Math 120: Groups and Rings
http://math.stanford.edu/~church/teaching/120-S18

## Homework 6 Solutions by Prof. Church

Let $R$ denote the set of infinite-integers. For example, here are some elements of $R$ :

$$
\begin{aligned}
a & =\cdots 000000001 \\
b & =\cdots 000000021 \\
c & =\cdots 000000049 \\
d & =\cdots 123123123 \\
e & =\cdots 593593593 \\
f & =\cdots 999999999 \\
g & =\cdots 562951413 \quad \text { (digits of } \pi, \text { backwards) }
\end{aligned}
$$

Question 1. Compute $a+f, c+f$, and $d+f$.

## Solution.

In other words, the element $f=\cdots 999999999$ behaves like " -1 ".

Question 2. Find an element $h \in R$ such that $d+h=\cdots 000000000$.
Show that for any element $x \in R$, there exists some $y \in R$ such that $x+y=\cdots 000000000$.
Solution. Set $h=\cdots 876876877$. Then we can check that $h$ behaves as " $-d$ ", i.e. that $d+h=0$, as follows:

$$
\begin{array}{r}
d \\
+h \\
=
\end{array} \quad \begin{array}{r}
11111111 \\
+\quad \cdots 876876877 \\
\hline
\end{array} \quad \cdots 000000000
$$

In general, given $x \in R$, we can produce its additive inverse $y=$ " $-x$ " as follows. Let's say that $x_{i}$ is the $i$ th digit of $x$, starting with $x_{0}$ being the rightmost digit: $x=\cdots x_{8} x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}$. Let $n$ be the smallest number with $x_{n} \neq 0$, so that $x$ ends with a string of $n$ consecutive 0 s. (so $n$ could be zero if $x$ ends with a nonzero digit).
Define $y$ as follows:

- The rightmost $n$ digits of $y$ are 0 .
- The next digit $y_{n}$ is $10-x_{n}$ (note that $y_{n} \in\{1, \ldots, 9\}$ since $x_{n} \neq 0$ ).
- For the remaining digits, we set $y_{k}=9-x_{k}$ for all $k>n$ (note that $y_{k} \in\{0,1, \ldots, 9\}$ since $\left.x_{k} \in\{0,1, \ldots, 9\}\right)$.

For example, if $x=\cdots 35353535000$, we would set $y=\cdots 64646465000$. When we add these, we get

$$
\begin{array}{rr}
x \\
+y \\
\hline= & \cdots{ }^{11111111} \\
+\cdots 6453535000 \\
& \cdots 000000000000
\end{array}
$$

Why does this work in general? Say that $y$ is defined in terms of $x$ as above, and set $z=x+y$.

- The last $n$ digits of $x$ and $y$ are 0 , so the last $n$ digits of $z$ are 0 .
- In the next digit we have $y_{n}=10-x_{n}$. When we add these, we get $x_{n}+y_{n}=10$; therefore $z_{n}$ is 0 , and we carry a 1 to the next digit.
- In the next digit to the left, we have $y_{n+1}=9-x_{n+1}$, plus the 1 that we just carried. So we add these and get $x_{n+1}+y_{n+1}+1=10$; therefore $z_{n+1}=0$, and we carry a 1 to the next digit to the left.
- This pattern continues to all following digits; we always carry a 1 from the digit on the right, and $x_{k}+y_{k}=9$; so $z_{k}=0$ and we carry a 1 to the next digit to the left.

Therefore all the digits of $z=x+y$ are 0 , as desired.

Question 3. Find an element $s \in R$ with the property that

$$
\begin{array}{r}
s \\
\times \cdots 000003 \\
\hline=\cdots 000001
\end{array}
$$

In other words, thinking of natural numbers $n \in \mathbb{N}$ as elements of $R$, we're looking for a solution to the equation $s \times 3=1$ in $R$, i.e. a multiplicative inverse of 3 in $R$.

Solution. The easiest way to do this is to note that it's very easy to find an element $r \in R$ for which $r \times 3=\cdots 999999$, namely $r=\cdots 333333$. We saw in Question 1 that $f=\cdots 999999$ behaves like -1 ; so if $r \times 3=-1$, the natural guess is that $(-r) \times 3=1$. And we know from Question 2 how to find the additive inverse of $r$; it's $\cdots 666667$.

