ∈ R to (the equivalence class of) the

number formed by its last two digits.

In general, fk : R→ Z/10kZ takes x ∈ R to (the equivalence class of) the number formed by its

last k digits (modulo 10k). For example, if x = · · · 666667 from Question 3, then f1(x) = 7 ∈ Z/10Z,

f2(x) = 67 ∈ Z/100Z, f3(x) = 667 ∈ Z/1000Z, and so on.

In this language, our observation above about forgetting all but the last k digits says that

fk(x + z) = fk(x) + fk(z) and fk(x× z) = fk(x)× fk(z).

In particular, if x× y = · · · 00001, then we must have

fk(x)× fk(y) = 1 in Z/10kZ. (∗)

We know (Proposition 0.3.4) that an element a ∈ Z/nZ has a multiplicative inverse in Z/nZ
exactly when a is relatively prime to n. In our case, this means that an element a ∈ Z/10kZ
has a multiplicative inverse if and only if a is not divisible by 2 or 5 (since the prime factors of

10k = 2k · 5k are 2 and 5). Our assumption that the last digit of x is 1, 3, 7, or 9 guarantees that

fk(x) is not divisible by 2 or by 5. In other words, fk(x) lies in the group (Z/10kZ)× of elements

with multiplicative inverses.

Choose nk ∈ N so that nk ∈ (Z/10kZ)× ⊂ Z/10kZ is the multiplicative inverse of fk(x):

fk(x)× nk = 1 in Z/10kZ.

(Note that the multiplicative inverse is unique, since (Z/10kZ)× is a group.) We define the element

y by saying

the last k digits of y are the last k digits of nk

For example, say that x = · · · 123123123.
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• The multiplicative inverse of 3 in Z/10Z is 7 (since 3 · 7 = 21),

so the last digit of y would be 7;

• The multiplicative inverse of 23 in Z/100Z is 87 (since 23 · 87 = 2001),

so the last two digits of y would be 87;

• The multiplicative inverse of 123 in Z/1000Z is 187 (since 123 · 187 = 23001),

so the last three digits of y would be 187;

• The multiplicative inverse of 3123 in Z/10000Z is 2187 (since 3123 · 2187 = 6830001),

so the last four digits of y would be 2187;

• and so on.

There is one possible problem here: the way I’ve phrased it, I use nk to determine the last k

digits of y. But what if these aren’t consistent? That is, what if n3 told me the last three digits

should be 187, but n2 told me the last two digits should be something other than 87? This is where

the uniqueness of the inverse comes in. You can think about that, but it’s fine if you didn’t deal

with this in your answer.
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As you know, 0× 0 = 0 and 1× 1 = 1.

In other words, if we write t2 for t× t, this says 0 and 1 are solutions to the equation t2 = t.

Question 6. (Hard) Find two other elements x ∈ R and y ∈ R satisfying x2 = x and y2 = y.

Solution. We use the same reasoning as in Question 4 and the italicized hint at page 2: the last

digit of t2 is uniquely determined by the last digit of t; in particular they must coincide if t is to be

a solution of the given equation. We compute:

last digit of t 0 1 2 3 4 5 6 7 8 9

last digit of t2 0 1 4 9 6 5 6 9 4 1

Therefore the last digit has to be 0 or 1 or 5 or 6. Since we already found solutions whose last digit

is 0 and 1, let’s try to come up with a solution x whose last digit is 5.

Many students gave “algorithmic” solutions where you showed by induction that, if you have

n digits that work (for n ≥ 1), you can find an (n + 1)-st digit that extends it (in fact uniquely).

This is a great approach. For variety, I give a different one here. If you work out by hand what

the last few digits of such a number x must be, you find that it must end with · · · 0625. This looks

suspiciously like a power of 5, so let’s try that according to the following procedure:

We start with 5, we square to get 25, then we square this to get 625, we square to get 390625, of

which we keep 0625; we square 0625 to get 390625, of which we keep 90625; we square 90625 to get

8212890625, of which we keep 890625; and so on.

