Math 120 HW 9 Solutions

June 8, 2018

Question 1

Write down a ring homomorphism (no proof required) f from $R=\mathbb{Z}[\sqrt{11}]=\{a+b \sqrt{11} \mid a, b \in \mathbb{Z}\}$ to $S=\mathbb{Z} / 35 \mathbb{Z}$.

The main difficulty is to find an element $x \in \mathbb{Z} / 35 \mathbb{Z}$ which satisfies $x^{2} \equiv 11(\bmod 35)$. One way to solve for such an element systematically is to work separately modulo 5 and 7 . The solutions to $x^{2} \equiv 11(\bmod 5)$ are $x \equiv \pm 1$, and the solutions to $x^{2} \equiv 11(\bmod 7)$ are $x \equiv \pm 2$. Putting these possibilities together using the Chinese Remainder Theorem, the four solutions to $x^{2} \equiv 11(\bmod 35)$ are $x \equiv 9,16,19,26(\bmod 35)$.

Picking any of these, say $x=9$, we get a ring homomorphism $f: R \rightarrow S$ given by $f(a+b \sqrt{11})=a+9 b$ by sending $\sqrt{11}$ to 9 .

Question 2

Let $R \subset \mathbb{R}[x]$ be the subring of $\mathbb{R}[x]$ consisting of polynomials whose coefficient of x is 0 :

$$
R=\left\{f(x)=a_{0}+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\} .
$$

You proved in HW8 Q1 that R is not a PID. Is R a UFD? Prove or disprove.
No, R is not a UFD. For example, $x^{6}=x^{2} \cdot x^{2} \cdot x^{2}=x^{3} \cdot x^{3}$, and neither x^{2} nor x^{3} can be factored further (by degree considerations) in R. Thus x^{6} has two different factorizations into irreducibles in R.

Question 3

Given a polynomial $p(x) \in R[x]$ and an element $a \in R$, we say that a is a root of $p(x)$ if $p(a)=0 \in R$.
Prove that if R is a domain and $p(x)$ has degree n, then $p(x)$ has at most n roots in R.
We start with a "zero theorem" for polynomials over a general commutative ring.
Lemma 1. If R is a commutative ring, $p(x) \in R[x]$, and $a \in R$ is a root of $p(x)$, then $p(x)=(x-a) q(x)$ for some $q \in R[x]$.
Proof. Induct on the degree of $p(x)$. If $\operatorname{deg} p=0$, then $p(x)$ is a nonzero constant function, so it can't have roots.

Suppose the lemma is true for all polynomials of degree at most $n-1$, and let $\operatorname{deg} p=n$. If the leading term of p is $a_{n} x^{n}$, then

$$
p(x)=a_{n} x^{n-1}(x-a)+r(x)
$$

for some $r(x)$ of strictly smaller degree. By induction, $r(x)$ is a multiple of $(x-a)$, so $p(x)$ is as well.
Now, suppose for the sake of contradiction that R is a domain and $p(x)$ has degree n but $n+1$ roots a_{1}, \ldots, a_{n+1}. Then, by the lemma, $p(x)=\left(x-a_{1}\right) p_{1}(x)$ for some $p_{1}(x) \in R[x]$ of degree $n-1$. Since $p\left(a_{i}\right)=0$ for all i,

$$
p\left(a_{i}\right)=\left(a_{i}-a_{1}\right) p_{1}\left(a_{i}\right)=0
$$

for all i. But R is a domain and has no zero divisors, so since $\left(a_{i}-a_{1}\right) \neq 0$, we conclude that $p_{1}\left(a_{i}\right)=0$ for all $i=2, \ldots, n+1$. Applying the lemma to p_{1} next, we find $p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) p_{2}(x)$, where p_{2} has all the roots a_{3}, \ldots, a_{n+1}. Continuing in this manner, we find that $p(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n+1}\right) p_{n+1}(x)$ for some polynomial $p_{n+1}(x) \in R[x]$. But such a product has degree at least $n+1$, which is a contradiction. Thus $p(x)$ had at most n roots to begin with.

Question 4

Let $p(x) \in \mathbb{C}[x]$ be a nonzero polynomial. Consider the following two properties of $p(x)$:
(A) The quotient ring $\mathbb{C}[x] /(p(x))$ is isomorphic to a product ring $\mathbb{C} \times \cdots \times \mathbb{C}$.
(B) The polynomial $p(x)$ has no repeated roots.

