
Math 120 HW 9 Solutions

June 8, 2018

Question 1
Write down a ring homomorphism (no proof required) f from R = Z[

√
11] = {a+ b

√
11|a, b ∈ Z}

to S = Z/35Z.
The main difficulty is to find an element x ∈ Z/35Z which satisfies x2 ≡ 11 (mod 35). One way to solve

for such an element systematically is to work separately modulo 5 and 7. The solutions to x2 ≡ 11 (mod 5)
are x ≡ ±1, and the solutions to x2 ≡ 11 (mod 7) are x ≡ ±2. Putting these possibilities together using the
Chinese Remainder Theorem, the four solutions to x2 ≡ 11 (mod 35) are x ≡ 9, 16, 19, 26 (mod 35).

Picking any of these, say x = 9, we get a ring homomorphism f : R→ S given by f(a+ b
√

11) = a+ 9b
by sending

√
11 to 9.

Question 2
Let R ⊂ R[x] be the subring of R[x] consisting of polynomials whose coefficient of x is 0:

R = {f(x) = a0 + a2x
2 + · · ·+ anx

n|ai ∈ R}.

You proved in HW8 Q1 that R is not a PID. Is R a UFD? Prove or disprove.
No, R is not a UFD. For example, x6 = x2 ·x2 ·x2 = x3 ·x3, and neither x2 nor x3 can be factored further

(by degree considerations) in R. Thus x6 has two different factorizations into irreducibles in R.

Question 3
Given a polynomial p(x) ∈ R[x] and an element a ∈ R, we say that a is a root of p(x) if p(a) = 0 ∈ R.

Prove that if R is a domain and p(x) has degree n, then p(x) has at most n roots in R.
We start with a “zero theorem” for polynomials over a general commutative ring.

Lemma 1. If R is a commutative ring, p(x) ∈ R[x], and a ∈ R is a root of p(x), then p(x) = (x − a)q(x)
for some q ∈ R[x].

Proof. Induct on the degree of p(x). If deg p = 0, then p(x) is a nonzero constant function, so it can’t have
roots.

Suppose the lemma is true for all polynomials of degree at most n− 1, and let deg p = n. If the leading
term of p is anxn, then

p(x) = anx
n−1(x− a) + r(x)

for some r(x) of strictly smaller degree. By induction, r(x) is a multiple of (x− a), so p(x) is as well.

Now, suppose for the sake of contradiction that R is a domain and p(x) has degree n but n + 1 roots
a1, . . . , an+1. Then, by the lemma, p(x) = (x − a1)p1(x) for some p1(x) ∈ R[x] of degree n − 1. Since
p(ai) = 0 for all i,

p(ai) = (ai − a1)p1(ai) = 0
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for all i. But R is a domain and has no zero divisors, so since (ai − a1) 6= 0, we conclude that p1(ai) = 0
for all i = 2, . . . , n+ 1. Applying the lemma to p1 next, we find p(x) = (x− a1)(x− a2)p2(x), where p2 has
all the roots a3, . . . , an+1. Continuing in this manner, we find that p(x) = (x− a1) · · · (x− an+1)pn+1(x) for
some polynomial pn+1(x) ∈ R[x]. But such a product has degree at least n + 1, which is a contradiction.
Thus p(x) had at most n roots to begin with.

Question 4
Let p(x) ∈ C[x] be a nonzero polynomial. Consider the following two properties of p(x):

(A) The quotient ring C[x]/(p(x)) is isomorphic to a product ring C× · · · × C.
(B) The polynomial p(x) has no repeated roots.
Prove that these two properties are equivalent: (A) ⇐⇒ (B).
Write Cn for the n-fold product ring C× · · · × C.
Suppose first that p(x) has no repeated roots. By the fundamental theorem of algebra, p(x) factors

as p(x) = u(x − α1) · · · (x − αn) where u 6= 0 and αi ∈ C are all distinct. Then, consider the map
φ : C[x]/(p(x))→ Cn, given by evaluating at each of the roots of p:

φ(f) = (f(α1), f(α2), . . . , f(αn)).

