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Exercise 7.1.26. Let K be a field. A discrete valuation on K is a function v : K* — Z satisfying

(i) v(ab) = v(a) + v(b) (i.e. v is a homomorphism from the multiplicative group of nonzero elements of
K to Z).

(ii) v is surjective, and

(iii) v(x +y) > min{v(z),v(y)} for all z,y € K* with x +y # 0.

The set R = {z € K*|v(xz) > 0} U {0} is called the valuation ring of v.

(a) Prove that R is a subring of K which contains the identity. (In general, a ring R is called a discrete
valuation ring if there is some field K and some discrete valuation v on K such that R is the valuation ring
of v). (b) Prove that for each nonzero element x € K either x or 7! is in R. (c) Prove that an element =
is a unit of R if and only if v(z) = 0.

Proof. (a) It suffices to check that R contains 1 and is closed under addition, additive inverses, and multi-
plication.
Since

v(l)=v(1-1)=v()+vQ)
by property (i), it follows that v(1) =0, so 1 € R.

Suppose a,b € R are nonzero elements (if either are zero the sum is obviously in R), so that v(a) > 0
and v(b) > 0. We would like to show a +b € R. If a + b = 0, we know 0 € R so we’re done. Otherwise,

v(a+b) > min{v(a),v(b)} >0,

so a+ b € R as well. Thus R is closed under addition.
Suppose a € R is nonzero. Note that

0=v(l)=v(-1--1)=v(-1)+v(-1)
by property (i), so ¥(—1) = 0. Thus,
v(—a) =v(-1-a) =v(-1)+v(a) = v(a) > 0.

Thus, —a € R and R is closed under additive inverses.
Finally, if a,b € R are nonzero elements (if either are zero the product is zero), then v(a) > 0 and
v(b) >0, so
v(ab) = v(a) +v(b) >0,

and so ab € R as well. This shows R is closed under multiplication and finishes the proof.
(b) We have
v(@)+ve ) =v(@-27') =v(1) =0,

so at least one of v(z),v(x~1) is nonnegative.

(c) If x is a unit, by definition its inverse x~! also lies in R. But by the calculation in part (b),
v(z71) = —v(z) so if they’re both nonnegative then v(z) = 0. Conversely, if v(z) = 0, v(z7!) = 0 as well so
its inverse lies in R and « is a unit in R. O

Exercise 7.3.29*. Let R be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element 2 € R
is nilpotent if 2™ = 0 for some n € Z*. Prove that the set of nilpotent elements form an ideal — called the
nilradical of R and denoted by M(R).



Proof. We need to check two things.

First, if z,y € R are nilpotent, we need to check that x + y is as well. If " = 0 and y™ = 0, check that
every term of the binomial expansion of (z+y)™"~! contains either a factor of 2™ or y™, so (z+y)™+ "1 =0
as well, and x + y is nilpotent.

Second, if € R is nilpotent and a € R is any element, we need to check ax is nilpotent. But if 2™ =0
then (az)™ = a™2™ = 0 since R is commutative, so we’re done. O

Exercise 7.4.14(a,b,c,d)*. Assume R is commutative. Let = be an indeterminate, let f(z) be a monic poly-
nomial in R[z] of degree n > 1 and use the bar notation to denote passage to the quotient ring R[z]/(f(x)).

(a) Show that every element of R[z]/(f(x)) is of the form p(z) for some polynomial p(z) € R[z] of degree
less than n.

(b) Prove that if p(z) and ¢(z) are distinct polynomials of R[x] which are both of degree less than n,

then p(z) # q(z).

(¢) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n, prove that a(z) is a zero divisor
in Rial/(/(z).

(d) If f(z) = 2™ — a for some nilpotent element a € R, prove that Z is nilpotent in R[z]/(f(z)).

Proof. (a) Every element is certainly p(z) for some polynomial p. By the division algorithm for polynomials
over a commutative ring, it is possible to write every p(z) as

p(x) = q(z)f(2) +r(x)

where r(z) has degree less than n. Then p(z) = r(x), and every element of the quotient can be expressed
this way.

