
Math 120 Homework 8 Solutions

May 26, 2018

Exercise 7.1.26. Let K be a field. A discrete valuation on K is a function ν : K× → Z satisfying
(i) ν(ab) = ν(a) + ν(b) (i.e. ν is a homomorphism from the multiplicative group of nonzero elements of

K to Z).
(ii) ν is surjective, and
(iii) ν(x+ y) ≥ min{ν(x), ν(y)} for all x, y ∈ K× with x+ y 6= 0.
The set R = {x ∈ K×|ν(x) ≥ 0} ∪ {0} is called the valuation ring of ν.
(a) Prove that R is a subring of K which contains the identity. (In general, a ring R is called a discrete

valuation ring if there is some field K and some discrete valuation ν on K such that R is the valuation ring
of ν). (b) Prove that for each nonzero element x ∈ K either x or x−1 is in R. (c) Prove that an element x
is a unit of R if and only if ν(x) = 0.

Proof. (a) It suffices to check that R contains 1 and is closed under addition, additive inverses, and multi-
plication.

Since
ν(1) = ν(1 · 1) = ν(1) + ν(1)

by property (i), it follows that ν(1) = 0, so 1 ∈ R.
Suppose a, b ∈ R are nonzero elements (if either are zero the sum is obviously in R), so that ν(a) ≥ 0

and ν(b) ≥ 0. We would like to show a+ b ∈ R. If a+ b = 0, we know 0 ∈ R so we’re done. Otherwise,

ν(a+ b) ≥ min{ν(a), ν(b)} ≥ 0,

so a+ b ∈ R as well. Thus R is closed under addition.
Suppose a ∈ R is nonzero. Note that

0 = ν(1) = ν(−1 · −1) = ν(−1) + ν(−1)

by property (i), so ν(−1) = 0. Thus,

ν(−a) = ν(−1 · a) = ν(−1) + ν(a) = ν(a) ≥ 0.

Thus, −a ∈ R and R is closed under additive inverses.
Finally, if a, b ∈ R are nonzero elements (if either are zero the product is zero), then ν(a) ≥ 0 and

ν(b) ≥ 0, so
ν(ab) = ν(a) + ν(b) ≥ 0,

and so ab ∈ R as well. This shows R is closed under multiplication and finishes the proof.
(b) We have

ν(x) + ν(x−1) = ν(x · x−1) = ν(1) = 0,

so at least one of ν(x), ν(x−1) is nonnegative.
(c) If x is a unit, by definition its inverse x−1 also lies in R. But by the calculation in part (b),

ν(x−1) = −ν(x) so if they’re both nonnegative then ν(x) = 0. Conversely, if ν(x) = 0, ν(x−1) = 0 as well so
its inverse lies in R and x is a unit in R.

Exercise 7.3.29*. Let R be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element x ∈ R
is nilpotent if xn = 0 for some n ∈ Z+. Prove that the set of nilpotent elements form an ideal – called the
nilradical of R and denoted by N(R).
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Proof. We need to check two things.
First, if x, y ∈ R are nilpotent, we need to check that x+ y is as well. If xm = 0 and yn = 0, check that

every term of the binomial expansion of (x+y)m+n−1 contains either a factor of xm or yn, so (x+y)m+n−1 = 0
as well, and x+ y is nilpotent.

Second, if x ∈ R is nilpotent and a ∈ R is any element, we need to check ax is nilpotent. But if xn = 0
then (ax)n = anxn = 0 since R is commutative, so we’re done.

Exercise 7.4.14(a,b,c,d)*. Assume R is commutative. Let x be an indeterminate, let f(x) be a monic poly-
nomial in R[x] of degree n ≥ 1 and use the bar notation to denote passage to the quotient ring R[x]/(f(x)).

(a) Show that every element of R[x]/(f(x)) is of the form p(x) for some polynomial p(x) ∈ R[x] of degree
less than n.

(b) Prove that if p(x) and q(x) are distinct polynomials of R[x] which are both of degree less than n,
then p(x) 6= q(x).

(c) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n, prove that a(x) is a zero divisor
in R[x]/(f(x)).

(d) If f(x) = xn − a for some nilpotent element a ∈ R, prove that x is nilpotent in R[x]/(f(x)).

