Math 120 Homework 7 Solutions

May 18, 2018

Question 0*

Let X be any nonempty set, and let $\mathcal{P}(X)$ be the set of all subsets of X (the power set of X). Define operations of addition and multiplication on $\mathcal{P}(X)$ by

$$
\begin{aligned}
A+B & =(A-B) \cup(B-A) \\
A \times B & =A \cap B
\end{aligned}
$$

i.e. addition is the symmetric difference of subsets and multiplication is intersection of subsets. Prove that $\mathcal{P}(X)$ is a commutative ring under these operations.

The additive identity is the empty set \emptyset and the multiplicative identity is the whole set X. The things to check are:

1. $\mathcal{P}(X)$ is closed under addition and multiplication.
2. $(\mathcal{P}(X),+)$ is an abelian group.
3. Multiplication is associative, commutative, and has X as the identity.
4. The distributive property

$$
A \times(B+C)=A \times B+A \times C .
$$

[TC: One way to understand this in terms of things we discussed in class is to note that $\mathcal{P}(X)$ can be identified with Functions $(X, \mathbb{Z} / 2 \mathbb{Z})$, where a function $f: X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ corresponds to the set $S_{f}:=\{x \in$ $X \mid f(x)=1\}$. One should check that the definitions of addition and multiplication above match up (i.e. $S_{f+g}=\left(S_{f} \backslash S_{g}\right) \cup\left(S_{g} \backslash S_{f}\right)$ and $\left.S_{f \cdot g}=S_{f} \cap S_{g}\right)$, so this is a ring isomorphism.]

Question 1

Let F be a field, and let $R \subset F$ be a subring of F. Prove that R is a domain.
We only need to check that R has no nontrivial zero divisors. Suppose otherwise; then $a \cdot b=0$ for some $a, b \in R$ both nonzero. Since R is a subring of F, this means that $0=a \cdot b$ in F as well. But since b is a nonzero element of a field, we know there exists $b^{-1} \in F$ with $b \cdot b^{-1}=1$. Multiplying the above equation by b^{-1}, we obtain the equality

$$
0=0 \cdot b^{-1}=a \cdot b \cdot b^{-1}=a \cdot 1=a
$$

in F. This contradicts our assumption that a is nonzero.

Question 2

Suppose that R is a domain, and $x \in R$ satisfies $x^{2}=1$. Prove that $x=1$ or $x=-1$.
Let $x \in R$ be any element satisfying $x^{2}=1$. Consider the element $y=(x-1)(x+1)$. Using distributivity, we can write

$$
\begin{aligned}
y=(x-1)(x+1) & =x^{2}-x+x-1 \\
& =x^{2}-1
\end{aligned}
$$

by applying the distributive property twice. Thus, $y=(x-1)(x+1)=0$. Since R is a domain, it has no nontrivial zero divisors, so either $x-1=0$ or $x+1=0$. Therefore $x=1$ or $x=-1$ respectively.

Question 3

Construct a ring K with the property that for every ring R, the number of ring homomorphisms $\varphi: K \rightarrow R$ is equal to the cardinality $|R|$.

Let $K=\mathbb{Z}[x]$, the ring of polynomials with integer coefficients, multiplied in the usual way. Then, it suffices to show that the homomorphisms $\varphi: K \rightarrow R$ are in one-to-one correspondence with the elements of R. The key is that a homomorphism $\varphi: \mathbb{Z}[x] \rightarrow R$ is uniquely determined by the image $\varphi(x)$, and conversely, for any element $r \in R$ there exists a homomorphism with $\varphi_{r}(x)=r$. We handle the latter claim first.

Given an element $r \in R$, define the map $\varphi_{r}: K \rightarrow R$ by

$$
\varphi_{r}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} a_{i} r^{i}
$$

for any integers $a_{i} \in \mathbb{Z}, 0 \leq i \leq n$. It is easy to check that this map is a ring homomorphism. The claim is that (a) these φ_{r} are all distinct and (b) every $\varphi: K \rightarrow R$ is one of them.

To prove (a), note that $\varphi_{r}(x)=r$, so if $r \neq r^{\prime}$ then $\varphi_{r}(x) \neq \varphi_{r^{\prime}}(x)$.
To prove (b), let $\varphi: K \rightarrow R$ be a ring homomorphism, and take $r=\varphi(x)$. We claim that $\varphi=\varphi_{r}$. In fact, since φ is a ring homomorphism,

$$
\begin{aligned}
\varphi\left(\sum_{i=0}^{n} a_{i} x^{i}\right) & =\sum_{i=0}^{n} \varphi\left(a_{i}\right) \varphi(x)^{i} \\
& =\sum_{i=0}^{n} a_{i} r^{i}
\end{aligned}
$$

since ring homomorphisms respect addition and multiplication and always fix the integers. Thus, $\varphi\left(\sum a_{i} x^{i}\right)=$ $\varphi_{r}\left(\sum a_{i} x^{i}\right)$ for every element $\sum a_{i} x^{i} \in \mathbb{Z}[x]$, and we are done.

