Math 120 Homework 8 Solutions

May 26, 2018

Exercise 7.1.26. Let K be a field. A discrete valuation on K is a function $\nu: K^{\times} \rightarrow \mathbb{Z}$ satisfying
(i) $\nu(a b)=\nu(a)+\nu(b)$ (i.e. ν is a homomorphism from the multiplicative group of nonzero elements of K to $\mathbb{Z})$.
(ii) ν is surjective, and
(iii) $\nu(x+y) \geq \min \{\nu(x), \nu(y)\}$ for all $x, y \in K^{\times}$with $x+y \neq 0$.

The set $R=\left\{x \in K^{\times} \mid \nu(x) \geq 0\right\} \cup\{0\}$ is called the valuation ring of ν.
(a) Prove that R is a subring of K which contains the identity. (In general, a ring R is called a discrete valuation ring if there is some field K and some discrete valuation ν on K such that R is the valuation ring of ν). (b) Prove that for each nonzero element $x \in K$ either x or x^{-1} is in R. (c) Prove that an element x is a unit of R if and only if $\nu(x)=0$.

Proof. (a) It suffices to check that R contains 1 and is closed under addition, additive inverses, and multiplication.

Since

$$
\nu(1)=\nu(1 \cdot 1)=\nu(1)+\nu(1)
$$

by property (i), it follows that $\nu(1)=0$, so $1 \in R$.
Suppose $a, b \in R$ are nonzero elements (if either are zero the sum is obviously in R), so that $\nu(a) \geq 0$ and $\nu(b) \geq 0$. We would like to show $a+b \in R$. If $a+b=0$, we know $0 \in R$ so we're done. Otherwise,

$$
\nu(a+b) \geq \min \{\nu(a), \nu(b)\} \geq 0
$$

so $a+b \in R$ as well. Thus R is closed under addition.
Suppose $a \in R$ is nonzero. Note that

$$
0=\nu(1)=\nu(-1 \cdot-1)=\nu(-1)+\nu(-1)
$$

by property (i), so $\nu(-1)=0$. Thus,

$$
\nu(-a)=\nu(-1 \cdot a)=\nu(-1)+\nu(a)=\nu(a) \geq 0 .
$$

Thus, $-a \in R$ and R is closed under additive inverses.
Finally, if $a, b \in R$ are nonzero elements (if either are zero the product is zero), then $\nu(a) \geq 0$ and $\nu(b) \geq 0$, so

$$
\nu(a b)=\nu(a)+\nu(b) \geq 0
$$

and so $a b \in R$ as well. This shows R is closed under multiplication and finishes the proof.
(b) We have

$$
\nu(x)+\nu\left(x^{-1}\right)=\nu\left(x \cdot x^{-1}\right)=\nu(1)=0
$$

so at least one of $\nu(x), \nu\left(x^{-1}\right)$ is nonnegative.
(c) If x is a unit, by definition its inverse x^{-1} also lies in R. But by the calculation in part (b), $\nu\left(x^{-1}\right)=-\nu(x)$ so if they're both nonnegative then $\nu(x)=0$. Conversely, if $\nu(x)=0, \nu\left(x^{-1}\right)=0$ as well so its inverse lies in R and x is a unit in R.

Exercise 7.3.29*. Let R be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element $x \in R$ is nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}^{+}$. Prove that the set of nilpotent elements form an ideal - called the nilradical of R and denoted by $\mathfrak{N}(R)$.

Proof. We need to check two things.
First, if $x, y \in R$ are nilpotent, we need to check that $x+y$ is as well. If $x^{m}=0$ and $y^{n}=0$, check that every term of the binomial expansion of $(x+y)^{m+n-1}$ contains either a factor of x^{m} or y^{n}, so $(x+y)^{m+n-1}=0$ as well, and $x+y$ is nilpotent.

Second, if $x \in R$ is nilpotent and $a \in R$ is any element, we need to check $a x$ is nilpotent. But if $x^{n}=0$ then $(a x)^{n}=a^{n} x^{n}=0$ since R is commutative, so we're done.

