Math 120 Homework 8 Solutions

May 26, 2018

Exercise 7.1.26. Let K be a field. A discrete valuation on K is a function $\nu: K^{\times} \to \mathbb{Z}$ satisfying

(i) $\nu(ab) = \nu(a) + \nu(b)$ (i.e. ν is a homomorphism from the multiplicative group of nonzero elements of K to \mathbb{Z}).

(ii) ν is surjective, and

(iii) $\nu(x+y) \ge \min\{\nu(x), \nu(y)\}$ for all $x, y \in K^{\times}$ with $x+y \ne 0$.

The set $R = \{x \in K^{\times} | \nu(x) \ge 0\} \cup \{0\}$ is called the valuation ring of ν .

(a) Prove that R is a subring of K which contains the identity. (In general, a ring R is called a discrete valuation ring if there is some field K and some discrete valuation ν on K such that R is the valuation ring of ν). (b) Prove that for each nonzero element $x \in K$ either x or x^{-1} is in R. (c) Prove that an element x is a unit of R if and only if $\nu(x) = 0$.

Proof. (a) It suffices to check that R contains 1 and is closed under addition, additive inverses, and multiplication.

Since

$$\nu(1) = \nu(1 \cdot 1) = \nu(1) + \nu(1)$$

by property (i), it follows that $\nu(1) = 0$, so $1 \in \mathbb{R}$.

Suppose $a, b \in R$ are nonzero elements (if either are zero the sum is obviously in R), so that $\nu(a) \ge 0$ and $\nu(b) \ge 0$. We would like to show $a + b \in R$. If a + b = 0, we know $0 \in R$ so we're done. Otherwise,

$$\nu(a+b) \ge \min\{\nu(a), \nu(b)\} \ge 0,$$

so $a + b \in R$ as well. Thus R is closed under addition.

Suppose $a \in R$ is nonzero. Note that

$$0 = \nu(1) = \nu(-1 \cdot -1) = \nu(-1) + \nu(-1)$$

by property (i), so $\nu(-1) = 0$. Thus,

$$\nu(-a) = \nu(-1 \cdot a) = \nu(-1) + \nu(a) = \nu(a) \ge 0$$

Thus, $-a \in R$ and R is closed under additive inverses.

Finally, if $a, b \in R$ are nonzero elements (if either are zero the product is zero), then $\nu(a) \ge 0$ and $\nu(b) \ge 0$, so

$$\nu(ab) = \nu(a) + \nu(b) \ge 0,$$

and so $ab \in R$ as well. This shows R is closed under multiplication and finishes the proof.

(b) We have

$$\nu(x) + \nu(x^{-1}) = \nu(x \cdot x^{-1}) = \nu(1) = 0,$$

so at least one of $\nu(x), \nu(x^{-1})$ is nonnegative.

(c) If x is a unit, by definition its inverse x^{-1} also lies in R. But by the calculation in part (b), $\nu(x^{-1}) = -\nu(x)$ so if they're both nonnegative then $\nu(x) = 0$. Conversely, if $\nu(x) = 0$, $\nu(x^{-1}) = 0$ as well so its inverse lies in R and x is a unit in R.

Exercise 7.3.29*. Let R be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element $x \in R$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove that the set of nilpotent elements form an ideal – called the *nilradical* of R and denoted by $\mathfrak{N}(R)$.

Proof. We need to check two things.

First, if $x, y \in R$ are nilpotent, we need to check that x + y is as well. If $x^m = 0$ and $y^n = 0$, check that every term of the binomial expansion of $(x+y)^{m+n-1}$ contains either a factor of x^m or y^n , so $(x+y)^{m+n-1} = 0$ as well, and x + y is nilpotent.

Second, if $x \in R$ is nilpotent and $a \in R$ is any element, we need to check ax is nilpotent. But if $x^n = 0$ then $(ax)^n = a^n x^n = 0$ since R is commutative, so we're done.