Proof. (a) Every element is certainly p(x) for some polynomial p. By the division algorithm for polynomials
over a commutative ring, it is possible to write every p(x) as

p(x) = q(x)f(x) + r(x)

where r(x) has degree less than n. Then p(x) = r(x), and every element of the quotient can be expressed
this way.

(b) If p(x) = q(x), then p(x)− q(x) ∈ (f(x)), which would imply that p(x)− q(x) is a multiple of f(x).
But p(x)− q(x) has lower degree than f(x), so this is impossible.

(c) Simply note a(x)b(x) = 0, but a(x), b(x) are both nonzero by part (b).
(d) Since a is nilpotent in R, there is m ∈ Z+ for which am = 0. Thus (x)mn = (xn)m = am = 0.

Question 0. Prove that the ideal I = (x2 + 1) in R[x] is maximal. (For maximum understanding, try to
prove this with the same approach we used in class for the ideal (x− 2, y − 3) in R[x, y].)

Proof. Recall that an ideal is maximal iff quotienting by it results in a field. Consider the ring homomorphism
α : R[x] → C which sends x 7→ i. Any element of C is of the form a + bi where a, b ∈ R, so α is surjective.
It follows that R[x]/ ker(α) ' C, which is a field.

It remains to notice that ker(α) = I. On the one hand, x2 +1 7→ i2 +1 = 0, so I ⊆ ker(α). On the other
hand, consider any polynomial p(x) ∈ ker(α). The map α just evaluates p(x) at i, so p(i) = 0. But p is a
real polynomial, so its roots come in conjugate pairs; therefore p(−i) = 0 as well. Therefore, p(x) is divisible
by the product (x− i)(x+ i) = x2 + 1, and p(x) ∈ I, as desired.

Thus, I = ker(α) and R[x]/I ' C is a field, implying that I is maximal in R[x].

Question 1. Let R ⊂ R[x] be the subring of R[x] consisting of polynomials whose coefficient of x is 0:

R =
{
f(x) = a0 + a2x

2 + · · ·+ anx
n
∣∣ ai ∈ R

}
R[x] =

{
f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n
∣∣ ai ∈ R

}
You may use without proof that if g(x) and h(x) are polynomials in R[x], then deg(gh) = deg(g) + deg(h).

Exhibit an ideal I ⊂ R in R that is not principal, and justify your answer by proving that I is not a
principal ideal of R.

Proof. One such example is the ideal I = (x2, x3) = {polynomials with no constant term}. Suppose I were
principal, i.e. I = (f). Then, since x2 ∈ I, x2 must be a multiple of f , so deg(f) ≤ 2.

If deg(f) = 0, then f is a nonzero constant and (f) = R, so (f) 6= I.
Also, no polynomials in R have degree 1. Thus, deg(f) = 2. But then since x3 ∈ I, we can write

x3 = f · g, for some other g ∈ R. This implies that deg(g) = deg(x3)−deg(f) = 3−2 = 1, which contradicts
the fact that no polynomials in R have degree 1. Therefore, I cannot be principal.
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Question 2. Let R = Z[i] = {a+ bi | a, b ∈ Z}.

(a) Find a prime ideal P2 ⊂ R such that P2 ∩ Z = 2Z.

(b) Find a prime ideal P3 ⊂ R such that P3 ∩ Z = 3Z.

(c) Find a prime ideal P5 ⊂ R such that P5 ∩ Z = 5Z.

Justify your answers. For each one, describe (as best you can) the domain R/P .

Proof. Recall that to prove P is a prime ideal, it suffices to check that R/P is a domain.
(a) Take P2 = (1+ i). It is easy to check that a+ bi ∈ R lies in P2 iff a ≡ b (mod 2). Thus R/P2 contains

exactly two elements 0 and 1. The unique such ring is Z/2Z, which is a domain. This implies P2 is prime.
The set P2∩Z will contain exactly those a+ bi where a ≡ b (mod 2) and b = 0, i.e. the even integers 2Z.
(b) Take P3 = (3). The elements of R/P3 can certainly be reduced mod 3 in both real and imaginary

parts, so every element is of the form a+ bi where a, b ∈ {0, 1, 2}. Also, all of these elements are distinct. To
see this, note that if two were the same in R/P3, then their difference is also of the same form a+ bi with
not both of a, b zero, and their difference would be zero.

But if a, b ∈ {1, 2}, then (a+ bi)(−a+ bi) = −a2 − b2 = 1, since 12 ≡ 22 ≡ 1 (mod 3). Thus a+ bi is a
unit and therefore nonzero if a, b ∈ {1, 2}.