Exercise 7.4.14(a,b,c,d)*. Assume R is commutative. Let x be an indeterminate, let $f(x)$ be a monic polynomial in $R[x]$ of degree $n \geq 1$ and use the bar notation to denote passage to the quotient ring $R[x] /(f(x))$.
(a) Show that every element of $R[x] /(f(x))$ is of the form $\overline{p(x)}$ for some polynomial $p(x) \in R[x]$ of degree less than n.
(b) Prove that if $p(x)$ and $q(x)$ are distinct polynomials of $R[x]$ which are both of degree less than n, then $\overline{p(x)} \neq \overline{q(x)}$.
(c) If $f(x)=a(x) b(x)$ where both $a(x)$ and $b(x)$ have degree less than n, prove that $\overline{a(x)}$ is a zero divisor in $R[x] /(f(x))$.
(d) If $f(x)=x^{n}-a$ for some nilpotent element $a \in R$, prove that \bar{x} is nilpotent in $R[x] /(f(x))$.

Proof. (a) Every element is certainly $\overline{p(x)}$ for some polynomial p. By the division algorithm for polynomials over a commutative ring, it is possible to write every $p(x)$ as

$$
p(x)=q(x) f(x)+r(x)
$$

where $r(x)$ has degree less than n. Then $\overline{p(x)}=\overline{r(x)}$, and every element of the quotient can be expressed this way.
(b) If $\overline{p(x)}=\overline{q(x)}$, then $p(x)-q(x) \in(f(x))$, which would imply that $p(x)-q(x)$ is a multiple of $f(x)$. But $p(x)-q(x)$ has lower degree than $f(x)$, so this is impossible.
(c) Simply note $\overline{a(x) b(x)}=0$, but $a(x), b(x)$ are both nonzero by part (b).
(d) Since a is nilpotent in R, there is $m \in \mathbb{Z}^{+}$for which $a^{m}=0$. Thus $(\bar{x})^{m} n=\left(\overline{x^{n}}\right)^{m}=\bar{a}^{m}=\overline{0}$.

Question 0. Prove that the ideal $I=\left(x^{2}+1\right)$ in $\mathbb{R}[x]$ is maximal. (For maximum understanding, try to prove this with the same approach we used in class for the ideal $(x-2, y-3)$ in $\mathbb{R}[x, y]$.)

Proof. Recall that an ideal is maximal iff quotienting by it results in a field. Consider the ring homomorphism $\alpha: \mathbb{R}[x] \rightarrow \mathbb{C}$ which sends $x \mapsto i$. Any element of \mathbb{C} is of the form $a+b i$ where $a, b \in \mathbb{R}$, so α is surjective. It follows that $\mathbb{R}[x] / \operatorname{ker}(\alpha) \simeq \mathbb{C}$, which is a field.

It remains to notice that $\operatorname{ker}(\alpha)=I$. On the one hand, $x^{2}+1 \mapsto i^{2}+1=0$, so $I \subseteq \operatorname{ker}(\alpha)$. On the other hand, consider any polynomial $p(x) \in \operatorname{ker}(\alpha)$. The map α just evaluates $p(x)$ at i, so $p(i)=0$. But p is a real polynomial, so its roots come in conjugate pairs; therefore $p(-i)=0$ as well. Therefore, $p(x)$ is divisible by the product $(x-i)(x+i)=x^{2}+1$, and $p(x) \in I$, as desired.

Thus, $I=\operatorname{ker}(\alpha)$ and $\mathbb{R}[x] / I \simeq \mathbb{C}$ is a field, implying that I is maximal in $\mathbb{R}[x]$.
Question 1. Let $R \subset \mathbb{R}[x]$ be the subring of $\mathbb{R}[x]$ consisting of polynomials whose coefficient of x is 0 :

$$
\left.\begin{array}{rl}
R & =\left\{f(x)=a_{0} \quad+a_{2} x^{2}+\cdots+a_{n} x^{n}\right. \\
\mathbb{R}[x] & =\left\{a_{i} \in \mathbb{R}\right.
\end{array}\right\}
$$

You may use without proof that if $g(x)$ and $h(x)$ are polynomials in $\mathbb{R}[x]$, then $\operatorname{deg}(g h)=\operatorname{deg}(g)+\operatorname{deg}(h)$.
Exhibit an ideal $I \subset R$ in R that is not principal, and justify your answer by proving that I is not a principal ideal of R.

Proof. One such example is the ideal $I=\left(x^{2}, x^{3}\right)=\{$ polynomials with no constant term $\}$. Suppose I were principal, i.e. $I=(f)$. Then, since $x^{2} \in I, x^{2}$ must be a multiple of f, so $\operatorname{deg}(f) \leq 2$.