Exercise 7.4.14(a,b,c,d)*. Assume R is commutative. Let x be an indeterminate, let f(x) be a monic polynomial in R[x] of degree $n \ge 1$ and use the bar notation to denote passage to the quotient ring R[x]/(f(x)).

(a) Show that every element of R[x]/(f(x)) is of the form $\overline{p(x)}$ for some polynomial $p(x) \in R[x]$ of degree less than n.

(b) Prove that if p(x) and q(x) are distinct polynomials of R[x] which are both of degree less than n, then $p(x) \neq q(x)$.

(c) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n, prove that $\overline{a(x)}$ is a zero divisor in R[x]/(f(x)).

(d) If $f(x) = x^n - a$ for some nilpotent element $a \in R$, prove that \overline{x} is nilpotent in R[x]/(f(x)).

Proof. (a) Every element is certainly $\overline{p(x)}$ for some polynomial p. By the division algorithm for polynomials over a commutative ring, it is possible to write every p(x) as

$$p(x) = q(x)f(x) + r(x)$$

where r(x) has degree less than n. Then $\overline{p(x)} = \overline{r(x)}$, and every element of the quotient can be expressed this way.

(b) If $\overline{p(x)} = \overline{q(x)}$, then $p(x) - q(x) \in (f(x))$, which would imply that p(x) - q(x) is a multiple of f(x). But p(x) - q(x) has lower degree than f(x), so this is impossible.

(c) Simply note a(x)b(x) = 0, but a(x), b(x) are both nonzero by part (b).

(d) Since a is nilpotent in R, there is $m \in \mathbb{Z}^+$ for which $a^m = 0$. Thus $(\overline{x})^m n = (\overline{x^n})^m = \overline{a}^m = \overline{0}$.

Question 0. Prove that the ideal $I = (x^2 + 1)$ in $\mathbb{R}[x]$ is maximal. (For maximum understanding, try to prove this with the same approach we used in class for the ideal (x - 2, y - 3) in $\mathbb{R}[x, y]$.)

Proof. Recall that an ideal is maximal iff quotienting by it results in a field. Consider the ring homomorphism $\alpha : \mathbb{R}[x] \to \mathbb{C}$ which sends $x \mapsto i$. Any element of \mathbb{C} is of the form a + bi where $a, b \in \mathbb{R}$, so α is surjective. It follows that $\mathbb{R}[x]/\ker(\alpha) \simeq \mathbb{C}$, which is a field.

It remains to notice that $\ker(\alpha) = I$. On the one hand, $x^2 + 1 \mapsto i^2 + 1 = 0$, so $I \subseteq \ker(\alpha)$. On the other hand, consider any polynomial $p(x) \in \ker(\alpha)$. The map α just evaluates p(x) at i, so p(i) = 0. But p is a real polynomial, so its roots come in conjugate pairs; therefore p(-i) = 0 as well. Therefore, p(x) is divisible by the product $(x - i)(x + i) = x^2 + 1$, and $p(x) \in I$, as desired.

Thus, $I = \ker(\alpha)$ and $\mathbb{R}[x]/I \simeq \mathbb{C}$ is a field, implying that I is maximal in $\mathbb{R}[x]$.

Question 1. Let $R \subset \mathbb{R}[x]$ be the subring of $\mathbb{R}[x]$ consisting of polynomials whose coefficient of x is 0:

$$R = \{ f(x) = a_0 + a_2 x^2 + \dots + a_n x^n \mid a_i \in \mathbb{R} \}$$

$$\mathbb{R}[x] = \{ f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid a_i \in \mathbb{R} \}$$

You may use without proof that if g(x) and h(x) are polynomials in $\mathbb{R}[x]$, then $\deg(gh) = \deg(g) + \deg(h)$.

Exhibit an ideal $I \subset R$ in R that is not principal, and justify your answer by *proving* that I is not a principal ideal of R.