The other case is if a = 0 or b = 0. If a = 0, then −bi2 = b2 = 1 so bi is a unit. If b = 0, then a2 = 1 so
a is a unit.

We have shown that R/P3 consists of exactly these 9 distinct elements, and furthermore that all the
nonzero ones are units. Thus R/P3 is a field, and P3 must be prime. (Note, this field is not Z/9Z, which is
not even a domain).

It is easy to check that P3 ∩ Z = 3Z.
(c) Take P5 = (2+ i). The elements of P5 will be exactly those elements a+ bi for which a ≡ 2b (mod 5).

We can therefore check that R/P5 contains five distinct elements corresponding to the possible residue classes
mod 5. The only ring on 5 elements is the field Z/5Z, which shows that P5 is prime, as desired.

It is easy to check that P5 ∩ Z = 5Z.

Question 3. Construct a commutative ring L with the property that for every commutative ring R,

the # of ring homomorphisms ϕ : L→ R

is equal to the number of elements r ∈ R satisfying r2 = 2.

Note that “2” here means the element 1 + 1 ∈ R. (You do not have to prove your answer is correct.)

Proof. The ring L is Z[x]/(x2 − 2). An alternative description of this ring is L = {a+ b
√
2 | a, b ∈ Z}.

It suffices to construct a bijection between the sets

{ ring homomorphisms L→ R}

and
{ elements r ∈ R satisfying r2 = 2}.

Given an element of R satisfying r2 = 2, let ϕr be the map which sends x ∈ L to r. To check that
this is a well-defined map, note that by Question 3 from Homework 7, there exists a ring homomorphism
ψr : Z[x]→ R which sends x to r. The kernel of ψr contains x2 − 2, since

ψr(x
2 − 2) = r2 − 2 = 0

and so it contains the whole ideal (x2 − 2). Thus, ψr induces a well-defined ring homomorphism ϕr :
Z[x]/(x2 − 2)→ R, which is the map we wanted.

Using Question 3 from Homework 7, we see that ϕr is also unique. Otherwise, given two maps ϕr, ϕ′r :
Z[x]/(x2 − 2) → R, they lift to ring homomorphisms Z[x] → R which both send x to the same element r.
Such a map is unique, so ϕr = ϕ′r.
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It remains to check that every ring homomorphism L → R is one of the ϕr. In fact, if ϕ : L → R is a
ring homomorphism, then ϕ(x) must satisfy

ϕ(x)2 − 2 = ϕ(x2 − 2) = 0,

so ϕ always sends x to some r for which r2 = 2. For this r, ϕ = ϕr by the uniqueness mentioned previously.

Question 4. Construct a commutative ring M with the property that for every commutative ring R,

the # of ring homomorphisms ϕ : M → R

is equal to the number
∣∣R×∣∣ of invertible elements in R.

Prove your answer is correct.

Proof. Take M = {
∑n
k=−m akx

k |m ≥ 0, n ≥ 0, ak ∈ Z}, the so-called ring of Laurent polynomials over Z.
In other words, every element of M is x−n · p(x) for some (regular) polynomial p(x) ∈ Z[x].

It suffices to construct a bijection between the sets

{ ring homomorphisms M → R}

and
{invertible elements r ∈ R}.

Given an invertible element r ∈ R, let ϕr be the map which sends x ∈ M to r (and thus x−1 to r−1).
A general element x−np(x) will be sent to r−np(r). This ϕr is a ring homomorphism, preserving addition,
negation, products, and the identity.

To see that given the image of r, ϕr is uniquely determined, notice that for ϕr to be a ring homomorphism,

ϕr(

n∑
k=−m

akx
k) =

n∑
k=−m

akϕr(x)
k =

n∑
k=−m

akr
k,

so the images of all elements of M are fixed once the image of x is chosen.
It remains to check that every ring homomorphism M → R is one of the ϕr. In fact, if ϕ : M → R is a

ring homomorphism, then ϕ(x−1)ϕ(x) = ϕ(1) = 1, so ϕ(x) must be some invertible element r ∈ R. For this
r, ϕ = ϕr by the uniqueness mentioned previously.

Question 5. Can there exist a commutative ring N with the property that for every commutative ring R,

the # of ring homomorphisms ϕ : N → R

is equal to the # of elements r ∈ R such that both r and 1− r are units.