Then, φ(f) = (0, . . . , 0) if and only if f(αi) = 0 for all i. This happens if and only if f ∈ (p(x)), so indeed
kerφ = (p(x)) and φ is well-defined. Note that φ is just the product of n different evaluation maps, which
we have shown (e.g. HW7 Q3) are individually ring homomorphisms. Thus φ is a ring homomorphism. It
remains to show that φ is an isomorphism. By the argument before, kerφ = (p(x)) exactly so φ is injective.

To prove surjectivity, pick any (z1, . . . , zn) ∈ Cn. There exists by Lagrange interpolation a polynomial
q(x) ∈ C[x] for which q(αi) = zi. Explicitly,

q(x) =

n∑
i=1

zi

∏
j 6=i(x− αj)∏
j 6=i(αi − αj)

.

For this polynomial q, φ(q̄) = (z1, . . . , zn). Thus φ is bijective and therefore an isomorphism of rings, as
desired.

Conversely, suppose the quotient ring C[x]/(p(x)) is isomorphic to some product Cn.
Define a nilpotent element of a ring R to be an element r ∈ R for which some power vanishes: rm = 0 for

some m ∈ N. We claim that Cn has no nonzero nilpotents. Indeed, if (z1, . . . , zn) ∈ Cn, then multiplication
is coordinatewise, so (z1, . . . , zn)m = 0 iff all of the zi are zero.

Thus, C[x]/(p(x)), being isomorphic to Cn, must also have no nonzero nilpotents. Write by the funda-
mental theorem of algebra

p(x) = u(x− α1)m1(x− α2)m2 · · · (x− αr)mr

where now the αi are the distinct roots of p but the multiplicities mi are not necessarily 1. In fact, if p(x) has
repeated roots, then some mi 6= 1, and so the function q(x) = (x− α1)(x− α2) · · · (x− αr) is not a multiple
of p, so q 6= 0 in C[x]/(p(x)). But q(x)M is a multiple of p, where M = max(m1, . . . ,mr), so q(x)M = 0 in
C[x]/(p(x)), and therefore q would be a nonzero nilpotent in C[x]/(p(x)). Since C[x]/(p(x)) has no nonzero
nilpotents, it follows that all the mi = 1 and p(x) has no repeated roots, as desired.

Question 5
Let R = Z/5∞Z (just like the ring Z/10∞Z from HW6, but in base 5 instead).

(a) Prove that R = Z/5∞Z is a domain.
One way of explicitly describing the elements r ∈ R is to identify them with infinite sequences (r1, r2, . . .)

where ri ∈ Z/5iZ and ri ≡ ri−1 (mod 5)i−1, where addition and multiplication is coordinatewise. Suppose
r, s ∈ R are identified with sequences (r1, r2, . . .) and (s1, s2, . . .), and r, s 6= 0. We want to show that rs 6= 0.

But if rs = 0, then risi ≡ 0 (mod 5)i for all i. In particular, for each i, one of ri or si is divisible by
5bi/2c. Since ri ≡ rbi/2c (mod 5)bi/2c and si ≡ sbi/2c (mod 5)bi/2c, it follows that for all i, either rbi/2c ≡ 0

(mod 5)bi/2cor sbi/2c ≡ 0 (mod 5)bi/2c.
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In particular, one of (r1, r2, . . .) and (s1, s2, . . .) has infinitely many terms equal to zero (in the appropriate
ring Z/5iZ). But then every term before each zero must also be zero. Thus, one of r, s is zero, and there are
no nontrivial zero divisors in R, as desired.