Proof. One such example is the ideal $I = (x^2, x^3) = \{\text{polynomials with no constant term}\}$. Suppose I were principal, i.e. I = (f). Then, since $x^2 \in I$, x^2 must be a multiple of f, so $\deg(f) \leq 2$.

If deg(f) = 0, then f is a nonzero constant and (f) = R, so $(f) \neq I$.

Also, no polynomials in R have degree 1. Thus, $\deg(f) = 2$. But then since $x^3 \in I$, we can write $x^3 = f \cdot g$, for some other $g \in R$. This implies that $\deg(g) = \deg(x^3) - \deg(f) = 3 - 2 = 1$, which contradicts the fact that no polynomials in R have degree 1. Therefore, I cannot be principal.

Question 2. Let $R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

- (a) Find a prime ideal $P_2 \subset R$ such that $P_2 \cap \mathbb{Z} = 2\mathbb{Z}$.
- (b) Find a prime ideal $P_3 \subset R$ such that $P_3 \cap \mathbb{Z} = 3\mathbb{Z}$.
- (c) Find a prime ideal $P_5 \subset R$ such that $P_5 \cap \mathbb{Z} = 5\mathbb{Z}$.

Justify your answers. For each one, describe (as best you can) the domain R/P.

Proof. Recall that to prove P is a prime ideal, it suffices to check that R/P is a domain.

(a) Take $P_2 = (1+i)$. It is easy to check that $a+bi \in R$ lies in P_2 iff $a \equiv b \pmod{2}$. Thus R/P_2 contains exactly two elements $\overline{0}$ and $\overline{1}$. The unique such ring is $\mathbb{Z}/2\mathbb{Z}$, which is a domain. This implies P_2 is prime.

The set $P_2 \cap \mathbb{Z}$ will contain exactly those a + bi where $a \equiv b \pmod{2}$ and b = 0, i.e. the even integers $2\mathbb{Z}$.

(b) Take $P_3 = (3)$. The elements of R/P_3 can certainly be reduced mod 3 in both real and imaginary parts, so every element is of the form $\overline{a + bi}$ where $a, b \in \{0, 1, 2\}$. Also, all of these elements are distinct. To see this, note that if two were the same in R/P_3 , then their difference is also of the same form $\overline{a + bi}$ with not both of a, b zero, and their difference would be zero.

But if $a, b \in \{1, 2\}$, then $\overline{(a+bi)(-a+bi)} = \overline{-a^2 - b^2} = \overline{1}$, since $1^2 \equiv 2^2 \equiv 1 \pmod{3}$. Thus $\overline{a+bi}$ is a unit and therefore nonzero if $a, b \in \{1, 2\}$.

The other case is if a = 0 or b = 0. If a = 0, then $-\overline{bi}^2 = \overline{b^2} = \overline{1}$ so bi is a unit. If b = 0, then $\overline{a}^2 = \overline{1}$ so a is a unit.

We have shown that R/P_3 consists of exactly these 9 distinct elements, and furthermore that all the nonzero ones are units. Thus R/P_3 is a field, and P_3 must be prime. (Note, this field is not $\mathbb{Z}/9\mathbb{Z}$, which is not even a domain).

It is easy to check that $P_3 \cap \mathbb{Z} = 3\mathbb{Z}$.

(c) Take $P_5 = (2+i)$. The elements of P_5 will be exactly those elements a + bi for which $a \equiv 2b \pmod{5}$. We can therefore check that R/P_5 contains five distinct elements corresponding to the possible residue classes mod 5. The only ring on 5 elements is the field $\mathbb{Z}/5\mathbb{Z}$, which shows that P_5 is prime, as desired.

It is easy to check that $P_5 \cap \mathbb{Z} = 5\mathbb{Z}$.

Question 3. Construct a commutative ring L with the property that for every commutative ring R,

the # of ring homomorphisms $\varphi \colon L \to R$

is equal to the number of elements $r \in R$ satisfying $r^2 = 2$.