More precisely, we start with the last digit x0 = 5 = 52
0

and this needs to be x0 = x ∈ Z/10Z.

We square it, to get
(

52
0
)2

= 52
1

= 25 = x1x0 = x ∈ Z/100Z, then we square it again, to get(
52

1
)2

= 52
2

= 625 = x2x1x0 = x ∈ Z/103Z, and again, to get
(

52
2
)2

= 52
3

= 390625 ≡ 0625 =

x ∈ Z/104Z...

Clearly we are trying to ”produce” some element x of R by giving x ∈ Z/10kZ for all natural

numbers k: why is this well-defined? That is to say, why do later digits do not change as I keep

squaring?

Here’s what we need to check: fix some m, and let a = 52
m−1

so that a = am−1 · · · a2a1a0 ∈
Z/10mZ is the number we obtain after m steps. Let b = a2 = 52

m
be the next number we

obtain, so that b = bmbm−1 · · · b2b1b0 ∈ Z/10m+1Z are the digits at the next step. We need to

check we need to make sure that squaring again does not change the last m digits, i.e. that

am−1 · · · a2a1a0 = bm−1 · · · b2b1b0. That is to say, we need to prove that a = 52m−1 ∈ Z/10mZ and

b =
(
52m−1

)2
= 52m ∈ Z/10m+1Z define the same congruence class modulo 10m.

In other words, we need to show that the difference d = 52
m − 52

m−1
is divisible by 10m, because

this is what it means for the two numbers to define the same congruence class modulo 10m. To

check that d is divisible by 10m, it suffices to check that d is divisible by 5m and by 2m.

We have

52
m − 52

m−1
= 52

m−1
(

52
m−2m−1 − 1

)
= 52

m−1
(

52
m−1 − 1

)
Clearly 5m divides this product, because m ≤ 2m−1 for every positive integer m, so it remains to

check that 2m divides 52
m−1 − 1. We prove this by induction on m: for m = 1 it is obvious as 21 = 2

divides 52
0 − 1 = 4, so assume that m ≥ 2 and that we proved it for all m− 1.
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We can write this second factor as a difference of squares:

52
m−1 − 1 =

(
52

m−2
)2
− 12 =

(
52

m−2 − 1
)(

52
m−2

+ 1
)

By the induction assumption, 2m−1 divides the first factor. On the other hand, the second factor is

obviously even (the sum of 1 and a power of 5), so 2 divides it, and then 2m−1 · 2 = 2m divides the

product.

This concludes the proof that our element x ∈ R is well-defined.

Now we claim that x is a solution of t2 = t. Again, it suffices to check that x2 and x have the

same last digit for every positive integer m.

Fix then m ∈ N. By construction, we know that the last m digits of x are the last m digits of

52
m−1

. As usual, the last m digits of x2 are completely determined by the last m digits of x; indeed

the last m digits of x2 will be the last m digits of
(

52
m−1

)2
= 52

m
and we want to check that these

two powers of 5 have the last m digits.

But this is exactly what we checked to make sure that x was well-defined. No need to re-write it

again, we are done.

Finally, we need to come up with a fourth solution. Notice that if x2 = x, then (1 − x)2 =

1− 2x + x2 = 1− 2x + x = 1− x. So y = 1− x = · · · 109376 is another solution.
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Question 7. (Hard) Can you prove the equation t2 = t has only four solutions in R?

(Further thought: how about t5 = t; does this have more solutions than you expect?)

Solution. We will show that if t is a solution of t2 = t, then t is uniquely determined by its last

digit.

In the previous question we already found four solutions, each with a different last digit - namely 0,

1, 5 and 6 - therefore the statement above will prove that there is no other solution, since again by

Question 6 any solution has to end in 0, 1, 5 or 6.

Suppose s1 and s2 are two solutions of t2 = t with the same last digit d. If the last digit is 1,

replace s1 with 1− s1 and s2 with 1− s2 to get two new solutions with last digit 0. Similarly, if the

last digit is 6, replace s1 with 1− s1 and s2 with 1− s2 to get two new solutions with last digit 5.