(b) If p(x) = q(x), then p(z) — q(x) € (f(x)), which would imply that p(z) — ¢(x) is a multiple of f(x).
But p(z) — ¢(z) has lower degree than f(z), so this is impossible.

(¢) Simply note a(z)b(z) = 0, but a(z), b(x) are both nonzero by part (b).

(d) Since a is nilpotent in R, there is m € Z* for which ™ = 0. Thus (Z)"n = (z™)™ =a™ = 0. O

Question 0. Prove that the ideal I = (22 + 1) in R[z] is maximal. (For maximum understanding, try to
prove this with the same approach we used in class for the ideal (z — 2,y — 3) in Rz, y].)

Proof. Recall that an ideal is maximal iff quotienting by it results in a field. Consider the ring homomorphism
a : R[z] — C which sends x — ¢. Any element of C is of the form a + bi where a,b € R, so « is surjective.
It follows that Rlz]/ ker(a) ~ C, which is a field.

It remains to notice that ker(a) = I. On the one hand, 2? + 1+ 2+ 1 =0, so I C ker(a). On the other
hand, consider any polynomial p(z) € ker(a). The map « just evaluates p(z) at 4, so p(i) = 0. But pis a
real polynomial, so its roots come in conjugate pairs; therefore p(—i) = 0 as well. Therefore, p(z) is divisible
by the product (z —i)(z +i) = 2% + 1, and p(z) € I, as desired.

Thus, I = ker(«) and R[z]/I ~ C is a field, implying that I is maximal in R[z]. O

Question 1. Let R C R[z] be the subring of R[x] consisting of polynomials whose coefficient of z is 0:

R = { f(@) =ao +agz? + -+ aza” |aieR }
Rlz] = { f(x):ao+a1x+a2x2+-~+angj” |ai€R }

You may use without proof that if g(x) and h(z) are polynomials in R[z], then deg(gh) = deg(g) + deg(h).
Exhibit an ideal I C R in R that is not principal, and justify your answer by proving that I is not a
principal ideal of R.

Proof. One such example is the ideal I = (22, 23) = {polynomials with no constant term}. Suppose I were
principal, i.e. I = (f). Then, since 22 € I, 22 must be a multiple of f, so deg(f) < 2.

If deg(f) = 0, then f is a nonzero constant and (f) = R, so (f) # I.

Also, no polynomials in R have degree 1. Thus, deg(f) = 2. But then since z* € I, we can write
23 = f-g, for some other g € R. This implies that deg(g) = deg(z®) — deg(f) = 3 —2 = 1, which contradicts
the fact that no polynomials in R have degree 1. Therefore, I cannot be principal. O
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Question 2. Let R =Z[i] = {a + bi|a,b € Z}.
(a) Find a prime ideal P, C R such that P, NZ = 27Z.
(b) Find a prime ideal P; C R such that PsNZ = 3Z.
(c¢) Find a prime ideal Ps C R such that Ps NZ = 5Z.
Justify your answers. For each one, describe (as best you can) the domain R/P.

Proof. Recall that to prove P is a prime ideal, it suffices to check that R/P is a domain.

(a) Take P = (1+1). It is easy to check that a+bi € R lies in Py iff a = b (mod 2). Thus R/ P, contains
exactly two elements 0 and 1. The unique such ring is Z/27Z, which is a domain. This implies P, is prime.

The set P, NZ will contain exactly those a + bi where ¢ = b (mod 2) and b = 0, i.e. the even integers 2Z.

(b) Take P; = (3). The elements of R/Ps can certainly be reduced mod 3 in both real and imaginary
parts, so every element is of the form a + b7 where a,b € {0,1,2}. Also, all of these elements are distinct. To
see this, note that if two were the same in R/Ps, then their difference is also of the same form a + bi with
not both of a, b zero, and their difference would be zero.

But if a,b € {1,2}, then (a + bi)(—a + bi) = —a® — b? = 1, since 12 = 22 = 1 (mod 3). Thus a + bi is a
unit and therefore nonzero if a,b € {1, 2}.