If $\operatorname{deg}(f)=0$, then f is a nonzero constant and $(f)=R$, so $(f) \neq I$.
Also, no polynomials in R have degree 1 . Thus, $\operatorname{deg}(f)=2$. But then since $x^{3} \in I$, we can write $x^{3}=f \cdot g$, for some other $g \in R$. This implies that $\operatorname{deg}(g)=\operatorname{deg}\left(x^{3}\right)-\operatorname{deg}(f)=3-2=1$, which contradicts the fact that no polynomials in R have degree 1 . Therefore, I cannot be principal.

Question 2. Let $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(a) Find a prime ideal $P_{2} \subset R$ such that $P_{2} \cap \mathbb{Z}=2 \mathbb{Z}$.
(b) Find a prime ideal $P_{3} \subset R$ such that $P_{3} \cap \mathbb{Z}=3 \mathbb{Z}$.
(c) Find a prime ideal $P_{5} \subset R$ such that $P_{5} \cap \mathbb{Z}=5 \mathbb{Z}$.

Justify your answers. For each one, describe (as best you can) the domain R / P.
Proof. Recall that to prove P is a prime ideal, it suffices to check that R / P is a domain.
(a) Take $P_{2}=(1+i)$. It is easy to check that $a+b i \in R$ lies in P_{2} iff $a \equiv b(\bmod 2)$. Thus R / P_{2} contains exactly two elements $\overline{0}$ and $\overline{1}$. The unique such ring is $\mathbb{Z} / 2 \mathbb{Z}$, which is a domain. This implies P_{2} is prime.

The set $P_{2} \cap \mathbb{Z}$ will contain exactly those $a+b i$ where $a \equiv b(\bmod 2)$ and $b=0$, i.e. the even integers $2 \mathbb{Z}$.
(b) Take $P_{3}=(3)$. The elements of R / P_{3} can certainly be reduced mod 3 in both real and imaginary parts, so every element is of the form $\overline{a+b i}$ where $a, b \in\{0,1,2\}$. Also, all of these elements are distinct. To see this, note that if two were the same in R / P_{3}, then their difference is also of the same form $\overline{a+b i}$ with not both of a, b zero, and their difference would be zero.

But if $a, b \in\{1,2\}$, then $\overline{(a+b i)(-a+b i)}=\overline{-a^{2}-b^{2}}=\overline{1}$, since $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$. Thus $\overline{a+b i}$ is a unit and therefore nonzero if $a, b \in\{1,2\}$.

The other case is if $a=0$ or $b=0$. If $a=0$, then $-\overline{b i}^{2}=\overline{b^{2}}=\overline{1}$ so $b i$ is a unit. If $b=0$, then $\bar{a}^{2}=\overline{1}$ so a is a unit.

We have shown that R / P_{3} consists of exactly these 9 distinct elements, and furthermore that all the nonzero ones are units. Thus R / P_{3} is a field, and P_{3} must be prime. (Note, this field is not $\mathbb{Z} / 9 \mathbb{Z}$, which is not even a domain).

It is easy to check that $P_{3} \cap \mathbb{Z}=3 \mathbb{Z}$.
(c) Take $P_{5}=(2+i)$. The elements of P_{5} will be exactly those elements $a+b i$ for which $a \equiv 2 b(\bmod 5)$. We can therefore check that R / P_{5} contains five distinct elements corresponding to the possible residue classes $\bmod 5$. The only ring on 5 elements is the field $\mathbb{Z} / 5 \mathbb{Z}$, which shows that P_{5} is prime, as desired.

It is easy to check that $P_{5} \cap \mathbb{Z}=5 \mathbb{Z}$.
Question 3. Construct a commutative ring L with the property that for every commutative ring R,

$$
\begin{array}{ll}
& \text { the } \# \text { of ring homomorphisms } \varphi: L \rightarrow R \\
\text { is equal to } & \text { the number of elements } r \in R \text { satisfying } r^{2}=2
\end{array}
$$