So we can assume that this same last digit d is 0 or 5.

We will prove that s1 − s2 is 0 by proving that s1 − s2 is a multiple of 10m for all m ≥ 1. Note

that x ∈ R is a multiple of 10 if and only if its last digit is 0 (since 10× · · ·x2x1 = · · ·x2x10). In

particular, s1 + s2 is a multiple of 10 (since its last digit is either 0 + 0 = 0 or 5 + 5 = 10 ≡ 0). Write

s1 + s2 = 10 · a for some a ∈ R (a is just s1 + s2 shifted to the right by one digit) and set s1− s2 = b.

We now use the rather unusual factorization

s1 − s2 = s21 − s22 = (s1 − s2) (s1 + s2) .

Applying this over and over, we see that

s1 − s2 = (s1 − s2)(s1 + s2) = (s1 − s2)(s1 + s2)
2 = (s1 − s2)(s1 + s2)

3 = · · · = (s1 − s2)(s1 + s2)
m.

Therefore for any m ≥ 1 we have

s1 − s2 = (s1 − s2)(10 · a)m = 10m · (amb).

We don’t need to worry about what the digits of amb are, because the 10m factor tells us that at

least the last m digits of s1 − s2 are 0. Since we can apply this argument for all m ≥ 1, we conclude

that all the digits of s1 − s2 are zero, i.e. s1 − s2 = 0. Adding s2 to both sides shows s1 = s2 as

desired.
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Question 8. (Hard) Find two nonzero elements a ∈ R and b ∈ R whose product is zero:

a 6= 0 and b 6= 0, but a× b = 0.

Solution. For any r ∈ R, let’s say that r is “ divisible by 2k ” if the number fk(r) given by the

last k digits of r is divisible by 2k; in other words,1 if

fk(r) ∈ 2kZ/10kZ.

Define d2(r) ∈ N ∪ {∞} and d5(r) ∈ N ∪ {∞} by:

d2(r) = max{k | r is divisible by 2k}

d5(r) = max{k | r is divisible by 5k}

Note that it’s possible to have d2(r) =∞ or d5(r) =∞; for example, the element x = · · · 2890625

from Question 6 is divisible by 5k for all k, so d5(x) =∞.

Note that the number of 0’s at the end of r is the biggest k for which r is divisible by 10k = 2k5k;

in other words, it’s the minimum of d2(r) and d5(r). For example, if r = · · · 12121200, we have

d2(r) = 4 and d5(r) = 2. In particular, r = 0 if and only if d2(r) =∞ and d5(r) =∞.

The key to this question is the observation:

d2(a× b) = d2(a) + d2(b), d5(a× b) = d5(a) + d5(b)

From this, we can see that two numbers a and b will satisfy a× b = 0 if and only if d2(a) =∞ and

d5(b) =∞ (or vice versa).

So how can we construct some a ∈ R that is divisible by 2k for all k? We use a similar

construction as in Question 6, but reversing the roles of 2 and 5. We define a to have the last k

digits equals to the last k digits of 25
k−1

. Since 5k−1 ≥ k for all k ≥ 1, this will obviously give us an

element with d2(a) =∞ as soon as we prove that the element a ∈ R is well-defined.

In other words, we need to show that at each step k we have made compatible choices, i.e. that

at the next step, when we say that the last k + 1 digits of a are the last k + 1 digits of 25
k
, the last

k digits of 25
k

coincide with the last k digits of 25
k−1

.

The latter fact boils down to showing that 10k divides the difference

25
k − 25

k−1
= 25

k−1
(

25
k−5k−1 − 1

)
.

Again, since 5k−1 ≥ k for all k ≥ 1, we have that 2k divides the first factor on the right hand side,

so it remains to check that 5k divides 25
k−5k−1 − 1 = 25

k−1(5−1) − 1 = 165
k−1 − 1.