Either construct such a ring and prove that your answer is correct (at least outline a proof), or prove that
no such ring can exist.

Proof. Take

N =
{
f(x) = xk(1− x)`p(x)

∣∣ k ∈ Z, ` ∈ Z, p(x) ∈ Z[x] satisfies p(0) 6= 0, p(1) 6= 0
}
.

This is similar to the ringM in Question 4 except that we additionally allow for negative powers of (1−x).
The tricky part about proving N is a ring is showing that it is closed under addition. If f(x) = xk(1−x)`p(x)
and g(x) = xk

′
(1− x)`′q(x), then define k0 = min(k, k′), `0 = min `, `′, and check that

f(x) + g(x) = xk0(1− x)`0(xk−k0(1− x)`−`0p(x) + xk
′−k0(1− x)`

′−`0q(x)),

where the polynomial in the parentheses is an honest polynomial. However, it may vanish at x and/or 1−x;
in this case, factor out a finite number of factors of x and 1− x, until this is no longer the case.
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It suffices to construct a bijection between the sets

{ ring homomorphisms N → R}

and
{elements r ∈ R for which r, 1− r are both units}.

Given r ∈ R such that r, 1− r are both units, let ϕr be the map which sends x ∈ N to r. Again, for ϕr
to be a ring homomorphism and ϕr(x) = r, it must be the unique "evaluation at r" map which sends

ϕr(x
k(1− x)`p(x)) = rk(1− r)`p(r).

It remains to check that every ring homomorphism N → R is one of the ϕr. In fact, if ϕ : N → R is
a ring homomorphism, then ϕ(x−1)ϕ(x) = ϕ(1) = 1, so ϕ(x) must be some invertible element r ∈ R. Also
ϕ((1−x)−1)ϕ(1−x) = ϕ(1) = 1, so ϕ(1−x) = 1− r is also invertible. For this r, ϕ = ϕr by the uniqueness
mentioned previously.

In Question 6, you can use the following fact, which we will prove later in the course:

If G is a finitely generated abelian group, then every subgroup of G is finitely generated.

(This is false if G is a finitely generated nonabelian group, as you proved for G = F2 in Q5B on HW3.)

Question 6. Given a complex number z ∈ C, let A(z) denote the additive subgroup of C generated by the
positive powers 1, z, z2, z3, . . . under addition.
For example, A(2) = 〈1, 2, 4, 8, . . .〉 = Z, whereas A( 23 ) = 〈1,

2
3 ,

4
9 ,

8
27 , . . .〉 = {

p
3k
∈ Q}.

A complex number z ∈ C is called integral if A(z) is finitely generated as a group under addition.

Question 6(a)*. Prove that a rational number x ∈ Q is integral if and only if x ∈ Z.

Proof. If x ∈ Z, then A(x) is just Z, so it is finitely generated.
If x ∈ Q is integral, then A(x) is a finitely generated subgroup of Q. We showed as a corollary of an

earlier homework that the finitely generated subgroups of Q are exactly the singly generated subgroups m
n Z.

Thus, for x to be integral, all of its powers must be integer multiples of a single rational number m
n . This is

impossible if x 6∈ Z.

Question 6(b). Describe exactly which elements of Q(i) are integral. (Recall that Q(i) = {a+ bi | a, b ∈ Q}.)

Proof. The elements are those in Z[i] = {a+ bi | a, b ∈ Z}.
For any z = a+ bi ∈ Z[i], note that A(z) will be a subgroup of Z[i] under addition, which is isomorphic

as an abelian group to Z × Z. But any subgroup of Z × Z is finitely generated (using e.g. the fact in the
beginning). Thus z is integral.

For the other direction, we will use the following version of Gauss’ Lemma. Define the content C(p) of a
polynomial p ∈ Z[x] to be the greatest common divisor of its coefficients.

Lemma 1. For any two polynomials p(x), q(x) ∈ Z[x],

C(p)C(q) = C(pq).

Proof. Because C(p) divides all the coefficients of p and C(q) divides all the coefficients of q, C(p)C(q)
divides all the coefficients of pq, so C(p)C(q)|C(pq).