Note that " 2 " here means the element $1+1 \in R$. (You do not have to prove your answer is correct.)
Proof. The ring L is $\mathbb{Z}[x] /\left(x^{2}-2\right)$. An alternative description of this ring is $L=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$.
It suffices to construct a bijection between the sets

$$
\{\text { ring homomorphisms } L \rightarrow R\}
$$

and

$$
\left\{\text { elements } r \in R \text { satisfying } r^{2}=2\right\}
$$

Given an element of R satisfying $r^{2}=2$, let φ_{r} be the map which sends $\bar{x} \in L$ to r. To check that this is a well-defined map, note that by Question 3 from Homework 7, there exists a ring homomorphism $\psi_{r}: \mathbb{Z}[x] \rightarrow R$ which sends x to r. The kernel of ψ_{r} contains $x^{2}-2$, since

$$
\psi_{r}\left(x^{2}-2\right)=r^{2}-2=0
$$

and so it contains the whole ideal $\left(x^{2}-2\right)$. Thus, ψ_{r} induces a well-defined ring homomorphism φ_{r} : $\mathbb{Z}[x] /\left(x^{2}-2\right) \rightarrow R$, which is the map we wanted.

Using Question 3 from Homework 7, we see that φ_{r} is also unique. Otherwise, given two maps $\varphi_{r}, \varphi_{r}^{\prime}$: $\mathbb{Z}[x] /\left(x^{2}-2\right) \rightarrow R$, they lift to ring homomorphisms $\mathbb{Z}[x] \rightarrow R$ which both send x to the same element r. Such a map is unique, so $\varphi_{r}=\varphi_{r}^{\prime}$.

It remains to check that every ring homomorphism $L \rightarrow R$ is one of the φ_{r}. In fact, if $\varphi: L \rightarrow R$ is a ring homomorphism, then $\varphi(\bar{x})$ must satisfy

$$
\varphi(\bar{x})^{2}-2=\varphi\left(\bar{x}^{2}-2\right)=0
$$

so φ always sends \bar{x} to some r for which $r^{2}=2$. For this $r, \varphi=\varphi_{r}$ by the uniqueness mentioned previously.

Question 4. Construct a commutative ring M with the property that for every commutative ring R,

$$
\text { the \# of ring homomorphisms } \varphi: M \rightarrow R
$$

is equal to the number $\left|R^{\times}\right|$of invertible elements in R.
Prove your answer is correct.
Proof. Take $M=\left\{\sum_{k=-m}^{n} a_{k} x^{k} \mid m \geq 0, n \geq 0, a_{k} \in \mathbb{Z}\right\}$, the so-called ring of Laurent polynomials over \mathbb{Z}. In other words, every element of M is $x^{-n} \cdot p(x)$ for some (regular) polynomial $p(x) \in \mathbb{Z}[x]$.

It suffices to construct a bijection between the sets

$$
\{\text { ring homomorphisms } M \rightarrow R\}
$$

and

$$
\{\text { invertible elements } r \in R\} .
$$

Given an invertible element $r \in R$, let φ_{r} be the map which sends $x \in M$ to r (and thus x^{-1} to r^{-1}). A general element $x^{-n} p(x)$ will be sent to $r^{-n} p(r)$. This φ_{r} is a ring homomorphism, preserving addition, negation, products, and the identity.

To see that given the image of r, φ_{r} is uniquely determined, notice that for φ_{r} to be a ring homomorphism,

$$
\varphi_{r}\left(\sum_{k=-m}^{n} a_{k} x^{k}\right)=\sum_{k=-m}^{n} a_{k} \varphi_{r}(x)^{k}=\sum_{k=-m}^{n} a_{k} r^{k}
$$

so the images of all elements of M are fixed once the image of x is chosen.
It remains to check that every ring homomorphism $M \rightarrow R$ is one of the φ_{r}. In fact, if $\varphi: M \rightarrow R$ is a ring homomorphism, then $\varphi\left(x^{-1}\right) \varphi(x)=\varphi(1)=1$, so $\varphi(x)$ must be some invertible element $r \in R$. For this $r, \varphi=\varphi_{r}$ by the uniqueness mentioned previously.

Question 5. Can there exist a commutative ring N with the property that for every commutative ring R,

$$
\begin{array}{ll}
\text { the \# of ring homomorphisms } \varphi: N \rightarrow R \\
\text { is equal to } & \text { the \# of elements } r \in R \text { such that both } r \text { and } 1-r \text { are units. }
\end{array}
$$

Either construct such a ring and prove that your answer is correct (at least outline a proof), or prove that no such ring can exist.