Prove that these two properties are equivalent: $(A) \Longleftrightarrow(B)$.
Write \mathbb{C}^{n} for the n-fold product ring $\mathbb{C} \times \cdots \times \mathbb{C}$.
Suppose first that $p(x)$ has no repeated roots. By the fundamental theorem of algebra, $p(x)$ factors as $p(x)=u\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ where $u \neq 0$ and $\alpha_{i} \in \mathbb{C}$ are all distinct. Then, consider the map $\phi: \mathbb{C}[x] /(p(x)) \rightarrow \mathbb{C}^{n}$, given by evaluating at each of the roots of p :

$$
\phi(\bar{f})=\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right)
$$

Then, $\phi(\bar{f})=(0, \ldots, 0)$ if and only if $f\left(\alpha_{i}\right)=0$ for all i. This happens if and only if $f \in(p(x))$, so indeed ker $\phi=(p(x))$ and ϕ is well-defined. Note that ϕ is just the product of n different evaluation maps, which we have shown (e.g. HW7 Q3) are individually ring homomorphisms. Thus ϕ is a ring homomorphism. It remains to show that ϕ is an isomorphism. By the argument before, $\operatorname{ker} \phi=(p(x))$ exactly so ϕ is injective.

To prove surjectivity, pick any $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$. There exists by Lagrange interpolation a polynomial $q(x) \in \mathbb{C}[x]$ for which $q\left(\alpha_{i}\right)=z_{i}$. Explicitly,

$$
q(x)=\sum_{i=1}^{n} z_{i} \frac{\prod_{j \neq i}\left(x-\alpha_{j}\right)}{\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)} .
$$

For this polynomial $q, \phi(\bar{q})=\left(z_{1}, \ldots, z_{n}\right)$. Thus ϕ is bijective and therefore an isomorphism of rings, as desired.

Conversely, suppose the quotient ring $\mathbb{C}[x] /(p(x))$ is isomorphic to some product \mathbb{C}^{n}.
Define a nilpotent element of a ring R to be an element $r \in R$ for which some power vanishes: $r^{m}=0$ for some $m \in \mathbb{N}$. We claim that \mathbb{C}^{n} has no nonzero nilpotents. Indeed, if $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, then multiplication is coordinatewise, so $\left(z_{1}, \ldots, z_{n}\right)^{m}=0$ iff all of the z_{i} are zero.

Thus, $\mathbb{C}[x] /(p(x))$, being isomorphic to \mathbb{C}^{n}, must also have no nonzero nilpotents. Write by the fundamental theorem of algebra

$$
p(x)=u\left(x-\alpha_{1}\right)^{m_{1}}\left(x-\alpha_{2}\right)^{m_{2}} \cdots\left(x-\alpha_{r}\right)^{m_{r}}
$$

where now the α_{i} are the distinct roots of p but the multiplicities m_{i} are not necessarily 1 . In fact, if $p(x)$ has repeated roots, then some $m_{i} \neq 1$, and so the function $q(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{r}\right)$ is not a multiple of p, so $q \neq 0$ in $\mathbb{C}[x] /(p(x))$. But $q(x)^{M}$ is a multiple of p, where $M=\max \left(m_{1}, \ldots, m_{r}\right)$, so $q(x)^{M}=0$ in $\mathbb{C}[x] /(p(x))$, and therefore q would be a nonzero nilpotent in $\mathbb{C}[x] /(p(x))$. Since $\mathbb{C}[x] /(p(x))$ has no nonzero nilpotents, it follows that all the $m_{i}=1$ and $p(x)$ has no repeated roots, as desired.

Question 5

Let $R=\mathbb{Z} / 5^{\infty} \mathbb{Z}$ (just like the ring $\mathbb{Z} / 10^{\infty} \mathbb{Z}$ from HW6, but in base 5 instead).
(a) Prove that $R=\mathbb{Z} / 5^{\infty} \mathbb{Z}$ is a domain.

One way of explicitly describing the elements $r \in R$ is to identify them with infinite sequences $\left(r_{1}, r_{2}, \ldots\right)$ where $r_{i} \in \mathbb{Z} / 5^{i} \mathbb{Z}$ and $r_{i} \equiv r_{i-1}(\bmod 5)^{i-1}$, where addition and multiplication is coordinatewise. Suppose $r, s \in R$ are identified with sequences $\left(r_{1}, r_{2}, \ldots\right)$ and $\left(s_{1}, s_{2}, \ldots\right)$, and $r, s \neq 0$. We want to show that $r s \neq 0$.