Note that "2" here means the element $1 + 1 \in R$. (You do not have to prove your answer is correct.)

Proof. The ring L is $\mathbb{Z}[x]/(x^2-2)$. An alternative description of this ring is $L = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. It suffices to construct a bijection between the sets

{ ring homomorphisms $L \to R$ }

and

elements
$$r \in R$$
 satisfying $r^2 = 2$.

Given an element of R satisfying $r^2 = 2$, let φ_r be the map which sends $\overline{x} \in L$ to r. To check that this is a well-defined map, note that by Question 3 from Homework 7, there exists a ring homomorphism $\psi_r : \mathbb{Z}[x] \to R$ which sends x to r. The kernel of ψ_r contains $x^2 - 2$, since

$$\psi_r(x^2 - 2) = r^2 - 2 = 0$$

and so it contains the whole ideal $(x^2 - 2)$. Thus, ψ_r induces a well-defined ring homomorphism φ_r : $\mathbb{Z}[x]/(x^2 - 2) \to R$, which is the map we wanted.

Using Question 3 from Homework 7, we see that φ_r is also unique. Otherwise, given two maps $\varphi_r, \varphi'_r : \mathbb{Z}[x]/(x^2-2) \to R$, they lift to ring homomorphisms $\mathbb{Z}[x] \to R$ which both send x to the same element r. Such a map is unique, so $\varphi_r = \varphi'_r$.

It remains to check that every ring homomorphism $L \to R$ is one of the φ_r . In fact, if $\varphi : L \to R$ is a ring homomorphism, then $\varphi(\overline{x})$ must satisfy

$$\varphi(\overline{x})^2 - 2 = \varphi(\overline{x}^2 - 2) = 0,$$

so φ always sends \overline{x} to some r for which $r^2 = 2$. For this $r, \varphi = \varphi_r$ by the uniqueness mentioned previously.

Question 4. Construct a commutative ring M with the property that for every commutative ring R,

the # of ring homomorphisms
$$\varphi \colon M \to R$$

is equal to the number $|R^{\times}|$ of invertible elements in R .

Prove your answer is correct.

Proof. Take $M = \{\sum_{k=-m}^{n} a_k x^k \mid m \ge 0, n \ge 0, a_k \in \mathbb{Z}\}$, the so-called ring of Laurent polynomials over \mathbb{Z} . In other words, every element of M is $x^{-n} \cdot p(x)$ for some (regular) polynomial $p(x) \in \mathbb{Z}[x]$.

It suffices to construct a bijection between the sets

{ ring homomorphisms $M \to R$ }

and

{invertible elements $r \in R$ }.

Given an invertible element $r \in R$, let φ_r be the map which sends $x \in M$ to r (and thus x^{-1} to r^{-1}). A general element $x^{-n}p(x)$ will be sent to $r^{-n}p(r)$. This φ_r is a ring homomorphism, preserving addition, negation, products, and the identity.

To see that given the image of r, φ_r is uniquely determined, notice that for φ_r to be a ring homomorphism,

$$\varphi_r(\sum_{k=-m}^n a_k x^k) = \sum_{k=-m}^n a_k \varphi_r(x)^k = \sum_{k=-m}^n a_k r^k,$$

so the images of all elements of M are fixed once the image of x is chosen.

It remains to check that every ring homomorphism $M \to R$ is one of the φ_r . In fact, if $\varphi : M \to R$ is a ring homomorphism, then $\varphi(x^{-1})\varphi(x) = \varphi(1) = 1$, so $\varphi(x)$ must be some invertible element $r \in R$. For this $r, \varphi = \varphi_r$ by the uniqueness mentioned previously.