The other case is if a = 0 or b = 0. If ¢ = 0, then _Bi° =% =T so bi is a unit. If b=0, then @2 =1 so
a is a unit.

We have shown that R/Ps; consists of exactly these 9 distinct elements, and furthermore that all the
nonzero ones are units. Thus R/Ps is a field, and P; must be prime. (Note, this field is not Z/9Z, which is
not even a domain).

It is easy to check that P3N Z = 3Z.

(c¢) Take Ps = (2+414). The elements of P5 will be exactly those elements a + bi for which a = 2b (mod 5).
We can therefore check that R/Ps contains five distinct elements corresponding to the possible residue classes
mod 5. The only ring on 5 elements is the field Z/5Z, which shows that Ps is prime, as desired.

It is easy to check that P; NZ = 5Z. O

Question 3. Construct a commutative ring L with the property that for every commutative ring R,

the # of ring homomorphisms ¢: L — R

is equal to the number of elements r € R satisfying 7 = 2.

Note that “2” here means the element 1+ 1 € R. (You do not have to prove your answer is correct.)

Proof. The ring L is Z[x]/(z? — 2). An alternative description of this ring is L = {a 4+ bv/2|a,b € Z}.
It suffices to construct a bijection between the sets

{ ring homomorphisms L — R}

and
{ elements r € R satisfying % = 2}.

Given an element of R satisfying 72 = 2, let ¢, be the map which sends € L to r. To check that
this is a well-defined map, note that by Question 3 from Homework 7, there exists a ring homomorphism
t, : Z]x] — R which sends x to r. The kernel of v, contains 2% — 2, since

Yp(2* —2)=r*-2=0

and so it contains the whole ideal (2 — 2). Thus, v, induces a well-defined ring homomorphism ¢, :
Z[z]/(z*® — 2) — R, which is the map we wanted.

Using Question 3 from Homework 7, we see that ¢, is also unique. Otherwise, given two maps ¢, ¢/ :
Z[z]/(x* — 2) — R, they lift to ring homomorphisms Z[x] — R which both send z to the same element r.
Such a map is unique, so ¢, = ¢...



It remains to check that every ring homomorphism L — R is one of the ¢,. In fact, if ¢ : L - Ris a
ring homomorphism, then ¢(Z) must satisfy

o(T)* —2= (" —2) =0,

so ¢ always sends T to some r for which r? = 2. For this r, ¢ = ¢, by the uniqueness mentioned previously.
O

Question 4. Construct a commutative ring M with the property that for every commutative ring R,

the # of ring homomorphisms ¢: M — R

is equal to the number |RX | of invertible elements in R.

Prove your answer is correct.

Proof. Take M = {>_;_  axz®|m > 0,n > 0,a;, € Z}, the so-called ring of Laurent polynomials over Z.
In other words, every element of M is =™ - p(x) for some (regular) polynomial p(z) € Z|x].
It suffices to construct a bijection between the sets

{ ring homomorphisms M — R}

and
{invertible elements r € R}.

Given an invertible element r € R, let ¢, be the map which sends z € M to r (and thus 2% to r=1).
A general element =~ "p(z) will be sent to r~"p(r). This ¢, is a ring homomorphism, preserving addition,
negation, products, and the identity.

To see that given the image of r, ¢, is uniquely determined, notice that for ¢, to be a ring homomorphism,

—n

n n

or( Z akxk): Z ak%"r(x)k: Z akrka

k=—m k=—m k=—m

so the images of all elements of M are fixed once the image of x is chosen.

It remains to check that every ring homomorphism M — R is one of the ¢,. In fact, if ¢ : M — R is a
ring homomorphism, then ¢(z~1)p(z) = ¢(1) = 1, so p(x) must be some invertible element » € R. For this
r, o = @, by the uniqueness mentioned previously. O

Question 5. Can there exist a commutative ring N with the property that for every commutative ring R,

the # of ring homomorphisms ¢: N — R
is equal to the # of elements r € R such that both r and 1 — r are units.