But if $r s=0$, then $r_{i} s_{i} \equiv 0(\bmod 5)^{i}$ for all i. In particular, for each i, one of r_{i} or s_{i} is divisible by $5^{\lfloor i / 2\rfloor}$. Since $r_{i} \equiv r_{\lfloor i / 2\rfloor}(\bmod 5)^{\lfloor i / 2\rfloor}$ and $s_{i} \equiv s_{\lfloor i / 2\rfloor}(\bmod 5)^{\lfloor i / 2\rfloor}$, it follows that for all i, either $r_{\lfloor i / 2\rfloor} \equiv 0$ $(\bmod 5)^{\lfloor i / 2\rfloor}$ or $s_{\lfloor i / 2\rfloor} \equiv 0(\bmod 5)^{\lfloor i / 2\rfloor}$.

In particular, one of $\left(r_{1}, r_{2}, \ldots\right)$ and $\left(s_{1}, s_{2}, \ldots\right)$ has infinitely many terms equal to zero (in the appropriate ring $\left.\mathbb{Z} / 5^{i} \mathbb{Z}\right)$. But then every term before each zero must also be zero. Thus, one of r, s is zero, and there are no nontrivial zero divisors in R, as desired.
(b) Describe which elements of $R=\mathbb{Z} / 5^{\infty} \mathbb{Z}$ are units.

The answer is all elements for which $r_{1} \not \equiv 0(\bmod 5)$. Concretely, in base 5 this includes all "infinite base- 5 integers" which do not end in zero. To prove this rigorously, one must construct an s for each such r for which $r s=1$ - in other words, to give a sequence $\left(s_{1}, s_{2}, \ldots\right)$ for which $r_{i} s_{i} \equiv(\bmod 5)$ for all i. This turns out to be a special case of an important result known as Hensel's Lifting Lemma.
(c) Let K be the fraction field of domain $R=\mathbb{Z} / 5^{\infty} \mathbb{Z}$. Give a concrete description of K. What are its elements? What are the operations of addition/multiplication on these elements? Can one easily see from your description that every nonzero element is invertible, or is that difficult to see? Sketch a proof that your description is correct.

One way of defining K is as the set of fractions $5^{n} u$ where $n \in \mathbb{Z}$ and $u \in R$ is a unit, together with 0 . By part (b), every element $r \in R$ can be written as $5^{n} u$ for some $n \geq 0$ and some unit u by dividing r by the highest power of 5 dividing r.

Addition and multiplication work in the obvious ways. If $5^{m} u$ and $5^{n} v$ are two elements for which $m \leq n$ (without loss of generality), $5^{m} u+5^{n} v=5^{m}\left(u+5^{n-m} v\right)$, where the latter addition is addition in R. It is possible for powers of 5 to appear in the sum $u+5^{n-m} v$ if $n=m$; in this case, factor out the largest power of 5 dividing $u+v$ and combine it with 5^{m}. Multiplication is just

$$
\left(5^{m} u\right)\left(5^{n} v\right)=5^{m+n}(u v)
$$

Every nonzero element $5^{n} u$ has an inverse $5^{-n} u^{-1}$ since u is a unit in R.
The point is that the only elements not invertible already in R are multiples of 5 , and so "inverting 5 " is all that's necessary to obtain the fraction field.

Question 6

Suppose that R is a commutative ring which contains \mathbb{Z}.
(a) Prove that if $P \subset R$ is a prime ideal of R, then $P \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}.

Certainly, $P \cap \mathbb{Z}$ is an ideal of \mathbb{Z}, since P itself must be closed under multiplication by $\mathbb{Z} \subseteq R$. Suppose for the sake of contradiction that P is prime but $P \cap \mathbb{Z}$ is not prime in \mathbb{Z}. Then, since the ideals of \mathbb{Z} are just $n \mathbb{Z}$ and are prime iff n is prime, this implies that $P \cap \mathbb{Z}=n \mathbb{Z}$ for a composite n. Pick any nontrivial factorization $n=a b$ of z. Since $a, b \in \mathbb{Z} \subseteq R$ as well, it follows that $a b \in P$ but $a, b \notin P$,so P is not a prime ideal. This is the contradiction we were looking for.
(b) Part (a) defines a function $\beta:\{$ prime ideals of $R\} \rightarrow\{$ prime ideals of $\mathbb{Z}\}$. Construct an explicit commutative ring R containing \mathbb{Z} such that the image of β is

$$
\operatorname{im} \beta=\{(0),(5),(7),(11),(13), \ldots\}
$$

i.e. all prime ideals except (2) and (3). Prove (or at least sketch a proof) R has this property.