Once we've found this, we don't have to worry about whether it's legal to manipulate negatives like this (although it is); if we set

$$
s=\cdots 666667
$$

we can just compute that

$$
\begin{aligned}
& 3 \\
& \times s \\
& \hline= \begin{array}{l}
\cdots 000003 \\
\times \\
\times
\end{array} \quad \begin{array}{l}
1111 \\
\hline
\end{array} \quad \cdots 000021 \\
& \cdots 0018 \\
& \cdots 018 \\
& \cdots 18 \\
&+ \cdots 8 \\
& \hline= \cdots 000001
\end{aligned}
$$

Question 4. Show that 2 does not have a multiplicative inverse in $R$; that is, there is no element $t \in R$ satisfying $t \times 2=1$.

Solution. The key is to notice that the last digit of $t \times 2$ only depends on the last digit of $t$. (This is implicit in the italicized hint on page 2.) Indeed, we have the following pattern for any $t \in R$ :

| last digit of $t$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| last digit of $t \times 2$ | 0 | 2 | 4 | 6 | 8 | 0 | 2 | 4 | 6 | 8 |

Therefore it is impossible to find any element $t \in R$ for which $t \times 2$ ends with 1 .

Question 5. (Hard)
Which natural numbers $n \in \mathbb{N}$ have a multiplicative inverse in $R$ ? Can you prove it?
(Can you describe which $x \in R$ have a multiplicative inverse in $R$ ?)
Solution. It is not actually any harder to do this for general $x \in R$. The answer is that
$x \in R$ has a multiplicative inverse $\quad \Longleftrightarrow \quad$ the last digit of $x$ is a $1,3,7$, or 9.
$(\Longrightarrow)$ : The forwards implication is the easier direction. We can prove this with the same ideas as (d). Assume that $x$ has a multiplicative inverse $y$ with $x \times y=1$. The key is that the last digit of $x \times y$ only depends on the last digit of $x$ and the last digit of $y$.

In particular, if the last digit of $x$ were even $(0,2,4,6$, or 8$)$, then the last digit of $x \times y$ would be even. Similarly, if the last digit of $x$ were 0 or 5 , then the last digit of $x \times y$ would be 0 or 5 . Therefore if $x \times y=1$, the last digit of $x$ must be $1,3,7$, or 9 .
$(\Longleftarrow)$ : We now have to prove the opposite implication: if the last digit of $x$ is $1,3,7$, or 9, then we can find some multiplicative inverse $y$ with $x \times y=\cdots 00000001$.

The key idea here is this: if we only forget about everything but the last digit, it's like we're working in $\mathbb{Z} / 10 \mathbb{Z}$. (After all, that's how you define modular arithmetic.) If we forget about everything but the last two digits, it's like we're working in $\mathbb{Z} / 100 \mathbb{Z}$. In general, if we forget about everything but the last $k$ digits, it's like we're working in $\mathbb{Z} / 10^{k} \mathbb{Z}$.

To make this more precise, let's say that $f_{1}: R \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ is the function that takes $x \in R$ to its last digit (modulo 10). Similarly $f_{2}: R \rightarrow \mathbb{Z} / 100 \mathbb{Z}$ takes $x \in R$ to (the equivalence class of) the number formed by its last two digits.

In general, $f_{k}: R \rightarrow \mathbb{Z} / 10^{k} \mathbb{Z}$ takes $x \in R$ to (the equivalence class of) the number formed by its last $k$ digits (modulo $10^{k}$ ). For example, if $x=\cdots 666667$ from Question 3, then $f_{1}(x)=\overline{7} \in \mathbb{Z} / 10 \mathbb{Z}$, $f_{2}(x)=\overline{67} \in \mathbb{Z} / 100 \mathbb{Z}, f_{3}(x)=\overline{667} \in \mathbb{Z} / 1000 \mathbb{Z}$, and so on.