Either construct such a ring and prove that your answer is correct (at least outline a proof), or prove that
no such ring can exist.

Proof. Take
N={f(z)= 28 (1 — ) p(x) ’ k€ Z,0 e Z, p(z) € Zlx] satisfies p(0) # 0,p(1) # 0 }.

This is similar to the ring M in Question 4 except that we additionally allow for negative powers of (1—x).
The tricky part about proving N is a ring is showing that it is closed under addition. If f(z) = 2*(1—z)p(x)
and g(z) = 2* (1 — 2)* q(x), then define kg = min(k, k'), £y = min ¢, #/, and check that

f(@) + g(x) = 2™ (1 — @) (2" (1 — )~ "op(a) + ¥ o (1 — )" ~oq(x)),

where the polynomial in the parentheses is an honest polynomial. However, it may vanish at = and/or 1 — x;
in this case, factor out a finite number of factors of  and 1 — x, until this is no longer the case.



It suffices to construct a bijection between the sets
{ ring homomorphisms N — R}

and
{elements r € R for which r, 1 —r are both units}.

Given r € R such that ;1 — r are both units, let ¢, be the map which sends x € N to r. Again, for @,
to be a ring homomorphism and ¢, (z) = r, it must be the unique "evaluation at r" map which sends

pr(z*(1 =) p(x)) = r*(1 —r)'p(r).

It remains to check that every ring homomorphism N — R is one of the ¢,. In fact, if ¢ : N — R is
a ring homomorphism, then ¢(z71)p(r) = ¢(1) = 1, so ¢(z) must be some invertible element r € R. Also
o(1—2)"Yp(l—2) = ¢(1) =1, so (1 —x) = 1 —r is also invertible. For this r, ¢ = ¢, by the uniqueness
mentioned previously. O

In Question 6, you can use the following fact, which we will prove later in the course:
If G is a finitely generated abelian group, then every subgroup of G is finitely generated.

(This is false if G is a finitely generated nonabelian group, as you proved for G = Fy in Q5B on HWS3.)

Question 6. Given a complex number z € C, let A(z) denote the additive subgroup of C generated by the
positive powers 1, z, 22, 23, ... under addition.

For example, A(2) = (1,2,4,8,...) = Z, whereas A(3) = (1,2,3,%,...) = {& € Q}.

A complex number z € C is called integral if A(z) is finitely generated as a group under addition.

Question 6(a)*. Prove that a rational number z € Q is integral if and only if = € Z.

Proof. If © € Z, then A(z) is just Z, so it is finitely generated.

If x € Q is integral, then A(z) is a finitely generated subgroup of Q. We showed as a corollary of an
earlier homework that the finitely generated subgroups of Q are exactly the singly generated subgroups 7 Z.
Thus, for x to be integral, all of its powers must be integer multiples of a single rational number 2. This is
impossible if z & Z. O

Question 6(b). Describe exactly which elements of Q(%) are integral. (Recall that Q(i) = {a + bi|a,b € Q}.)

Proof. The elements are those in Z[i] = {a + bi|a,b € Z}.

For any z = a + bi € Z][i], note that A(z) will be a subgroup of Z[i] under addition, which is isomorphic
as an abelian group to Z x Z. But any subgroup of Z x Z is finitely generated (using e.g. the fact in the
beginning). Thus z is integral.

For the other direction, we will use the following version of Gauss’ Lemma. Define the content C(p) of a
polynomial p € Z[x] to be the greatest common divisor of its coefficients.

Lemma 1. For any two polynomials p(x), ¢(z) € Z[z],
Cp)Cla) = Clpg).