Proof. Take

$$
N=\left\{f(x)=x^{k}(1-x)^{\ell} p(x) \mid k \in \mathbb{Z}, \ell \in \mathbb{Z}, p(x) \in \mathbb{Z}[x] \text { satisfies } p(0) \neq 0, p(1) \neq 0\right\}
$$

This is similar to the ring M in Question 4 except that we additionally allow for negative powers of $(1-x)$. The tricky part about proving N is a ring is showing that it is closed under addition. If $f(x)=x^{k}(1-x)^{\ell} p(x)$ and $g(x)=x^{k^{\prime}}(1-x)^{\ell^{\prime}} q(x)$, then define $k_{0}=\min \left(k, k^{\prime}\right), \ell_{0}=\min \ell, \ell^{\prime}$, and check that

$$
f(x)+g(x)=x^{k_{0}}(1-x)^{\ell_{0}}\left(x^{k-k_{0}}(1-x)^{\ell-\ell_{0}} p(x)+x^{k^{\prime}-k_{0}}(1-x)^{\ell^{\prime}-\ell_{0}} q(x)\right)
$$

where the polynomial in the parentheses is an honest polynomial. However, it may vanish at x and/or $1-x$; in this case, factor out a finite number of factors of x and $1-x$, until this is no longer the case.

It suffices to construct a bijection between the sets

$$
\{\text { ring homomorphisms } N \rightarrow R\}
$$

and

$$
\{\text { elements } r \in R \text { for which } r, 1-r \text { are both units }\} \text {. }
$$

Given $r \in R$ such that $r, 1-r$ are both units, let φ_{r} be the map which sends $x \in N$ to r. Again, for φ_{r} to be a ring homomorphism and $\varphi_{r}(x)=r$, it must be the unique "evaluation at r " map which sends

$$
\varphi_{r}\left(x^{k}(1-x)^{\ell} p(x)\right)=r^{k}(1-r)^{\ell} p(r)
$$

It remains to check that every ring homomorphism $N \rightarrow R$ is one of the φ_{r}. In fact, if $\varphi: N \rightarrow R$ is a ring homomorphism, then $\varphi\left(x^{-1}\right) \varphi(x)=\varphi(1)=1$, so $\varphi(x)$ must be some invertible element $r \in R$. Also $\varphi\left((1-x)^{-1}\right) \varphi(1-x)=\varphi(1)=1$, so $\varphi(1-x)=1-r$ is also invertible. For this $r, \varphi=\varphi_{r}$ by the uniqueness mentioned previously.

In Question 6, you can use the following fact, which we will prove later in the course:
If G is a finitely generated abelian group, then every subgroup of G is finitely generated.
(This is false if G is a finitely generated nonabelian group, as you proved for $G=F_{2}$ in $Q 5 B$ on HW3.)
Question 6. Given a complex number $z \in \mathbb{C}$, let $A(z)$ denote the additive subgroup of \mathbb{C} generated by the positive powers $1, z, z^{2}, z^{3}, \ldots$ under addition.
For example, $A(2)=\langle 1,2,4,8, \ldots\rangle=\mathbb{Z}$, whereas $A\left(\frac{2}{3}\right)=\left\langle 1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots\right\rangle=\left\{\frac{p}{3^{k}} \in \mathbb{Q}\right\}$.
A complex number $z \in \mathbb{C}$ is called integral if $A(z)$ is finitely generated as a group under addition.
Question 6(a)*. Prove that a rational number $x \in \mathbb{Q}$ is integral if and only if $x \in \mathbb{Z}$.
Proof. If $x \in \mathbb{Z}$, then $A(x)$ is just \mathbb{Z}, so it is finitely generated.
If $x \in \mathbb{Q}$ is integral, then $A(x)$ is a finitely generated subgroup of \mathbb{Q}. We showed as a corollary of an earlier homework that the finitely generated subgroups of \mathbb{Q} are exactly the singly generated subgroups $\frac{m}{n} \mathbb{Z}$. Thus, for x to be integral, all of its powers must be integer multiples of a single rational number $\frac{m}{n}$. This is impossible if $x \notin \mathbb{Z}$.