In this language, our observation above about forgetting all but the last $k$ digits says that

$$
f_{k}(x+z)=f_{k}(x)+f_{k}(z) \quad \text { and } \quad f_{k}(x \times z)=f_{k}(x) \times f_{k}(z) .
$$

In particular, if $x \times y=\cdots 00001$, then we must have

$$
\begin{equation*}
f_{k}(x) \times f_{k}(y)=\overline{1} \quad \text { in } \mathbb{Z} / 10^{k} \mathbb{Z} \tag{*}
\end{equation*}
$$

We know (Proposition 0.3.4) that an element $\bar{a} \in \mathbb{Z} / n \mathbb{Z}$ has a multiplicative inverse in $\mathbb{Z} / n \mathbb{Z}$ exactly when $a$ is relatively prime to $n$. In our case, this means that an element $\bar{a} \in \mathbb{Z} / 10^{k} \mathbb{Z}$ has a multiplicative inverse if and only if $a$ is not divisible by 2 or 5 (since the prime factors of $10^{k}=2^{k} \cdot 5^{k}$ are 2 and 5). Our assumption that the last digit of $x$ is $1,3,7$, or 9 guarantees that $f_{k}(x)$ is not divisible by 2 or by 5 . In other words, $f_{k}(x)$ lies in the group $\left(\mathbb{Z} / 10^{k} \mathbb{Z}\right)^{\times}$of elements with multiplicative inverses.

Choose $n_{k} \in \mathbb{N}$ so that $\overline{n_{k}} \in\left(\mathbb{Z} / 10^{k} \mathbb{Z}\right)^{\times} \subset \mathbb{Z} / 10^{k} \mathbb{Z}$ is the multiplicative inverse of $f_{k}(x)$ :

$$
f_{k}(x) \times \overline{n_{k}}=\overline{1} \quad \text { in } \mathbb{Z} / 10^{k} \mathbb{Z}
$$

(Note that the multiplicative inverse is unique, since $\left(\mathbb{Z} / 10^{k} \mathbb{Z}\right)^{\times}$is a group.) We define the element $y$ by saying
the last $k$ digits of $y$ are the last $k$ digits of $n_{k}$
For example, say that $x=\cdots 123123123$.

- The multiplicative inverse of $\overline{3}$ in $\mathbb{Z} / 10 \mathbb{Z}$ is $\overline{7}$ (since $3 \cdot 7=2 \mathbf{1}$ ), so the last digit of $y$ would be 7 ;
- The multiplicative inverse of $\overline{23}$ in $\mathbb{Z} / 100 \mathbb{Z}$ is $\overline{87}$ (since $23 \cdot 87=2001$ ), so the last two digits of $y$ would be 87 ;
- The multiplicative inverse of $\overline{123}$ in $\mathbb{Z} / 1000 \mathbb{Z}$ is $\overline{187}$ (since $123 \cdot 187=23001$ ), so the last three digits of $y$ would be 187 ;
- The multiplicative inverse of $\overline{3123}$ in $\mathbb{Z} / 10000 \mathbb{Z}$ is $\overline{2187}$ (since $3123 \cdot 2187=6830001$ ), so the last four digits of $y$ would be 2187;
- and so on.

There is one possible problem here: the way I've phrased it, I use $n_{k}$ to determine the last $k$ digits of $y$. But what if these aren't consistent? That is, what if $n_{3}$ told me the last three digits should be 187 , but $n_{2}$ told me the last two digits should be something other than 87 ? This is where the uniqueness of the inverse comes in. You can think about that, but it's fine if you didn't deal with this in your answer.

As you know, $0 \times 0=0$ and $1 \times 1=1$.
In other words, if we write $t^{2}$ for $t \times t$, this says 0 and 1 are solutions to the equation $t^{2}=t$.
Question 6. (Hard) Find two other elements $x \in R$ and $y \in R$ satisfying $x^{2}=x$ and $y^{2}=y$.
Solution. We use the same reasoning as in Question 4 and the italicized hint at page 2: the last digit of $t^{2}$ is uniquely determined by the last digit of $t$; in particular they must coincide if $t$ is to be a solution of the given equation. We compute:

$$
\begin{array}{l|llllllllll}
\text { last digit of } t & \mathbf{0} & \mathbf{1} & 2 & 3 & 4 & \mathbf{5} & \mathbf{6} & 7 & 8 & 9 \\
\hline \text { last digit of } t^{2} & \mathbf{0} & \mathbf{1} & 4 & 9 & 6 & \mathbf{5} & \mathbf{6} & 9 & 4 & 1
\end{array}
$$

Therefore the last digit has to be 0 or 1 or 5 or 6 . Since we already found solutions whose last digit is 0 and 1 , let's try to come up with a solution $x$ whose last digit is 5 .