(b) Describe which elements of R = Z/5∞Z are units.
The answer is all elements for which r1 6≡ 0 (mod 5). Concretely, in base 5 this includes all “infinite

base-5 integers” which do not end in zero. To prove this rigorously, one must construct an s for each such r
for which rs = 1 - in other words, to give a sequence (s1, s2, . . .) for which risi ≡ (mod 5) for all i. This
turns out to be a special case of an important result known as Hensel’s Lifting Lemma.

(c) Let K be the fraction field of domain R = Z/5∞Z. Give a concrete description of K.
What are its elements? What are the operations of addition/multiplication on these elements?
Can one easily see from your description that every nonzero element is invertible, or is that
difficult to see? Sketch a proof that your description is correct.

One way of defining K is as the set of fractions 5nu where n ∈ Z and u ∈ R is a unit, together with 0.
By part (b), every element r ∈ R can be written as 5nu for some n ≥ 0 and some unit u by dividing r by
the highest power of 5 dividing r.

Addition and multiplication work in the obvious ways. If 5mu and 5nv are two elements for which m ≤ n
(without loss of generality), 5mu + 5nv = 5m(u + 5n−mv), where the latter addition is addition in R. It is
possible for powers of 5 to appear in the sum u+ 5n−mv if n = m; in this case, factor out the largest power
of 5 dividing u+ v and combine it with 5m. Multiplication is just

(5mu)(5nv) = 5m+n(uv).

Every nonzero element 5nu has an inverse 5−nu−1 since u is a unit in R.
The point is that the only elements not invertible already in R are multiples of 5, and so “inverting 5” is

all that’s necessary to obtain the fraction field.

Question 6
Suppose that R is a commutative ring which contains Z.

(a) Prove that if P ⊂ R is a prime ideal of R, then P ∩ Z is a prime ideal of Z.
Certainly, P ∩ Z is an ideal of Z, since P itself must be closed under multiplication by Z ⊆ R. Suppose

for the sake of contradiction that P is prime but P ∩ Z is not prime in Z. Then, since the ideals of Z are
just nZ and are prime iff n is prime, this implies that P ∩ Z = nZ for a composite n. Pick any nontrivial
factorization n = ab of z. Since a, b ∈ Z ⊆ R as well, it follows that ab ∈ P but a, b 6∈ P ,so P is not a prime
ideal. This is the contradiction we were looking for.

(b) Part (a) defines a function β : {prime ideals of R} → {prime ideals of Z}. Construct an
explicit commutative ring R containing Z such that the image of β is

imβ = {(0), (5), (7), (11), (13), . . .}

i.e. all prime ideals except (2) and (3). Prove (or at least sketch a proof) R has this property.
One such ring is R = Z[ 16 ] = { a

2m3n , a ∈ Z,m, n ∈ N}. This ring certainly contains Z. Also, note that
(p) ⊂ R is still a prime ideal for every p ∈ Z prime which is not 2 and 3, and (0) ⊂ R is as well since R is a
domain. For these, it is easy to check that β(pR) = pZ and β(0R) = 0Z.

Thus, imβ ⊇ {(0), (5), (7), (11), (13), . . .}. It remains to show that (2) and (3) are not in this image.
If (2) ∈ imβ, there is some prime P ⊂ R for which P ∩ Z = 2Z. But then P 3 2, and 1

2 lies in R, so
P 3 1

2 ·2 = 1. Thus P must be the entire ring, contradicting the fact that P ∩Z = 2Z. Similarly, P ∩Z 6= 3Z
for any P ⊂ R.

Question 7
(a) Let F be a field, and let R ⊂ F be a subring with the property that for every x ∈ F , either
x ∈ R or 1

x ∈ R (or both).
Prove that if I and J are two ideals of R, then either I ⊆ J or J ⊆ I.
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Suppose for the sake of contradiction that there exist two ideals I, J neither of which contains the other.
Then, there are elements x ∈ I\J and y ∈ J\I. Since all ideals contain 0, we have x, y 6= 0. Thus, x/y ∈ F ,
and the property given tells us that either x/y or its inverse y/x lies in R. Without loss of generality,
x/y ∈ R. Then, since J is an ideal of R, x = (x/y) · y ∈ J , contradicting the assumption x 6∈ J . Thus one
of I, J contains the other.