Proof. Because C(p) divides all the coefficients of p and C(q) divides all the coefficients of ¢, C(p)C(q)
divides all the coefficients of pq, so C(p)C(q)|C(pq).
Dividing p by C(p) and ¢ by C(q) we may assume C(p) = C(q) = 1. It remains to show that in this case,
C(pq) = 1. Write p(z) = Y, a;2* and g(z) = > bjai.
Otherwise, there is a prime r which divides all the coefficients of pq, but not all the coefficeients of p or
q. Let a;z" and bjz7 be the smallest degree monomials in p, q respectively for which 7 { a; and r { b;. Then,
the coefficient of 2°%7 in pq is
i+j
Z ar@¥ btk
k=0
and every term except a;z'b;z7 has a coefficient which is divisible by 7. But a;b; is not divisible by r, so this
implies that the whole coefficient of z*7 in pq is not divisible by r, a contradiction. Thus C(pq) =1. O



Now suppose z € Q[é] is not in Z[i], but A(z) is finitely generated. Since every element of A(z) can be
written as a finite integer linear combination of its generators 1, z, 22, ..., the finite set of generators can all
be written this way too. Thus, A(z) has a finite set of generators which are integer polynomials of z. It
follows that there is some smallest n > 1 for which A(z) is generated by 1, z,22,..., 2771,

In particular, 2 can be written as an integer linear combination 2 = a,_12" "'+ - -+ ag of the previous
generators. Define p(z) = 2" — a,_12""! — -+ — ag, so that z is a root of this polynomial. Since p has real
coefficients, Z is also a root of p, so p is divisible by the polynomial ¢(x) = (z — z)(x — Z). We can write
z = (a + bi)/c in simplest terms, where ¢ > 2 shares no factors with both a and b, then

2 24 b2
g(w) =22 - Lo T4
C

c2

is a polynomial with rational coefficients. The quotient r(z) = p(z)/q(z) will also be a polynomial with
rational coefficients. In addition, p(x) and g(x) both have leading coefficient 1, so r(x) does as well.

There exist integers A, B for which Aq(z) € Z[z] and Br(z) € Z[z], clearing the denominators of r and
g. Then, ABp = (Aq)(Br), so by Lemma 1,

C(ABp) = C(Aq)C(Br).

The left hand side is exactly AB, since p € Z[r] to begin with and had leading coefficient 1. But the leading
coefficient of Aq is A and the leading coefficient of Br is B, so the right hand side is at most AB. For it to
be exactly AB, both C(Aq) = A and C(Br) = B must be the case.

Therefore, C(Aq) = A and q € Z[z] to begin with. In particular, ¢|2a and c?|a? + b*. If ged(a,c) # 1,
then ged(a, c)?|c?|a? + b2, and ged(a, ¢)?|a?, so ged(a, ¢)?|b?, and a, b, ¢ have a common factor, contradicting
our assumption that z was written in simplest terms.

Thus, ged(a,c¢) = 1, which together with ¢|2a implies that ¢ = 2 and a is odd. Otherwise, ¢ = 2 and
4 = c2la® + b*. But a® = 1 (mod 4) and b? is either 0 or 1 (mod 4), so this is impossible. We have thus
proved that z € Z[i]. O

Question 6(c). Describe exactly which elements of Q(v/3) are integral. (Recall that Q(v/3) = {a+bv/3|a,b € Q}.)

Proof. The answer is {a + bv/3|a,b € Z}.

The situation is similar to 6(b), replacing i by /3. For showing that elements of this set are integral,
check that Z[/3] ~ Z x 7 as an abelian group.

In the other direction, we may again assume that z € Q(\/g) and z is integral, so z is the zero of some
polynomial of the form p(x) = 2™ — a, 12"t — -+ — ap.

Any such element z not in Z[v/3] = {a + bv/3|a,b € Z} can be written in simplest terms as (a + bv/3)/c
where ged(a, b, c) = 1 and ¢ > 2. Then, z is also the zero of a quadratic

2a a? — 3b?
— 2 _
qg(z) ==z - + =

with rational coefficients. Repeating the argument in 6(b), ¢(x)|p(z), so ¢(x) has integer coefficients. There-
fore, ¢|2a and c?|a? — 3b%. The first condition again implies that ¢ = 2 and a is odd. The second is then
impossible by the same argument as before, because a? — 3b*> = a? + b*> (mod 4) can never be divisible by
2 =4.

O

Question 6(d). Describe exactly which elements of Q(v/5) are integral. (Recall that Q(v/5) = {a-+bv/5 | a,b € Q}.)