Question 4

An element $r \in R$ is called idempotent if $r^{2}=r$.
(a^{*}) Let A and B be commutative rings. Check that in the product ring $A \times B$, the element $(1,0) \in A \times B$ is idempotent.

Multiplication in the product ring is coordinatewise, so $(1,0)^{2}=\left(1^{2}, 0^{2}\right)=(1,0)$.
(b) (Hard) Prove that if R is commutative and $x \in R$ is an idempotent with $x \neq 0$ and $x \neq 1$, then there exist commutative rings A and B such that $R \simeq A \times B$.

Define $y=1-x$. Then, because x is idempotent,

$$
\begin{aligned}
y^{2} & =(1-x)^{2} \\
& =1-2 x+x^{2} \\
& =1-2 x+x \\
& =1-x \\
& =y,
\end{aligned}
$$

so y is also idempotent. Define $R x$ to be the set $\{r x: r \in R\}$ (this is called the ideal generated by x), and $R y$ similarly. We claim that $R x$ and $R y$ are commutative rings for which $R \simeq R x \times R y$.

First, we check that $R x$ is a commutative ring if x is an idempotent. One important point is that the multiplicative identity will now be x. (In particular, $R x$ is not a subring; but it is a ring under multiplication.) Note that it is closed under addition, since $a x+b x=(a+b) x$, and multiplication, since $a x \cdot b x=a b x^{2}=a b x$. The element x is indeed the multiplicative identity, since $a x \cdot x=a x^{2}=a x$. Because R is commutative $R x$ is automatically commutative.

Thus, $R x$ and $R y$ are both commutative rings. Define $\phi: R \rightarrow R x \times R y$ by sending $\phi(a)=(a x, a y)$. We claim that ϕ is a ring isomorphism, with inverse given by $\psi: R x \times R y \rightarrow R$ sending $\psi((u, v))=u+v$.

It is easy to check that ϕ and ψ are homomorphisms; the only interesting bit is what happens to identities. We have $\phi(1)=(x, y)$ which is indeed the identity in the product, since x is the identity in $R x$ and y is the identity in $R y$. For ψ, we have $\psi(x, y)=x+y=1$ since $y=1-x$.

Also,

$$
\psi \circ \phi(a)=\psi((a x, a y))=a x+a y=a(x+y)=a
$$

and

$$
\phi \circ \psi((u, v))=\phi(u+v)=((u+v) x,(u+v) y)=(u x+v x, u y+v y)
$$

Note that since $u \in R x$ and $v \in R y, u x=u$ and $v y=v$. Meanwhile,

$$
\begin{aligned}
x y & =x(1-x) \\
& =x-x^{2} \\
& =0,
\end{aligned}
$$

so $u y=0$ and $v x=0$. Thus,

$$
\phi \circ \psi((u, v))=(u, v) .
$$

We have shown that ψ and ϕ are mutually inverse ring homomorphisms, so $R \simeq R x \times R y$, as desired.
(c) Prove that if A and B are domains, the ring $R=A \times B$ contains exactly 4 idempotents. The four are $(0,0),(0,1),(1,0),(1,1)$. Let $(a, b) \in R$ be any idempotent of R. Then,

$$
\left(a^{2}, b^{2}\right)=(a, b)^{2}=(a, b)
$$

Then, $a^{2}=a$ and $b^{2}=b$, so a is an idempotent in A and b is an idempotent in B. But in a domain, the only idempotents are 0 and 1 . If any other element x was an idempotent, $x(1-x)=x-x^{2}=0$, so there would be nontrivial zero divisors $x, 1-x$. Thus, a, b are both either 0 or 1 , and $(a, b) \in\{(0,0),(0,1),(1,0),(1,1)\}$, as desired. This is an exhaustive list of idempotents in $A \times B$.
(d) (Hard, Optional) If R is the ring of infinite-integers from HW6, find domains A and B such that $R \simeq A \times B$. Can you describe A and B explicitly? How much can you say about them? In what ways are they like R, or different from R ?

The idempotents $x, y \in R$ that you found have the property that, in a suitable sense, x is not divisible by 5 but is divisible by every power of 2 and y is not divisible by 2 but is divisible by every power of 5 . It follows by part (b) that $R \simeq(a) \times(b)$. It turns out that just as R is the ring of "infinite integers in base $10, "(a)$ is isomorphic to the ring of "infinite integers in base 5 " and (b) is isomorphic to ring of the "infinite integers in base 2."