Dividing p by C(p) and q by C(q) we may assume C(p) = C(q) = 1. It remains to show that in this case,
C(pq) = 1. Write p(x) =

∑
i aix

i and q(x) =
∑
j bjx

j .
Otherwise, there is a prime r which divides all the coefficients of pq, but not all the coefficeients of p or

q. Let aixi and bjxj be the smallest degree monomials in p, q respectively for which r - ai and r - bj . Then,
the coefficient of xi+j in pq is

i+j∑
k=0

akx
kbi+j−kx

i+j−k,

and every term except aixibjxj has a coefficient which is divisible by r. But aibj is not divisible by r, so this
implies that the whole coefficient of xi+j in pq is not divisible by r, a contradiction. Thus C(pq) = 1.
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Now suppose z ∈ Q[i] is not in Z[i], but A(z) is finitely generated. Since every element of A(z) can be
written as a finite integer linear combination of its generators 1, z, z2, . . ., the finite set of generators can all
be written this way too. Thus, A(z) has a finite set of generators which are integer polynomials of z. It
follows that there is some smallest n ≥ 1 for which A(z) is generated by 1, z, z2, . . . , zn−1.

In particular, zn can be written as an integer linear combination zn = an−1z
n−1+ · · ·+a0 of the previous

generators. Define p(x) = xn − an−1zn−1 − · · · − a0, so that z is a root of this polynomial. Since p has real
coefficients, z is also a root of p, so p is divisible by the polynomial q(x) = (x − z)(x − z). We can write
z = (a+ bi)/c in simplest terms, where c ≥ 2 shares no factors with both a and b, then

q(x) = x2 − 2a

c
x+

a2 + b2

c2

is a polynomial with rational coefficients. The quotient r(x) = p(x)/q(x) will also be a polynomial with
rational coefficients. In addition, p(x) and q(x) both have leading coefficient 1, so r(x) does as well.

There exist integers A,B for which Aq(x) ∈ Z[x] and Br(x) ∈ Z[x], clearing the denominators of r and
q. Then, ABp = (Aq)(Br), so by Lemma 1,

C(ABp) = C(Aq)C(Br).

The left hand side is exactly AB, since p ∈ Z[r] to begin with and had leading coefficient 1. But the leading
coefficient of Aq is A and the leading coefficient of Br is B, so the right hand side is at most AB. For it to
be exactly AB, both C(Aq) = A and C(Br) = B must be the case.

Therefore, C(Aq) = A and q ∈ Z[x] to begin with. In particular, c|2a and c2|a2 + b2. If gcd(a, c) 6= 1,
then gcd(a, c)2|c2|a2 + b2, and gcd(a, c)2|a2, so gcd(a, c)2|b2, and a, b, c have a common factor, contradicting
our assumption that z was written in simplest terms.

Thus, gcd(a, c) = 1, which together with c|2a implies that c = 2 and a is odd. Otherwise, c = 2 and
4 = c2|a2 + b2. But a2 ≡ 1 (mod 4) and b2 is either 0 or 1 (mod 4), so this is impossible. We have thus
proved that z ∈ Z[i].

Question 6(c). Describe exactly which elements of Q(
√
3) are integral. (Recall that Q(

√
3) = {a+b

√
3 | a, b ∈ Q}.)

Proof. The answer is {a+ b
√
3 | a, b ∈ Z}.

The situation is similar to 6(b), replacing i by
√
3. For showing that elements of this set are integral,

check that Z[
√
3] ' Z× Z as an abelian group.

In the other direction, we may again assume that z ∈ Q(
√
3) and z is integral, so z is the zero of some

polynomial of the form p(x) = xn − an−1zn−1 − · · · − a0.
Any such element z not in Z[

√
3] = {a+ b

√
3 | a, b ∈ Z} can be written in simplest terms as (a+ b

√
3)/c

where gcd(a, b, c) = 1 and c ≥ 2. Then, z is also the zero of a quadratic

q(x) = x2 − 2a

c
x+

a2 − 3b2

c2

with rational coefficients. Repeating the argument in 6(b), q(x)|p(x), so q(x) has integer coefficients. There-
fore, c|2a and c2|a2 − 3b2. The first condition again implies that c = 2 and a is odd. The second is then
impossible by the same argument as before, because a2 − 3b2 ≡ a2 + b2 (mod 4) can never be divisible by
c2 = 4.

Question 6(d). Describe exactly which elements of Q(
√
5) are integral. (Recall that Q(

√
5) = {a+b

√
5 | a, b ∈ Q}.)

