Homework 6

Math 120 (Thomas Church, Spring 2018)

Due Thursday, May 10 at 11:59pm.

You should **not be looking online or in textbooks** to solve these homework problems. However, you are welcome (indeed encouraged) to use a *calculator* on this homework where necessary. There is a nice arbitrary-precision calculator at apfloat.appspot.com.

On this homework, you can and should keep your arguments informal, i.e. you don't need to use a bunch of symbols, as long as the underlying argument is clear and rigorous.

Given that you have two weeks, everyone should try to solve **at least one** of the hard problems (and hopefully more!). Moreover, for every hard problem you solve, you can **skip writing up one of the normal problems** (though you should probably do them first anyway).

Let R denote the set of *infinite-integers*. For example, here are some elements of R:

$a = \cdots 000000001$	
$b = \cdots 000000021$	
$c = \cdots 000000049$	
$d = \cdots 123123123$	
$e = \cdots 593593593$	
$f = \cdots 999999999$	
$g = \cdots 562951413$	(digits of π , backwards)

Note that natural numbers like 1 or 21 or 49 show up as elements of R (namely a, b, and c above), padded on the left by 0s. But there are other elements of R where the digits continue to the left without end, such as d, e, and f. The element $g \in R$ is an example showing that the digits don't have to be periodic or follow any recognizable pattern.

We can add infinite-integers using the usual formula for addition, carrying if necessary. For example:

a	000000001	a	$\cdots 00000001$
+c	$+ \cdots 000000049$	+d	$+ \cdots 123123123$
=	$\phantom{00000000000000000000000000000000000$	=	$\cdots 123123124$
d	$\cdots 123123123$	e	$\cdots 593593593$
+e	$+ \cdots 593593593$	+g	$+ \cdots 562951413$
=	$\cdots 716716716$	=	156545006

You can use without proof that addition is commutative and associative.

Question 1: Compute a + f, c + f, and d + f.

Question 2: Find an element $h \in R$ such that $d + h = \cdots 000000000$. Show that for any element $x \in R$, there exists some $y \in R$ such that $x + y = \cdots 000000000$.

We can also *multiply* elements of R using the usual formula for multiplication:

d	$\cdots 123123123$	d	$\cdots 3123123$
$\times b$	$\times \cdots 000000021$	$\times d$	$\times \cdots 3123123$
=	$\cdots 123123123$	=	$\phantom{00000000000000000000000000000000000$
	$+ \cdots 46246246$		$\cdots 246246$
	$= \cdots 585585583$		$\cdots 23123$
			$\cdots 9369$
			$\cdots 246$
			$\cdots 23$
			$+ \cdots 9$
			$= \cdots 7273129$

Hint: to compute $d \times d$ *more quickly, you can just type* 123123×123123 *into a calculator to get*

=	15159	273129
	\times	123123
		123123

Note that only the last six digits are correct; in fact, the next few digits of $d \times d$ are $\cdots 417273129$. If you want more correct digits in the output, you need more digits in the input:

3123123	23123123	123123123
\times 3123123	imes 23123123	imes 123123123
$= 975389\overline{7273129}$	= 5346788 17273129	$= 15159303 \overline{417273129}$

(You can use without proof that multiplication is associative and commutative, and distributes over addition.)

Question 3: Find an element $s \in R$ with the property that

$$s \\ \times \cdots 000003 \\ = \cdots 000001$$

In other words, thinking of natural numbers $n \in \mathbb{N}$ as elements of R, we're looking for a solution to the equation $s \times 3 = 1$ in R, i.e. a *multiplicative inverse* of 3 in R.

Question 4: Show that 2 does not have a multiplicative inverse in R; that is, there is no element $t \in R$ satisfying $t \times 2 = 1$.

Question 5: (Hard) Which natural numbers $n \in \mathbb{N}$ have a multiplicative inverse in R? Can you prove it? (Can you describe which $x \in R$ have a multiplicative inverse in R?) As you know, $0 \times 0 = 0$ and $1 \times 1 = 1$. In other words, if we write t^2 for $t \times t$, this says 0 and 1 are solutions to the equation $t^2 = t$. Question 6: (Hard) Find two other elements $x \in R$ and $y \in R$ satisfying $x^2 = x$ and $y^2 = y$.

Question 7: (Hard) Can you prove the equation $t^2 = t$ has only four solutions in R? (Further thought: how about $t^5 = t$; does this have more solutions than you expect?)

Question 8: (Hard) Find two nonzero elements $a \in R$ and $b \in R$ whose product is zero: $a \neq 0$ and $b \neq 0$, but $a \times b = 0$.

Question 9: Prove that there is no element $x \in R$ satisfying $x^2 = 7$.

Question 10: (Hard) Prove that there is at least one solution $z \in R$ to the equation $z^3 = 7$.