Question 5. Can there exist a commutative ring N with the property that for every commutative ring R,

 $\begin{array}{ll} \text{the }\#\text{ of ring homomorphisms }\varphi\colon N\to R\\ \text{is equal to} & \text{the }\#\text{ of elements }r\in R\text{ such that both }r\text{ and }1-r\text{ are units.} \end{array}$

Either construct such a ring and prove that your answer is correct (at least outline a proof), or prove that no such ring can exist.

Proof. Take

$$N = \left\{ f(x) = x^k (1-x)^\ell p(x) \, \middle| \, k \in \mathbb{Z}, \, \ell \in \mathbb{Z}, \, p(x) \in \mathbb{Z}[x] \text{ satisfies } p(0) \neq 0, p(1) \neq 0 \right\}.$$

This is similar to the ring M in Question 4 except that we additionally allow for negative powers of (1-x). The tricky part about proving N is a ring is showing that it is closed under addition. If $f(x) = x^k (1-x)^\ell p(x)$ and $g(x) = x^{k'} (1-x)^{\ell'} q(x)$, then define $k_0 = \min(k, k')$, $\ell_0 = \min(\ell, \ell')$, and check that

$$f(x) + g(x) = x^{k_0} (1-x)^{\ell_0} (x^{k-k_0} (1-x)^{\ell-\ell_0} p(x) + x^{k'-k_0} (1-x)^{\ell'-\ell_0} q(x)),$$

where the polynomial in the parentheses is an honest polynomial. However, it may vanish at x and/or 1-x; in this case, factor out a finite number of factors of x and 1-x, until this is no longer the case.

It suffices to construct a bijection between the sets

{ ring homomorphisms $N \to R$ }

and

{elements $r \in R$ for which r, 1 - r are both units}.

Given $r \in R$ such that r, 1 - r are both units, let φ_r be the map which sends $x \in N$ to r. Again, for φ_r to be a ring homomorphism and $\varphi_r(x) = r$, it must be the unique "evaluation at r" map which sends

$$\varphi_r(x^k(1-x)^\ell p(x)) = r^k(1-r)^\ell p(r).$$

It remains to check that every ring homomorphism $N \to R$ is one of the φ_r . In fact, if $\varphi : N \to R$ is a ring homomorphism, then $\varphi(x^{-1})\varphi(x) = \varphi(1) = 1$, so $\varphi(x)$ must be some invertible element $r \in R$. Also $\varphi((1-x)^{-1})\varphi(1-x) = \varphi(1) = 1$, so $\varphi(1-x) = 1-r$ is also invertible. For this $r, \varphi = \varphi_r$ by the uniqueness mentioned previously.

In Question 6, you can use the following fact, which we will prove later in the course:

If G is a finitely generated abelian group, then every subgroup of G is finitely generated.

(This is false if G is a finitely generated nonabelian group, as you proved for $G = F_2$ in Q5B on HW3.)

Question 6. Given a complex number $z \in \mathbb{C}$, let A(z) denote the *additive* subgroup of \mathbb{C} generated by the positive powers $1, z, z^2, z^3, \ldots$ under addition.

For example, $A(2) = \langle 1, 2, 4, 8, \ldots \rangle = \mathbb{Z}$, whereas $A(\frac{2}{3}) = \langle 1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots \rangle = \{\frac{p}{3^k} \in \mathbb{Q}\}.$

A complex number $z \in \mathbb{C}$ is called *integral* if A(z) is finitely generated as a group under addition.

Question 6(a)*. Prove that a rational number $x \in \mathbb{Q}$ is integral if and only if $x \in \mathbb{Z}$.

Proof. If $x \in \mathbb{Z}$, then A(x) is just \mathbb{Z} , so it is finitely generated.

If $x \in \mathbb{Q}$ is integral, then A(x) is a finitely generated subgroup of \mathbb{Q} . We showed as a corollary of an earlier homework that the finitely generated subgroups of \mathbb{Q} are exactly the singly generated subgroups $\frac{m}{n}\mathbb{Z}$. Thus, for x to be integral, all of its powers must be integer multiples of a single rational number $\frac{m}{n}$. This is impossible if $x \notin \mathbb{Z}$.