Proof. The answer is {a+b
√
5

2 | a, b ∈ Z, a+ b ≡ 0 mod 2}.
The situation is similar 6(b) and (c), replacing i by 1+

√
5

2 . For showing that the elements above are
indeed integral, check that Z[ 1+

√
5

2 ] ' Z× Z as an abelian group.
In the other direction, we may again assume that z ∈ Q(

√
5) and z is integral, so z is the zero of some

polynomial of the form p(x) = xn − an−1zn−1 − · · · − a0.
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Any such element z can be written in simplest terms as (a + b
√
5)/c where gcd(a, b, c) = 1 and c ≥ 2.

Then, z is also the zero of a quadratic

q(x) = x2 − 2a

c
x+

a2 − 5b2

c2

with rational coefficients. Repeating the argument in 6(b), q(x)|p(x), so q(x) has integer coefficients. There-
fore, c|2a and c2|a2 − 5b2. The first condition implies c = 2 and a is odd. The second implies that b is
also odd. This shows that the integral elements of Q(

√
5) are either elements of Z[

√
5], or can be written as

(a+ b
√
5)/2, where a, b are both odd. This is exactly the set described.

Question 6(e). Let x ∈ C be an integral element, and let y ∈ C be an nth root of x (meaning yn = x).
Prove that y is integral.

Proof. Notice that A(y) is contained in the union of the n sets A(x), yA(x),. . . yn−1A(x). This is because
every generator ym of A(y) can be written as yan+r = xayr where r ≤ n− 1. If g1, . . . , gm are a finite set of
generators for A(x), then the set of mn elements yigj , 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m generate A(y).

Question 6(f). Prove that if x ∈ C and y ∈ C are both integral, then x+ y and xy are integral. Conclude
that the set A ⊂ C of all integral elements of C forms a subring of C.

Proof. Let A(x, y) be the additive subgroup of C spanned by xiyj for i, j ≥ 0.
If A(x) is finitely generated by g1, . . . , gm and A(y) is finitely generated by h1, . . . , hn, then A(x, y) is

finitely generated by the mn products gihj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. To see this, any product xiyj can be
written in as an integer linear combination of gihj by writing xi as an integer linear combination of the gi
and yj as an integer linear combination of the hj .

Now simply observe that A(x+ y) and A(xy) are both contained in A(x, y), so using the remark, each is
finitely generated. Note that A(−x) = A(x) so A is closed under negation as well. Thus the ring of integral
elements of C forms a subring of C.

Question 6(g). Describe exactly which elements of Q( 3
√
2) are integral. Q( 3

√
2) = {a+ b 3

√
2 + c 3

√
2
2 | a, b, c ∈ Q}.

Proof. The answer is {a+ b 3
√
2 + c 3

√
2
2 | a, b, c ∈ Z}.

Question 6(h). Describe which elements of Q( 3
√
10) are integral. Q( 3

√
10) = {a+ b 3

√
10 + c 3

√
10

2 | a, b, c ∈ Q}.

Proof. The answer is {a+b
3√10+c 3√10

2

3 | a, b, c ∈ Z, a+ b+ c ≡ 0 mod 3}, but proving this is quite difficult.

Question 6(i). Prove that z = 2 cos(2πn ) is integral for any n ∈ N.

Proof. This can be done directly using trigonometric identities. Alternately, let w = cos( 2πn ) + sin( 2πn )i. De
Moivre’s formula says that

wn = cos
(
n · 2π

n

)
+ sin

(
n · 2π

n

)
i = cos(2π) + sin(2π)i = 1.

Therefore Q6(e) tells us that w is integral, since it is an nth root of 1 which is definitely integral, so A(w)
is a finitely generated abelian group. Since z = 2 cos( 2πn ) = w + wn−1 we see that z ∈ A(w) and thus
A(z) ⊂ A(w). Using the italicized remark above, we conclude that A(z) is finitely generated.

Question 6(j). For z = 2 cos(2πn ), the group A(z) is isomorphic to Zk for some rank k = k(n) depending
on n. Compute the rank k(n) for n = 3, 4, 5, 6, 7. Can you express the rank k(n) as a function of n?

Proof. The rank k(n) for n = 3, 4, 5, 6, 7 is: k(3) = 1, k(4) = 1, k(5) = 2, k(6) = 1, k(7) = 3. For general n,
the rank is given by k(n) = ϕ(n)/2.
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