Many students gave "algorithmic" solutions where you showed by induction that, if you have $n$ digits that work (for $n \geq 1$ ), you can find an $(n+1)$-st digit that extends it (in fact uniquely). This is a great approach. For variety, I give a different one here. If you work out by hand what the last few digits of such a number $x$ must be, you find that it must end with $\cdots 0625$. This looks suspiciously like a power of 5 , so let's try that according to the following procedure:

We start with 5 , we square to get 25 , then we square this to get 625 , we square to get 390625 , of which we keep 0625 ; we square 0625 to get 390625 , of which we keep 90625 ; we square 90625 to get 8212890625 , of which we keep 890625 ; and so on.

More precisely, we start with the last digit $x_{0}=5=5^{2^{0}}$ and this needs to be $x_{0}=\bar{x} \in \mathbb{Z} / 10 \mathbb{Z}$. We square it, to get $\left(5^{2^{0}}\right)^{2}=5^{2^{1}}=25=x_{1} x_{0}=\bar{x} \in \mathbb{Z} / 100 \mathbb{Z}$, then we square it again, to get $\left(5^{2^{1}}\right)^{2}=5^{2^{2}}=625=x_{2} x_{1} x_{0}=\bar{x} \in \mathbb{Z} / 10^{3} \mathbb{Z}$, and again, to get $\left(5^{2^{2}}\right)^{2}=5^{2^{3}}=390625 \equiv 0625=$ $\bar{x} \in \mathbb{Z} / 10^{4} \mathbb{Z}$...

Clearly we are trying to "produce" some element $x$ of $R$ by giving $\bar{x} \in \mathbb{Z} / 10^{k} \mathbb{Z}$ for all natural numbers $k$ : why is this well-defined? That is to say, why do later digits do not change as I keep squaring?

Here's what we need to check: fix some $m$, and let $a=5^{2^{m-1}}$ so that $\bar{a}=a_{m-1} \cdots a_{2} a_{1} a_{0} \in$ $\mathbb{Z} / 10^{m} \mathbb{Z}$ is the number we obtain after $m$ steps. Let $b=a^{2}=5^{2^{m}}$ be the next number we obtain, so that $\bar{b}=b_{m} b_{m-1} \cdots b_{2} b_{1} b_{0} \in \mathbb{Z} / 10^{m+1} \mathbb{Z}$ are the digits at the next step. We need to check we need to make sure that squaring again does not change the last $m$ digits, i.e. that $a_{m-1} \cdots a_{2} a_{1} a_{0}=b_{m-1} \cdots b_{2} b_{1} b_{0}$. That is to say, we need to prove that $\bar{a}=\overline{5^{2^{m-1}}} \in \mathbb{Z} / 10^{m} \mathbb{Z}$ and $\bar{b}=\overline{\left(5^{2^{m-1}}\right)^{2}}=\overline{5^{2 m}} \in \mathbb{Z} / 10^{m+1} \mathbb{Z}$ define the same congruence class modulo $10^{m}$.

In other words, we need to show that the difference $d=5^{2^{m}}-5^{2^{m-1}}$ is divisible by $10^{m}$, because this is what it means for the two numbers to define the same congruence class modulo $10^{m}$. To check that $d$ is divisible by $10^{m}$, it suffices to check that $d$ is divisible by $5^{m}$ and by $2^{m}$.

We have

$$
5^{2^{m}}-5^{2^{m-1}}=5^{2^{m-1}}\left(5^{2^{m}-2^{m-1}}-1\right)=5^{2^{m-1}}\left(5^{2^{m-1}}-1\right)
$$

Clearly $5^{m}$ divides this product, because $m \leq 2^{m-1}$ for every positive integer $m$, so it remains to check that $2^{m}$ divides $5^{2^{m-1}}-1$. We prove this by induction on $m$ : for $m=1$ it is obvious as $2^{1}=2$ divides $5^{2^{0}}-1=4$, so assume that $m \geq 2$ and that we proved it for all $m-1$.

We can write this second factor as a difference of squares:

$$
5^{2^{m-1}}-1=\left(5^{2^{m-2}}\right)^{2}-1^{2}=\left(5^{2^{m-2}}-1\right)\left(5^{2^{m-2}}+1\right)
$$

By the induction assumption, $2^{m-1}$ divides the first factor. On the other hand, the second factor is obviously even (the sum of 1 and a power of 5 ), so 2 divides it, and then $2^{m-1} \cdot 2=2^{m}$ divides the product.

This concludes the proof that our element $x \in R$ is well-defined.
Now we claim that $x$ is a solution of $t^{2}=t$. Again, it suffices to check that $x^{2}$ and $x$ have the same last digit for every positive integer $m$.