Question 6(b). Describe exactly which elements of $\mathbb{Q}(i)$ are integral. (Recall that $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$.)

Proof. The elements are those in $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

For any $z = a + bi \in \mathbb{Z}[i]$, note that A(z) will be a subgroup of $\mathbb{Z}[i]$ under addition, which is isomorphic as an abelian group to $\mathbb{Z} \times \mathbb{Z}$. But any subgroup of $\mathbb{Z} \times \mathbb{Z}$ is finitely generated (using e.g. the fact in the beginning). Thus z is integral.

For the other direction, we will use the following version of Gauss' Lemma. Define the *content* C(p) of a polynomial $p \in \mathbb{Z}[x]$ to be the greatest common divisor of its coefficients.

Lemma 1. For any two polynomials $p(x), q(x) \in \mathbb{Z}[x]$,

$$C(p)C(q) = C(pq).$$

Proof. Because C(p) divides all the coefficients of p and C(q) divides all the coefficients of q, C(p)C(q) divides all the coefficients of pq, so C(p)C(q)|C(pq).

Dividing p by C(p) and q by C(q) we may assume C(p) = C(q) = 1. It remains to show that in this case, C(pq) = 1. Write $p(x) = \sum_{i} a_i x^i$ and $q(x) = \sum_{i} b_j x^j$.

Otherwise, there is a prime r which divides all the coefficients of pq, but not all the coefficients of p or q. Let $a_i x^i$ and $b_j x^j$ be the smallest degree monomials in p, q respectively for which $r \nmid a_i$ and $r \nmid b_j$. Then, the coefficient of x^{i+j} in pq is

$$\sum_{k=0}^{i+j} a_k x^k b_{i+j-k} x^{i+j-k},$$

and every term except $a_i x^i b_j x^j$ has a coefficient which is divisible by r. But $a_i b_j$ is not divisible by r, so this implies that the whole coefficient of x^{i+j} in pq is not divisible by r, a contradiction. Thus C(pq) = 1.

Now suppose $z \in \mathbb{Q}[i]$ is not in $\mathbb{Z}[i]$, but A(z) is finitely generated. Since every element of A(z) can be written as a finite integer linear combination of its generators $1, z, z^2, \ldots$, the finite set of generators can all be written this way too. Thus, A(z) has a finite set of generators which are integer polynomials of z. It follows that there is some smallest $n \geq 1$ for which A(z) is generated by $1, z, z^2, \ldots, z^{n-1}$.

In particular, z^n can be written as an integer linear combination $z^n = a_{n-1}z^{n-1} + \cdots + a_0$ of the previous generators. Define $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$, so that z is a root of this polynomial. Since p has real coefficients, \overline{z} is also a root of p, so p is divisible by the polynomial $q(x) = (x - z)(x - \overline{z})$. We can write z = (a + bi)/c in simplest terms, where $c \ge 2$ shares no factors with both a and b, then

$$q(x) = x^{2} - \frac{2a}{c}x + \frac{a^{2} + b^{2}}{c^{2}}$$

is a polynomial with rational coefficients. The quotient r(x) = p(x)/q(x) will also be a polynomial with rational coefficients. In addition, p(x) and q(x) both have leading coefficient 1, so r(x) does as well.

There exist integers A, B for which $Aq(x) \in \mathbb{Z}[x]$ and $Br(x) \in \mathbb{Z}[x]$, clearing the denominators of r and q. Then, ABp = (Aq)(Br), so by Lemma 1,

$$C(ABp) = C(Aq)C(Br).$$

The left hand side is exactly AB, since $p \in \mathbb{Z}[r]$ to begin with and had leading coefficient 1. But the leading coefficient of Aq is A and the leading coefficient of Br is B, so the right hand side is at most AB. For it to be exactly AB, both C(Aq) = A and C(Br) = B must be the case.