Question 5

For any $X \subseteq \mathbb{R}$, we can define the ring $C(X)$ of continuous real-valued functions on X :

$$
C(X)=\{f: X \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

The ring structure comes from pointwise addition and multiplication: the functions $g=f_{1}+f_{2}$ and $h=f_{1} \cdot f_{2}$ are defined by

$$
\begin{aligned}
& g(x)=f_{1}(x)+f_{2}(x) \\
& h(x)=f_{1}(x) \cdot f_{2}(x)
\end{aligned}
$$

(You may assume without proof that $C(X)$ is a ring.)
Recall from elementary school that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function on the whole real line, we can restrict f to a smaller set such as $[0,1]$ to obtain $\left.f\right|_{[0,1]}:[0,1] \rightarrow \mathbb{R}$.

In fact, for any $X \subsetneq Y$, we can restrict functions $f: Y \rightarrow \mathbb{R}$ to obtain a function $\left.f\right|_{X}: X \rightarrow \mathbb{R}$. If we write $r(f)=\left.f\right|_{X}$, this defines a restriction map $r: C(Y) \rightarrow C(X)$. (You may assume without proof that $r: C(Y) \rightarrow C(X)$ is a ring homomorphism.)
(a) Give an example of two sets $X \subsetneq Y \subseteq \mathbb{R}$ such that $r: C(Y) \rightarrow C(X)$ is surjective.

Take $Y=\mathbb{R}$ and $X=\{0\}$ the single point. Then the restriction map $r: C(\mathbb{R}) \rightarrow C(\{0\})$ is just evaluation of functions. This is surjective because for every value $r \in \mathbb{R}$ there is a continuous function on \mathbb{R} with $f(0)=r$, e.g. the constant function $f(x)=r$.
(b) Give an example of two sets $X \subsetneq Y \subseteq \mathbb{R}$ such that $r: C(Y) \rightarrow C(X)$ is not surjective.

Take $Y=[0,1]$ and $X=[0,1)$. The function $f=1 /(1-x)$ lies in $C(X)$ but cannot be extended to a continuous function on $[0,1]$, since $f(x) \rightarrow \infty$ as $x \rightarrow 1^{-}$. Thus f is not in the image of r.
(c) Give an example of two sets $X \subsetneq Y \subseteq \mathbb{R}$ such that $r: C(Y) \rightarrow C(X)$ is injective.

Take $Y=[0,1]$ and $X=[0,1)$ again. To show that r is injective, it suffices to show that $r(f)=0$ implies $f=0$. This is true because $f(1)=\lim _{x \rightarrow 1^{-}} f(x)$, so if $f(x)=0$ on all of X then $f(1)=0$ as well, so $f=0$ in Y.
(d) Give an example of two sets $X \subsetneq Y \subseteq \mathbb{R}$ such that $r: C(Y) \rightarrow C(X)$ is not injective.

Take $Y=\mathbb{R}$ and $X=\{0\}$ the single point again. The nonzero function $f(x)=x$ in $C(Y)$ is mapped to 0 in $C(X)$.
(e) (Optional) Is it possible to find two sets $X \subsetneq Y \subseteq \mathbb{R}$ such that $r: C(Y) \rightarrow C(X)$ is an isomorphism? Either give an example or sketch a proof that it is impossible.

No, this is impossible. If r is an isomorphism, then it is both surjective and injective. We will first show that if r is injective, then Y is a subset of the closure of X, in other words every point of Y is the limit of a sequence of points in X.

If not, then there exists a point $y \in Y$ and a small open interval $(y-\epsilon, y+\epsilon)$ around it which doesn't intersect X. But then we can define a continuous bump function $f_{y}: \mathbb{R} \rightarrow \mathbb{R}$ which is nonzero at y and zero outside the interval $(y-\epsilon, y+\epsilon)$. This function's restriction to Y is nonzero, but $r\left(\left.f_{y}\right|_{Y}\right)=0$ since $f_{y}(x)=0$ on all of $x \in X$. Thus r would not be injective if Y were not a subset of the closure of X.

Now, pick any $y \in Y \backslash X$, and consider the continuous function $g_{y}(x)=1 /(x-y)$ which is defined on X because $y \notin X$. We claim that g_{y} is not in the image of $r: C(Y) \rightarrow C(X)$, so r is not surjective.

Since Y is in the closure of X, y is the limit of some sequence $\left(x_{n}\right)_{n \geq 1}$ of points in X. If a function $g \in C(Y)$ restricted to $g_{y}(x)$, then $g(y)=\lim _{n \rightarrow \infty} g_{y}\left(x_{n}\right)=\infty$ by continuity. Thus, no real-valued function in $C(Y)$ restricts to g_{y}, as desired.