We now proceed by induction on k, the case k = 1 being trivial (as 5 divides 15). We use the

identity

a5 − b5 = (a− b)(a4 + a3b + a2b2 + ab3 + b4)

for a = 165
k−2

and b = 1. Then we have

165
k−1 − 1 =

(
165

k−2 − 1
)((

165
k−2

)4
+
(

165
k−2

)3
+
(

165
k−2

)2
+ 165

k−2
+ 1

)
.

1It turns out this is equivalent to saying that r = 2k × t for some t ∈ R, which justifies the terminology “divisible

by 2k”, but we don’t need that right now.
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The induction assumption says that 5k−1 divides the left factor
(

165
k−2 − 1

)
, so it suffices to check

that 5 divides the other factor. Note that every power of 16 will end with the digit 6, thus the last

digit of the factor on the right is the last digit of 6 + 6 + 6 + 6 + 1 = 25. This shows that 5 divides((
165

k−2
)4

+
(

165
k−2

)3
+
(

165
k−2

)2
+ 165

k−2
+ 1

)
and completes the proof.

11



Question 9. Prove that there is no element x ∈ R satisfying x2 = 7.

Solution. We noted in the solution for Question 4, or better yet in the italicized hint on page 2,

that the last digit of t× s only depends on the last digits of t and s.

In particular the last digit of t2 depends only on the last digit of t: to show that the equation

t2 = 7 has no solutions in R, it suffices then to check by brute force that no last digit t0 of t gives

t2 = 7 in Z/10Z.

We have, as in the solution to Question 6:

last digit of t 0 1 2 3 4 5 6 7 8 9

last digit of t2 0 1 4 9 6 5 6 9 4 1

and this finishes the proof.
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Question 10. (Hard) Prove that there is at least one solution z ∈ R to the equation z3 = 7.

Solution. In fact, something much more general is true:

for any k ∈ N that is prime to 10,

and any x ∈ R whose last digit is 1, 3, 7, or 9,

x has a unique k-th root z

satisfying zk = x.

Let G be a finite abelian group (with multiplicative notation) and consider the map “n-power”

pn : G −→ G g 7→ gn.

It is easy to check this is a group homomorphism: 1n = 1, (gh)n = gnhn and
(
g−1

)n
= g−n = (gn)−1.

The kernel of pn consists of all the elements satisfying gn = 1; that is, all the elements whose

order divides n.

Suppose now that n is coprime to the order of the group G: in particular by Lagrange’s theorem

no element g ∈ G has order dividing n (besides the identity). Therefore, ker pn = {1G}, so pn is

injective. But if pn is an injective map from a finite set to itself, it must also be surjective, and thus

a bijection. In particular, for every g ∈ G there exists a unique h ∈ G such that hn = g.

Observe now that | (Z/10Z)× | = 4, | (Z/100Z)× | = 40, | (Z/1000Z)× | = 400, and in general∣∣ (Z/10kZ)×
∣∣ = 4 · 10k−1. (Indeed, as we saw in Question 5 these are all those elements whose last

digits is 1, 3, 7, or 9, which is 4
10 of all the elements.)

In particular, all these orders are coprime to n = 3, so for every k ≥ 1 we pick the element

gk = 7 ∈ Z/10kZ - which is invertible - and we obtain a unique element hk ∈
(
Z/10kZ

)× ⊂ Z/10kZ
such that h3k = 7 in Z/10kZ.

It remains to check that we can glue together all these hk to obtain a unique, well-defined,

element x of R. In other words, we define x to have the last k digits equal to hk, and we need to

show that this is well-defined.

As we have done in the previous problems, to show that x built as above is well-defined we just

need to check that hk+1 and hk have the same last k digits.

By construction we have h3k+1 = 7 in Z/10k+1Z, and this equation stays true under the surjection

map Z/10k+1Z � Z/10kZ. In particular, the congruence class of hk+1 modulo 10k satisfies the

equation z3 = 7 in Z/10kZ, but we know that z = hk is the only solution!

Therefore, hk+1 reduces to hk modulo 10k, and this means that hk+1 and hk have the same last

k digits, which shows that our solution x is well-defined.
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