Question 6(b). Describe exactly which elements of $\mathbb{Q}(i)$ are integral. (Recall that $\mathbb{Q}(i)=\{a+b i \mid a, b \in \mathbb{Q}\}$.)
Proof. The elements are those in $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
For any $z=a+b i \in \mathbb{Z}[i]$, note that $A(z)$ will be a subgroup of $\mathbb{Z}[i]$ under addition, which is isomorphic as an abelian group to $\mathbb{Z} \times \mathbb{Z}$. But any subgroup of $\mathbb{Z} \times \mathbb{Z}$ is finitely generated (using e.g. the fact in the beginning). Thus z is integral.

For the other direction, we will use the following version of Gauss' Lemma. Define the content $C(p)$ of a polynomial $p \in \mathbb{Z}[x]$ to be the greatest common divisor of its coefficients.

Lemma 1. For any two polynomials $p(x), q(x) \in \mathbb{Z}[x]$,

$$
C(p) C(q)=C(p q)
$$

Proof. Because $C(p)$ divides all the coefficients of p and $C(q)$ divides all the coefficients of $q, C(p) C(q)$ divides all the coefficients of $p q$, so $C(p) C(q) \mid C(p q)$.

Dividing p by $C(p)$ and q by $C(q)$ we may assume $C(p)=C(q)=1$. It remains to show that in this case, $C(p q)=1$. Write $p(x)=\sum_{i} a_{i} x^{i}$ and $q(x)=\sum_{j} b_{j} x^{j}$.

Otherwise, there is a prime r which divides all the coefficients of $p q$, but not all the coefficeients of p or q. Let $a_{i} x^{i}$ and $b_{j} x^{j}$ be the smallest degree monomials in p, q respectively for which $r \nmid a_{i}$ and $r \nmid b_{j}$. Then, the coefficient of x^{i+j} in $p q$ is

$$
\sum_{k=0}^{i+j} a_{k} x^{k} b_{i+j-k} x^{i+j-k}
$$

and every term except $a_{i} x^{i} b_{j} x^{j}$ has a coefficient which is divisible by r. But $a_{i} b_{j}$ is not divisible by r, so this implies that the whole coefficient of x^{i+j} in $p q$ is not divisible by r, a contradiction. Thus $C(p q)=1$.

Now suppose $z \in \mathbb{Q}[i]$ is not in $\mathbb{Z}[i]$, but $A(z)$ is finitely generated. Since every element of $A(z)$ can be written as a finite integer linear combination of its generators $1, z, z^{2}, \ldots$, the finite set of generators can all be written this way too. Thus, $A(z)$ has a finite set of generators which are integer polynomials of z. It follows that there is some smallest $n \geq 1$ for which $A(z)$ is generated by $1, z, z^{2}, \ldots, z^{n-1}$.

In particular, z^{n} can be written as an integer linear combination $z^{n}=a_{n-1} z^{n-1}+\cdots+a_{0}$ of the previous generators. Define $p(x)=x^{n}-a_{n-1} z^{n-1}-\cdots-a_{0}$, so that z is a root of this polynomial. Since p has real coefficients, \bar{z} is also a root of p, so p is divisible by the polynomial $q(x)=(x-z)(x-\bar{z})$. We can write $z=(a+b i) / c$ in simplest terms, where $c \geq 2$ shares no factors with both a and b, then

$$
q(x)=x^{2}-\frac{2 a}{c} x+\frac{a^{2}+b^{2}}{c^{2}}
$$

is a polynomial with rational coefficients. The quotient $r(x)=p(x) / q(x)$ will also be a polynomial with rational coefficients. In addition, $p(x)$ and $q(x)$ both have leading coefficient 1 , so $r(x)$ does as well.

There exist integers A, B for which $A q(x) \in \mathbb{Z}[x]$ and $B r(x) \in \mathbb{Z}[x]$, clearing the denominators of r and q. Then, $A B p=(A q)(B r)$, so by Lemma 1,

$$
C(A B p)=C(A q) C(B r)
$$

The left hand side is exactly $A B$, since $p \in \mathbb{Z}[r]$ to begin with and had leading coefficient 1 . But the leading coefficient of $A q$ is A and the leading coefficient of $B r$ is B, so the right hand side is at most $A B$. For it to be exactly $A B$, both $C(A q)=A$ and $C(B r)=B$ must be the case.