Therefore, C(Aq) = A and $q \in \mathbb{Z}[x]$ to begin with. In particular, c|2a and $c^2|a^2 + b^2$. If $gcd(a, c) \neq 1$, then $gcd(a, c)^2|c^2|a^2 + b^2$, and $gcd(a, c)^2|a^2$, so $gcd(a, c)^2|b^2$, and a, b, c have a common factor, contradicting our assumption that z was written in simplest terms.

Thus, gcd(a, c) = 1, which together with c|2a implies that c = 2 and a is odd. Otherwise, c = 2 and $4 = c^2|a^2 + b^2$. But $a^2 \equiv 1 \pmod{4}$ and b^2 is either 0 or 1 (mod 4), so this is impossible. We have thus proved that $z \in \mathbb{Z}[i]$.

Question 6(c). Describe exactly which elements of $\mathbb{Q}(\sqrt{3})$ are integral. (Recall that $\mathbb{Q}(\sqrt{3}) = \{a+b\sqrt{3} \mid a, b \in \mathbb{Q}\}$.)

Proof. The answer is $\{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$.

The situation is similar to 6(b), replacing *i* by $\sqrt{3}$. For showing that elements of this set are integral, check that $\mathbb{Z}[\sqrt{3}] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{3})$ and z is integral, so z is the zero of some polynomial of the form $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$.

Any such element z not in $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$ can be written in simplest terms as $(a + b\sqrt{3})/c$ where gcd(a, b, c) = 1 and $c \ge 2$. Then, z is also the zero of a quadratic

$$q(x) = x^{2} - \frac{2a}{c}x + \frac{a^{2} - 3b^{2}}{c^{2}}$$

with rational coefficients. Repeating the argument in 6(b), q(x)|p(x), so q(x) has integer coefficients. Therefore, c|2a and $c^2|a^2 - 3b^2$. The first condition again implies that c = 2 and a is odd. The second is then impossible by the same argument as before, because $a^2 - 3b^2 \equiv a^2 + b^2 \pmod{4}$ can never be divisible by $c^2 = 4$.

Question 6(d). Describe exactly which elements of $\mathbb{Q}(\sqrt{5})$ are integral. (Recall that $\mathbb{Q}(\sqrt{5}) = \{a+b\sqrt{5} \mid a, b \in \mathbb{Q}\}$.)

Proof. The answer is $\{\frac{a+b\sqrt{5}}{2} \mid a, b \in \mathbb{Z}, a+b \equiv 0 \mod 2\}$.

The situation is similar 6(b) and (c), replacing *i* by $\frac{1+\sqrt{5}}{2}$. For showing that the elements above are indeed integral, check that $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{5})$ and z is integral, so z is the zero of some polynomial of the form $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$.

Any such element z can be written in simplest terms as $(a + b\sqrt{5})/c$ where gcd(a, b, c) = 1 and $c \ge 2$. Then, z is also the zero of a quadratic

$$q(x) = x^{2} - \frac{2a}{c}x + \frac{a^{2} - 5b^{2}}{c^{2}}$$

with rational coefficients. Repeating the argument in 6(b), q(x)|p(x), so q(x) has integer coefficients. Therefore, c|2a and $c^2|a^2 - 5b^2$. The first condition implies c = 2 and a is odd. The second implies that b is also odd. This shows that the integral elements of $\mathbb{Q}(\sqrt{5})$ are either elements of $\mathbb{Z}[\sqrt{5}]$, or can be written as $(a + b\sqrt{5})/2$, where a, b are both odd. This is exactly the set described.

Question 6(e). Let $x \in \mathbb{C}$ be an integral element, and let $y \in \mathbb{C}$ be an *n*th root of x (meaning $y^n = x$). Prove that y is integral.