One such ring is $R=\mathbb{Z}\left[\frac{1}{6}\right]=\left\{\frac{a}{2^{m} 3^{n}}, a \in \mathbb{Z}, m, n \in \mathbb{N}\right\}$. This ring certainly contains \mathbb{Z}. Also, note that $(p) \subset R$ is still a prime ideal for every $p \in \mathbb{Z}$ prime which is not 2 and 3 , and (0) $\subset R$ is as well since R is a domain. For these, it is easy to check that $\beta(p R)=p \mathbb{Z}$ and $\beta(0 R)=0 \mathbb{Z}$.

Thus, $\operatorname{im} \beta \supseteq\{(0),(5),(7),(11),(13), \ldots\}$. It remains to show that (2) and (3) are not in this image.
If (2) $\operatorname{im} \bar{\beta}$, there is some prime $P \subset R$ for which $P \cap \mathbb{Z}=2 \mathbb{Z}$. But then $P \ni 2$, and $\frac{1}{2}$ lies in R, so $P \ni \frac{1}{2} \cdot 2=1$. Thus P must be the entire ring, contradicting the fact that $P \cap \mathbb{Z}=2 \mathbb{Z}$. Similarly, $P \cap \mathbb{Z} \neq 3 \mathbb{Z}$ for any $P \subset R$.

Question 7

(a) Let F be a field, and let $R \subset F$ be a subring with the property that for every $x \in F$, either $x \in R$ or $\frac{1}{x} \in R$ (or both).

Prove that if I and J are two ideals of R, then either $I \subseteq J$ or $J \subseteq I$.

Suppose for the sake of contradiction that there exist two ideals I, J neither of which contains the other. Then, there are elements $x \in I \backslash J$ and $y \in J \backslash I$. Since all ideals contain 0 , we have $x, y \neq 0$. Thus, $x / y \in F$, and the property given tells us that either x / y or its inverse y / x lies in R. Without loss of generality, $x / y \in R$. Then, since J is an ideal of $R, x=(x / y) \cdot y \in J$, contradicting the assumption $x \notin J$. Thus one of I, J contains the other.
(b) Construct a proper subring $R \subsetneq \mathbb{Q}$ such that for every $x \in \mathbb{Q}$, either $x \in R$ or $\frac{1}{x} \in R$ (or both).

Let

$$
R=\left\{\frac{a}{b} \in \mathbb{Q}, 2 \nmid b\right\}
$$

i.e. the ring of all fractions with odd denominator. Sums and products of such fractions also have odd denominator, so R is a subring of \mathbb{Q}, and it is proper because $\frac{1}{2} \notin R$.

For any $x \in \mathbb{Q}, x$ can be written as a / b, where a, b are coprime. Thus, at least one of a and b is odd, so at least one of a / b and its inverse b / a lies in R, as desired.

Question 8

Given an abelian group A, we say the $10-d u a l A^{\vee}$ is the abelian group of homomorphisms $f: A \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ under pointwise addition.

We call an abelian group 10 -invisible if $A^{\vee}=0$, i.e. if there are no nonzero group homomorphisms $f: A \rightarrow \mathbb{Z} / 10 \mathbb{Z}$.
(a*) Compute A^{\vee} for $A=\mathbb{Z}, A=\mathbb{Z} / 6 \mathbb{Z}$, and $A=\mathbb{Z} / 10 \mathbb{Z}$.
As abelian groups, the answers are $\mathbb{Z}^{\vee} \simeq \mathbb{Z} / 10 \mathbb{Z},(\mathbb{Z} / 6 \mathbb{Z})^{\vee} \simeq \mathbb{Z} / 2 \mathbb{Z}$, and $(\mathbb{Z} / 10 \mathbb{Z})^{\vee} \simeq \mathbb{Z} / 10 \mathbb{Z}$. These can be computed using the fact that a homomorphism between cyclic groups is determined by the image of a generator.
(b) We know from class (or will soon) that every finitely-generated abelian group A is isomorphic to

$$
A \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / n_{1} \mathbb{Z} \oplus \mathbb{Z} / n_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / n_{k} \mathbb{Z}
$$

for a unique $r \geq 0$ and a unique sequence of positive integers $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$.
In terms of this description, which finitely-generated abelian groups are 10 -invisible?
If there is a nonzero homomorphism $f: G_{i} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ from any single factor in a direct sum $\bigoplus G_{i}$ of abelian groups to $\mathbb{Z} / 10 \mathbb{Z}$, then there is a nonzero homomorphism from the whole sum to $\mathbb{Z} / 10 \mathbb{Z}$, given by first projecting an element $\left(a_{1}, \ldots, a_{n}\right) \in \bigoplus G_{i}$ onto the i-th coordinate a_{i} and then applying f.