Fix then $m \in \mathbb{N}$. By construction, we know that the last $m$ digits of $x$ are the last $m$ digits of $5^{2^{m-1}}$. As usual, the last $m$ digits of $x^{2}$ are completely determined by the last $m$ digits of $x$; indeed the last $m$ digits of $x^{2}$ will be the last $m$ digits of $\left(5^{2^{m-1}}\right)^{2}=5^{2^{m}}$ and we want to check that these two powers of 5 have the last $m$ digits.
But this is exactly what we checked to make sure that $x$ was well-defined. No need to re-write it again, we are done.

Finally, we need to come up with a fourth solution. Notice that if $x^{2}=x$, then $(1-x)^{2}=$ $1-2 x+x^{2}=1-2 x+x=1-x$. So $y=1-x=\cdots 109376$ is another solution.

Question 7. (Hard) Can you prove the equation $t^{2}=t$ has only four solutions in $R$ ? (Further thought: how about $t^{5}=t$; does this have more solutions than you expect?)

Solution. We will show that if $t$ is a solution of $t^{2}=t$, then $t$ is uniquely determined by its last digit.
In the previous question we already found four solutions, each with a different last digit - namely 0 , 1,5 and 6 - therefore the statement above will prove that there is no other solution, since again by Question 6 any solution has to end in $0,1,5$ or 6 .

Suppose $s_{1}$ and $s_{2}$ are two solutions of $t^{2}=t$ with the same last digit $d$. If the last digit is 1 , replace $s_{1}$ with $1-s_{1}$ and $s_{2}$ with $1-s_{2}$ to get two new solutions with last digit 0 . Similarly, if the last digit is 6 , replace $s_{1}$ with $1-s_{1}$ and $s_{2}$ with $1-s_{2}$ to get two new solutions with last digit 5 . So we can assume that this same last digit $d$ is 0 or 5 .

We will prove that $s_{1}-s_{2}$ is 0 by proving that $s_{1}-s_{2}$ is a multiple of $10^{m}$ for all $m \geq 1$. Note that $x \in R$ is a multiple of 10 if and only if its last digit is 0 (since $10 \times \cdots x_{2} x_{1}=\cdots x_{2} x_{1} 0$ ). In particular, $s_{1}+s_{2}$ is a multiple of 10 (since its last digit is either $0+0=0$ or $5+5=10 \equiv 0$ ). Write $s_{1}+s_{2}=10 \cdot a$ for some $a \in R\left(a\right.$ is just $s_{1}+s_{2}$ shifted to the right by one digit) and set $s_{1}-s_{2}=b$.

We now use the rather unusual factorization

$$
s_{1}-s_{2}=s_{1}^{2}-s_{2}^{2}=\left(s_{1}-s_{2}\right)\left(s_{1}+s_{2}\right) .
$$

Applying this over and over, we see that
$s_{1}-s_{2}=\left(s_{1}-s_{2}\right)\left(s_{1}+s_{2}\right)=\left(s_{1}-s_{2}\right)\left(s_{1}+s_{2}\right)^{2}=\left(s_{1}-s_{2}\right)\left(s_{1}+s_{2}\right)^{3}=\cdots=\left(s_{1}-s_{2}\right)\left(s_{1}+s_{2}\right)^{m}$.
Therefore for any $m \geq 1$ we have

$$
s_{1}-s_{2}=\left(s_{1}-s_{2}\right)(10 \cdot a)^{m}=10^{m} \cdot\left(a^{m} b\right) .
$$

We don't need to worry about what the digits of $a^{m} b$ are, because the $10^{m}$ factor tells us that at least the last $m$ digits of $s_{1}-s_{2}$ are 0 . Since we can apply this argument for all $m \geq 1$, we conclude that all the digits of $s_{1}-s_{2}$ are zero, i.e. $s_{1}-s_{2}=0$. Adding $s_{2}$ to both sides shows $s_{1}=s_{2}$ as desired.

Question 8. (Hard) Find two nonzero elements $a \in R$ and $b \in R$ whose product is zero: $a \neq 0$ and $b \neq 0$, but $a \times b=0$.