Proof. Notice that A(y) is contained in the union of the *n* sets A(x), $yA(x), \ldots y^{n-1}A(x)$. This is because every generator y^m of A(y) can be written as $y^{an+r} = x^a y^r$ where $r \le n-1$. If g_1, \ldots, g_m are a finite set of generators for A(x), then the set of *mn* elements $y^i g_j$, $0 \le i \le n-1$, $1 \le j \le m$ generate A(y). \Box

Question 6(f). Prove that if $x \in \mathbb{C}$ and $y \in \mathbb{C}$ are both integral, then x + y and xy are integral. Conclude that the set $\mathbf{A} \subset \mathbb{C}$ of all integral elements of \mathbb{C} forms a subring of \mathbb{C} .

Proof. Let A(x, y) be the additive subgroup of \mathbb{C} spanned by $x^i y^j$ for $i, j \ge 0$.

If A(x) is finitely generated by g_1, \ldots, g_m and A(y) is finitely generated by h_1, \ldots, h_n , then A(x, y) is finitely generated by the mn products g_ih_j for $1 \le i \le n, 1 \le j \le m$. To see this, any product x^iy^j can be written in as an integer linear combination of g_ih_j by writing x^i as an integer linear combination of the h_j .

Now simply observe that A(x+y) and A(xy) are both contained in A(x,y), so using the remark, each is finitely generated. Note that A(-x) = A(x) so **A** is closed under negation as well. Thus the ring of integral elements of \mathbb{C} forms a subring of \mathbb{C} .

Question 6(g). Describe exactly which elements of $\mathbb{Q}(\sqrt[3]{2})$ are integral. $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{2} \mid a, b, c \in \mathbb{Q}\}.$

Proof. The answer is $\{a + b\sqrt[3]{2} + c\sqrt[3]{2}^2 \mid a, b, c \in \mathbb{Z}\}.$

Question 6(h). Describe which elements of $\mathbb{Q}(\sqrt[3]{10})$ are integral. $\mathbb{Q}(\sqrt[3]{10}) = \{a + b\sqrt[3]{10} + c\sqrt[3]{10}^2 \mid a, b, c \in \mathbb{Q}\}.$

Proof. The answer is $\left\{\frac{a+b\sqrt[3]{10}+c\sqrt[3]{10}^2}{3} \mid a, b, c \in \mathbb{Z}, a+b+c \equiv 0 \mod 3\right\}$, but proving this is quite difficult. \Box

Question 6(i). Prove that $z = 2\cos(\frac{2\pi}{n})$ is integral for any $n \in \mathbb{N}$.

Proof. This can be done directly using trigonometric identities. Alternately, let $w = \cos(\frac{2\pi}{n}) + \sin(\frac{2\pi}{n})i$. De Moivre's formula says that

$$w^{n} = \cos\left(n \cdot \frac{2\pi}{n}\right) + \sin\left(n \cdot \frac{2\pi}{n}\right)i = \cos(2\pi) + \sin(2\pi)i = 1.$$

Therefore Q6(e) tells us that w is integral, since it is an nth root of 1 which is definitely integral, so A(w) is a finitely generated abelian group. Since $z = 2\cos(\frac{2\pi}{n}) = w + w^{n-1}$ we see that $z \in A(w)$ and thus $A(z) \subset A(w)$. Using the italicized remark above, we conclude that A(z) is finitely generated.

Question 6(j). For $z = 2\cos(\frac{2\pi}{n})$, the group A(z) is isomorphic to \mathbb{Z}^k for some rank k = k(n) depending on *n*. Compute the rank k(n) for n = 3, 4, 5, 6, 7. Can you express the rank k(n) as a function of *n*?

Proof. The rank k(n) for n = 3, 4, 5, 6, 7 is: k(3) = 1, k(4) = 1, k(5) = 2, k(6) = 1, k(7) = 3. For general n, the rank is given by $k(n) = \varphi(n)/2$.