Therefore, $C(A q)=A$ and $q \in \mathbb{Z}[x]$ to begin with. In particular, $c \mid 2 a$ and $c^{2} \mid a^{2}+b^{2}$. If $\operatorname{gcd}(a, c) \neq 1$, then $\operatorname{gcd}(a, c)^{2}\left|c^{2}\right| a^{2}+b^{2}$, and $\operatorname{gcd}(a, c)^{2} \mid a^{2}$, so $\operatorname{gcd}(a, c)^{2} \mid b^{2}$, and a, b, c have a common factor, contradicting our assumption that z was written in simplest terms.

Thus, $\operatorname{gcd}(a, c)=1$, which together with $c \mid 2 a$ implies that $c=2$ and a is odd. Otherwise, $c=2$ and $4=c^{2} \mid a^{2}+b^{2}$. But $a^{2} \equiv 1(\bmod 4)$ and b^{2} is either 0 or $1(\bmod 4)$, so this is impossible. We have thus proved that $z \in \mathbb{Z}[i]$.

Question 6(c). Describe exactly which elements of $\mathbb{Q}(\sqrt{3})$ are integral. (Recall that $\mathbb{Q}(\sqrt{3})=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\}$.)
Proof. The answer is $\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$.
The situation is similar to 6 (b), replacing i by $\sqrt{3}$. For showing that elements of this set are integral, check that $\mathbb{Z}[\sqrt{3}] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{3})$ and z is integral, so z is the zero of some polynomial of the form $p(x)=x^{n}-a_{n-1} z^{n-1}-\cdots-a_{0}$.

Any such element z not in $\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$ can be written in simplest terms as $(a+b \sqrt{3}) / c$ where $\operatorname{gcd}(a, b, c)=1$ and $c \geq 2$. Then, z is also the zero of a quadratic

$$
q(x)=x^{2}-\frac{2 a}{c} x+\frac{a^{2}-3 b^{2}}{c^{2}}
$$

with rational coefficients. Repeating the argument in $6(\mathrm{~b}), q(x) \mid p(x)$, so $q(x)$ has integer coefficients. Therefore, $c \mid 2 a$ and $c^{2} \mid a^{2}-3 b^{2}$. The first condition again implies that $c=2$ and a is odd. The second is then impossible by the same argument as before, because $a^{2}-3 b^{2} \equiv a^{2}+b^{2}(\bmod 4)$ can never be divisible by $c^{2}=4$.

Question 6(d). Describe exactly which elements of $\mathbb{Q}(\sqrt{5})$ are integral. (Recall that $\mathbb{Q}(\sqrt{5})=\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\}$.)
Proof. The answer is $\left\{\left.\frac{a+b \sqrt{5}}{2} \right\rvert\, a, b \in \mathbb{Z}, a+b \equiv 0 \bmod 2\right\}$.
The situation is similar $6(\mathrm{~b})$ and (c), replacing i by $\frac{1+\sqrt{5}}{2}$. For showing that the elements above are indeed integral, check that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{5})$ and z is integral, so z is the zero of some polynomial of the form $p(x)=x^{n}-a_{n-1} z^{n-1}-\cdots-a_{0}$.

Any such element z can be written in simplest terms as $(a+b \sqrt{5}) / c$ where $\operatorname{gcd}(a, b, c)=1$ and $c \geq 2$. Then, z is also the zero of a quadratic

$$
q(x)=x^{2}-\frac{2 a}{c} x+\frac{a^{2}-5 b^{2}}{c^{2}}
$$

with rational coefficients. Repeating the argument in $6(\mathrm{~b}), q(x) \mid p(x)$, so $q(x)$ has integer coefficients. Therefore, $c \mid 2 a$ and $c^{2} \mid a^{2}-5 b^{2}$. The first condition implies $c=2$ and a is odd. The second implies that b is also odd. This shows that the integral elements of $\mathbb{Q}(\sqrt{5})$ are either elements of $\mathbb{Z}[\sqrt{5}]$, or can be written as $(a+b \sqrt{5}) / 2$, where a, b are both odd. This is exactly the set described.

Question 6(e). Let $x \in \mathbb{C}$ be an integral element, and let $y \in \mathbb{C}$ be an nth root of x (meaning $y^{n}=x$). Prove that y is integral.