Solution. For any $r \in R$, let's say that $r$ is " divisible by $2^{k}$ " if the number $f_{k}(r)$ given by the last $k$ digits of $r$ is divisible by $2^{k}$; in other words ${ }^{1}$ if

$$
f_{k}(r) \in 2^{k} \mathbb{Z} / 10^{k} \mathbb{Z}
$$

Define $d_{2}(r) \in \mathbb{N} \cup\{\infty\}$ and $d_{5}(r) \in \mathbb{N} \cup\{\infty\}$ by:

$$
\begin{aligned}
d_{2}(r) & =\max \left\{k \mid r \text { is divisible by } 2^{k}\right\} \\
d_{5}(r) & =\max \left\{k \mid r \text { is divisible by } 5^{k}\right\}
\end{aligned}
$$

Note that it's possible to have $d_{2}(r)=\infty$ or $d_{5}(r)=\infty$; for example, the element $x=\cdots 2890625$ from Question 6 is divisible by $5^{k}$ for all $k$, so $d_{5}(x)=\infty$.

Note that the number of 0 's at the end of $r$ is the biggest $k$ for which $r$ is divisible by $10^{k}=2^{k} 5^{k}$; in other words, it's the minimum of $d_{2}(r)$ and $d_{5}(r)$. For example, if $r=\cdots 12121200$, we have $d_{2}(r)=4$ and $d_{5}(r)=2$. In particular, $r=0$ if and only if $d_{2}(r)=\infty$ and $d_{5}(r)=\infty$.

The key to this question is the observation:

$$
d_{2}(a \times b)=d_{2}(a)+d_{2}(b), \quad d_{5}(a \times b)=d_{5}(a)+d_{5}(b)
$$

From this, we can see that two numbers $a$ and $b$ will satisfy $a \times b=0$ if and only if $d_{2}(a)=\infty$ and $d_{5}(b)=\infty$ (or vice versa).

So how can we construct some $a \in R$ that is divisible by $2^{k}$ for all $k$ ? We use a similar construction as in Question 6, but reversing the roles of 2 and 5 . We define $a$ to have the last $k$ digits equals to the last $k$ digits of $2^{5^{k-1}}$. Since $5^{k-1} \geq k$ for all $k \geq 1$, this will obviously give us an element with $d_{2}(a)=\infty$ as soon as we prove that the element $a \in R$ is well-defined.

In other words, we need to show that at each step $k$ we have made compatible choices, i.e. that at the next step, when we say that the last $k+1$ digits of $a$ are the last $k+1$ digits of $2^{5^{k}}$, the last $k$ digits of $2^{5^{k}}$ coincide with the last $k$ digits of $2^{5^{k-1}}$.

The latter fact boils down to showing that $10^{k}$ divides the difference

$$
2^{5^{k}}-2^{5^{k-1}}=2^{5^{k-1}}\left(2^{5^{k}-5^{k-1}}-1\right)
$$

Again, since $5^{k-1} \geq k$ for all $k \geq 1$, we have that $2^{k}$ divides the first factor on the right hand side, so it remains to check that $5^{k}$ divides $2^{5^{k}-5^{k-1}}-1=2^{5^{k-1}(5-1)}-1=16^{5^{k-1}}-1$.

We now proceed by induction on $k$, the case $k=1$ being trivial (as 5 divides 15 ). We use the identity

$$
a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)
$$

for $a=16^{5^{k-2}}$ and $b=1$. Then we have

$$
16^{5^{k-1}}-1=\left(16^{5^{k-2}}-1\right)\left(\left(16^{5^{k-2}}\right)^{4}+\left(16^{5^{k-2}}\right)^{3}+\left(16^{5^{k-2}}\right)^{2}+16^{5^{k-2}}+1\right)
$$

[^0]The induction assumption says that $5^{k-1}$ divides the left factor $\left(16^{5^{k-2}}-1\right)$, so it suffices to check that 5 divides the other factor. Note that every power of 16 will end with the digit 6 , thus the last digit of the factor on the right is the last digit of $6+6+6+6+1=25$. This shows that 5 divides $\left(\left(16^{5^{k-2}}\right)^{4}+\left(16^{5^{k-2}}\right)^{3}+\left(16^{5^{k-2}}\right)^{2}+16^{5^{k-2}}+1\right)$ and completes the proof.

Question 9. Prove that there is no element $x \in R$ satisfying $x^{2}=7$.
Solution. We noted in the solution for Question 4, or better yet in the italicized hint on page 2, that the last digit of $t \times s$ only depends on the last digits of $t$ and $s$.