Thus it suffices to check which cyclic groups \mathbb{Z} or $\mathbb{Z} / n \mathbb{Z}$ are 10 -invisible. The answer is exactly the groups $\mathbb{Z} / n \mathbb{Z}$ for which $(n, 10)=1$, which we show now.

First, if $(n, 10)=1$, then any homomorphism $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ must send $\overline{1}$ to an element with order dividing n. But no nonzero element of the range has order dividing n, so $f=0$.

Conversely, if $2 \mid n$, there exists a nonzero homomorphism $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ given by sending $\overline{1}$ to $\overline{5}$. Similarly, if $5 \mid n$, one can simply send $\overline{1}$ to $\overline{2}$.

As a result, the finitely-generated 10 -invisible abelian groups are exactly those finite abelian groups of the form

$$
\mathbb{Z} / n_{1} \mathbb{Z} \oplus \mathbb{Z} / n_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / n_{k} \mathbb{Z}
$$

where $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$, and $\left(n_{k}, 10\right)=1$.
(c) Choose two of the following abelian groups A, and for each, describe as best you can the abelian group A^{\vee} :
(i) $A=\mathbb{Q}$,

We show $\mathbb{Q}^{\vee}=0$. If not, some $f: \mathbb{Q} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ is nonzero, and sends $a / b \mapsto \bar{n}$ for $10 \nmid n$ and $a / b \in \mathbb{Q}$. But then it must send $a / 10 b$ to an element $\bar{m} \in \mathbb{Z} / 10 \mathbb{Z}$ for which $10 \bar{m}=\bar{n}$, which is absurd.
(ii) $A=\mathbb{Z}\left[\frac{1}{6}\right]$,

We show $\left(\mathbb{Z}\left[\frac{1}{6}\right]\right)^{\vee} \simeq \mathbb{Z} / 5 \mathbb{Z}$. In fact, the five homomorphisms are $f_{i}, 0 \leq i \leq 4$, where $f_{i}\left(a / 6^{k}\right)=\overline{2 a i}$ $(\bmod 10)$. It is easy to check that these maps are homomorphisms - note that $\overline{6} \bar{m} \equiv \bar{m}(\bmod 10)$ for any even m. Conversely, to show that these are the only homomorphisms can be reduced to checking that if $f(1)=\overline{0}$ then $f=0$.

Suppose there is a nonzero group homomorphism f for which $f(1)=\overline{0}$. Then, $6^{k} f\left(1 / 6^{k}\right)=\overline{0}$, so $f\left(1 / 6^{k}\right)$ is an element divisible by 5 in $\mathbb{Z} / 10 \mathbb{Z}$, i.e. $f\left(1 / 6^{k}\right) \in\{\overline{0}, \overline{5}\}$. But if $f\left(1 / 6^{k}\right)=\overline{5}$, then $6 f\left(1 / 6^{k+1}\right) \equiv 5$ $(\bmod 10)$, which is absurd since 5 is odd. Thus, $f\left(1 / 6^{k}\right)=0$ for all k. It now follows that $f\left(a / 6^{k}\right)=0$ for all a, k, as desired.
(iii) $A=\mathbb{Q} / \mathbb{Z}$,

Any group homomorphism $\mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ can be precomposed with the quotient map $\mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$ to give a homomorphism $\mathbb{Q} \rightarrow \mathbb{Z} / 10 \mathbb{Z}$. By (i) there are no such nonzero maps, so $(\mathbb{Q} / \mathbb{Z})^{\vee}=0$ as well.
(iv) $A=\mathbb{Z} / 10^{\infty} \mathbb{Z}$.

We claim that $\left(\mathbb{Z} / 10^{\infty} \mathbb{Z}\right)^{\vee} \simeq \mathbb{Z} / 10 \mathbb{Z}$, and the ten maps are given by $f_{i}(r)=i r(\bmod 10)$ for each of $i=0, \ldots, 9$. These are certainly homomorphisms; it remains to check that they are all possible ones.

Note that $f(10 r)=10 f(r) \equiv 0(\bmod 10)$, so every multiple of 10 is sent to zero in $\mathbb{Z} / 10 \mathbb{Z}$. Also, every $r \in \mathbb{Z} / 10^{\infty} \mathbb{Z}$ can be written as $r_{0}+10 r_{1}$ where $r_{0} \in\{0, \ldots, 9\}$ is the ones digit and $r_{1} \in \mathbb{Z} / 10^{\infty} \mathbb{Z}$. Thus, for f to be a group homomorphism,

$$
f(r)=f\left(r_{0}+10 r_{1}\right)=r_{0} f(1)+10 f\left(r_{1}\right)=r_{0} f(1)
$$

Thus, f is uniquely determined by $f(1)$, and we're done.