Proof. Notice that $A(y)$ is contained in the union of the n sets $A(x), y A(x), \ldots y^{n-1} A(x)$. This is because every generator y^{m} of $A(y)$ can be written as $y^{a n+r}=x^{a} y^{r}$ where $r \leq n-1$. If g_{1}, \ldots, g_{m} are a finite set of generators for $A(x)$, then the set of $m n$ elements $y^{i} g_{j}, 0 \leq i \leq n-1,1 \leq j \leq m$ generate $A(y)$.

Question 6(f). Prove that if $x \in \mathbb{C}$ and $y \in \mathbb{C}$ are both integral, then $x+y$ and $x y$ are integral. Conclude that the set $\mathbf{A} \subset \mathbb{C}$ of all integral elements of \mathbb{C} forms a subring of \mathbb{C}.

Proof. Let $A(x, y)$ be the additive subgroup of \mathbb{C} spanned by $x^{i} y^{j}$ for $i, j \geq 0$.
If $A(x)$ is finitely generated by g_{1}, \ldots, g_{m} and $A(y)$ is finitely generated by h_{1}, \ldots, h_{n}, then $A(x, y)$ is finitely generated by the $m n$ products $g_{i} h_{j}$ for $1 \leq i \leq n, 1 \leq j \leq m$. To see this, any product $x^{i} y^{j}$ can be written in as an integer linear combination of $g_{i} h_{j}$ by writing x^{i} as an integer linear combination of the g_{i} and y^{j} as an integer linear combination of the h_{j}.

Now simply observe that $A(x+y)$ and $A(x y)$ are both contained in $A(x, y)$, so using the remark, each is finitely generated. Note that $A(-x)=A(x)$ so \mathbf{A} is closed under negation as well. Thus the ring of integral elements of \mathbb{C} forms a subring of \mathbb{C}.

Question $\mathbf{6}(\mathbf{g})$. Describe exactly which elements of $\mathbb{Q}(\sqrt[3]{2})$ are integral. $\mathbb{Q}(\sqrt[3]{2})=\left\{a+b \sqrt[3]{2}+c \sqrt[3]{2}{ }^{2} \mid a, b, c \in \mathbb{Q}\right\}$.
Proof. The answer is $\left\{a+b \sqrt[3]{2}+c \sqrt[3]{2}^{2} \mid a, b, c \in \mathbb{Z}\right\}$.
Question 6(h). Describe which elements of $\mathbb{Q}(\sqrt[3]{10})$ are integral. $\mathbb{Q}(\sqrt[3]{10})=\left\{a+b \sqrt[3]{10}+c \sqrt[3]{10}^{2} \mid a, b, c \in \mathbb{Q}\right\}$.
Proof. The answer is $\left\{\left.\frac{a+b \sqrt[3]{10}+c \sqrt[3]{10}^{2}}{3} \right\rvert\, a, b, c \in \mathbb{Z}, a+b+c \equiv 0 \bmod 3\right\}$, but proving this is quite difficult.
Question 6(i). Prove that $z=2 \cos \left(\frac{2 \pi}{n}\right)$ is integral for any $n \in \mathbb{N}$.
Proof. This can be done directly using trigonometric identities. Alternately, let $w=\cos \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right) i$. De Moivre's formula says that

$$
w^{n}=\cos \left(n \cdot \frac{2 \pi}{n}\right)+\sin \left(n \cdot \frac{2 \pi}{n}\right) i=\cos (2 \pi)+\sin (2 \pi) i=1
$$

Therefore Q6(e) tells us that w is integral, since it is an nth root of 1 which is definitely integral, so $A(w)$ is a finitely generated abelian group. Since $z=2 \cos \left(\frac{2 \pi}{n}\right)=w+w^{n-1}$ we see that $z \in A(w)$ and thus $A(z) \subset A(w)$. Using the italicized remark above, we conclude that $A(z)$ is finitely generated.

Question $6(\mathbf{j})$. For $z=2 \cos \left(\frac{2 \pi}{n}\right)$, the group $A(z)$ is isomorphic to \mathbb{Z}^{k} for some rank $k=k(n)$ depending on n. Compute the rank $k(n)$ for $n=3,4,5,6,7$. Can you express the rank $k(n)$ as a function of n ?

Proof. The rank $k(n)$ for $n=3,4,5,6,7$ is: $k(3)=1, k(4)=1, k(5)=2, k(6)=1, k(7)=3$. For general n, the rank is given by $k(n)=\varphi(n) / 2$.