In particular the last digit of $t^{2}$ depends only on the last digit of $t$ : to show that the equation $t^{2}=7$ has no solutions in $R$, it suffices then to check by brute force that no last digit $t_{0}$ of $t$ gives $t^{2}=7$ in $\mathbb{Z} / 10 \mathbb{Z}$.

We have, as in the solution to Question 6:

$$
\begin{array}{l|llllllllll}
\text { last digit of } t & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \text { last digit of } & t^{2} & 0 & 1 & 4 & 9 & 6 & 5 & 6 & 9 & 4
\end{array}
$$

and this finishes the proof.

Question 10. (Hard) Prove that there is at least one solution $z \in R$ to the equation $z^{3}=7$.
Solution. In fact, something much more general is true:
for any $k \in \mathbb{N}$ that is prime to 10 ,
and any $x \in R$ whose last digit is $1,3,7$, or 9 ,
$x$ has a unique $k$-th root $z$
satisfying $z^{k}=x$.
Let $G$ be a finite abelian group (with multiplicative notation) and consider the map " $n$-power"

$$
p_{n}: G \longrightarrow G \quad g \mapsto g^{n} .
$$

It is easy to check this is a group homomorphism: $1^{n}=1,(g h)^{n}=g^{n} h^{n}$ and $\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}$.
The kernel of $p_{n}$ consists of all the elements satisfying $g^{n}=1$; that is, all the elements whose order divides $n$.

Suppose now that $n$ is coprime to the order of the group $G$ : in particular by Lagrange's theorem no element $g \in G$ has order dividing $n$ (besides the identity). Therefore, $\operatorname{ker} p_{n}=\left\{1_{G}\right\}$, so $p_{n}$ is injective. But if $p_{n}$ is an injective map from a finite set to itself, it must also be surjective, and thus a bijection. In particular, for every $g \in G$ there exists a unique $h \in G$ such that $h^{n}=g$.

Observe now that $\left|(\mathbb{Z} / 10 \mathbb{Z})^{\times}\right|=4,\left|(\mathbb{Z} / 100 \mathbb{Z})^{\times}\right|=40,\left|(\mathbb{Z} / 1000 \mathbb{Z})^{\times}\right|=400$, and in general $\left|\left(\mathbb{Z} / 10^{k} \mathbb{Z}\right)^{\times}\right|=4 \cdot 10^{k-1}$. (Indeed, as we saw in Question 5 these are all those elements whose last digits is $1,3,7$, or 9 , which is $\frac{4}{10}$ of all the elements.)

In particular, all these orders are coprime to $n=3$, so for every $k \geq 1$ we pick the element $g_{k}=7 \in \mathbb{Z} / 10^{k} \mathbb{Z}$ - which is invertible - and we obtain a unique element $h_{k} \in\left(\mathbb{Z} / 10^{k} \mathbb{Z}\right)^{\times} \subset \mathbb{Z} / 10^{k} \mathbb{Z}$ such that $h_{k}^{3}=7$ in $\mathbb{Z} / 10^{k} \mathbb{Z}$.

It remains to check that we can glue together all these $h_{k}$ to obtain a unique, well-defined, element $x$ of $R$. In other words, we define $x$ to have the last $k$ digits equal to $h_{k}$, and we need to show that this is well-defined.

As we have done in the previous problems, to show that $x$ built as above is well-defined we just need to check that $h_{k+1}$ and $h_{k}$ have the same last $k$ digits.

By construction we have $h_{k+1}^{3}=7$ in $\mathbb{Z} / 10^{k+1} \mathbb{Z}$, and this equation stays true under the surjection $\operatorname{map} \mathbb{Z} / 10^{k+1} \mathbb{Z} \rightarrow \mathbb{Z} / 10^{k} \mathbb{Z}$. In particular, the congruence class of $h_{k+1}$ modulo $10^{k}$ satisfies the equation $z^{3}=7$ in $\mathbb{Z} / 10^{k} \mathbb{Z}$, but we know that $z=h_{k}$ is the only solution!

Therefore, $h_{k+1}$ reduces to $h_{k}$ modulo $10^{k}$, and this means that $h_{k+1}$ and $h_{k}$ have the same last $k$ digits, which shows that our solution $x$ is well-defined.


[^0]:    ${ }^{1}$ It turns out this is equivalent to saying that $r=2^{k} \times t$ for some $t \in R$, which justifies the terminology "divisible by $2^{k}$ ", but we don't need that right now.