Proof. The answer is {% |a,b € Z,a+b=0mod 2}.

The situation is similar 6(b) and (c), replacing i by L+V5,

2
indeed integral, check that Z[1+27\/5] ~ 7 X Z as an abelian group.

For showing that the elements above are

In the other direction, we may again assume that z € Q(v/5) and z is integral, so z is the zero of some

polynomial of the form p(x) = 2™ — a,, 12" 1 — -+ — aq.



Any such element z can be written in simplest terms as (a + bv/5)/c where ged(a,b,c) = 1 and ¢ > 2.
Then, z is also the zero of a quadratic

with rational coefficients. Repeating the argument in 6(b), ¢(z)|p(z), so ¢(z) has integer coefficients. There-
fore, c|2a and c?|a? — 5b%. The first condition implies ¢ = 2 and a is odd. The second implies that b is
also odd. This shows that the integral elements of Q(1/5) are either elements of Z[v/5], or can be written as
(a + bV/5)/2, where a, b are both odd. This is exactly the set described.

O

Question 6(e). Let x € C be an integral element, and let y € C be an nth root of  (meaning y™ = x).
Prove that y is integral.

Proof. Notice that A(y) is contained in the union of the n sets A(z), yA(z),...y" *A(x). This is because
every generator y™ of A(y) can be written as ¢yt = 2%" where r <n —1. If g1,..., g, are a finite set of
generators for A(x), then the set of mn elements y'g;, 0 <i<n—1,1 < j < m generate A(y). O

Question 6(f). Prove that if © € C and y € C are both integral, then x + y and zy are integral. Conclude
that the set A C C of all integral elements of C forms a subring of C.

Proof. Let A(z,y) be the additive subgroup of C spanned by x'y’ for ,j > 0.

If A(z) is finitely generated by g1,...,9,m and A(y) is finitely generated by hq,...,h,, then A(z,y) is
finitely generated by the mn products g;h; for 1 <i <n, 1 < j < m. To see this, any product x'y7 can be
written in as an integer linear combination of g;h; by writing z’ as an integer linear combination of the g;
and y’ as an integer linear combination of the h;.

Now simply observe that A(z +y) and A(zy) are both contained in A(z,y), so using the remark, each is
finitely generated. Note that A(—xz) = A(x) so A is closed under negation as well. Thus the ring of integral
elements of C forms a subring of C. O

Question 6(g). Describe exactly which elements of Q(+/2) are integral. Q(¥/2) = {a + b¥/2 + ¢ ¥/2” | a,b,c € Q}.

Proof. The answer is {a + b3/2 + V2 la,b,ceZ}. O
Question 6(h). Describe which elements of Q(+/10) are integral. Q(¥10) = {a + b¥/10+ ¢¥/10° | a,b,c € Q}.

Proof. The answer is {M |a,b,c € Z, a+b+c = 0mod 3}, but proving this is quite difficult. 0O
Question 6(i). Prove that z = 2008(2%) is integral for any n € N.

Proof. This can be done directly using trigonometric identities. Alternately, let w = cos(%’r) + sin(%’r)i. De
Moivre’s formula says that

w" = cos (n - 2%) + sin (n - 2%)2 = cos(27) + sin(27)i = 1.

Therefore Q6(e) tells us that w is integral, since it is an nth root of 1 which is definitely integral, so A(w)
is a finitely generated abelian group. Since z = 2cos(2X) = w + w" ™' we see that z € A(w) and thus
A(z) € A(w). Using the italicized remark above, we conclude that A(z) is finitely generated. O
Question 6(j). For z = 2cos(2%), the group A(z) is isomorphic to Z* for some rank k = k(n) depending
on n. Compute the rank k(n) for n = 3,4,5,6,7. Can you express the rank k(n) as a function of n?

Proof. The rank k(n) for n = 3,4,5,6,7 is: k(3) =1, k(4) =1, k(5) = 2, k(6) = 1, k(7) = 3. For general n,
the rank is given by k(n) = ¢(n)/2. O