(b) Construct a proper subring R ( Q such that for every x ∈ Q, either x ∈ R or 1
x ∈ R (or

both).
Let

R = {a
b
∈ Q, 2 - b},

i.e. the ring of all fractions with odd denominator. Sums and products of such fractions also have odd
denominator, so R is a subring of Q, and it is proper because 1

2 6∈ R.
For any x ∈ Q, x can be written as a/b, where a, b are coprime. Thus, at least one of a and b is odd, so

at least one of a/b and its inverse b/a lies in R, as desired.

Question 8
Given an abelian group A, we say the 10-dual A∨ is the abelian group of homomorphisms
f : A→ Z/10Z under pointwise addition.

We call an abelian group 10-invisible if A∨ = 0, i.e. if there are no nonzero group homo-
morphisms f : A→ Z/10Z.

(a*) Compute A∨ for A = Z, A = Z/6Z, and A = Z/10Z.
As abelian groups, the answers are Z∨ ' Z/10Z, (Z/6Z)∨ ' Z/2Z, and (Z/10Z)∨ ' Z/10Z. These can

be computed using the fact that a homomorphism between cyclic groups is determined by the image of a
generator.

(b) We know from class (or will soon) that every finitely-generated abelian group A is
isomorphic to

A ∼= Zr ⊕ Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ

for a unique r ≥ 0 and a unique sequence of positive integers n1|n2| · · · |nk.
In terms of this description, which finitely-generated abelian groups are 10-invisible?
If there is a nonzero homomorphism f : Gi → Z/10Z from any single factor in a direct sum

⊕
Gi of

abelian groups to Z/10Z, then there is a nonzero homomorphism from the whole sum to Z/10Z, given by
first projecting an element (a1, . . . , an) ∈

⊕
Gi onto the i-th coordinate ai and then applying f .

Thus it suffices to check which cyclic groups Z or Z/nZ are 10-invisible. The answer is exactly the groups
Z/nZ for which (n, 10) = 1, which we show now.

First, if (n, 10) = 1, then any homomorphism f : Z/nZ→ Z/10Z must send 1̄ to an element with order
dividing n. But no nonzero element of the range has order dividing n, so f = 0.

Conversely, if 2|n, there exists a nonzero homomorphism f : Z/nZ → Z/10Z given by sending 1̄ to 5̄.
Similarly, if 5|n, one can simply send 1̄ to 2̄.

As a result, the finitely-generated 10-invisible abelian groups are exactly those finite abelian groups of
the form

Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ

where n1|n2| · · · |nk, and (nk, 10) = 1.
(c) Choose two of the following abelian groups A, and for each, describe as best you can

the abelian group A∨:
(i) A = Q,
We show Q∨ = 0. If not, some f : Q → Z/10Z is nonzero, and sends a/b 7→ n̄ for 10 - n and a/b ∈ Q.

But then it must send a/10b to an element m̄ ∈ Z/10Z for which 10m̄ = n̄, which is absurd.
(ii) A = Z[ 16 ],
We show (Z[ 16 ])∨ ' Z/5Z. In fact, the five homomorphisms are fi, 0 ≤ i ≤ 4, where fi(a/6k) = 2ai

(mod 10). It is easy to check that these maps are homomorphisms - note that 6̄m̄ ≡ m̄ (mod 10) for any
even m. Conversely, to show that these are the only homomorphisms can be reduced to checking that if
f(1) = 0̄ then f = 0.
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Suppose there is a nonzero group homomorphism f for which f(1) = 0̄. Then, 6kf(1/6k) = 0̄, so f(1/6k)
is an element divisible by 5 in Z/10Z, i.e. f(1/6k) ∈ {0̄, 5̄}. But if f(1/6k) = 5̄, then 6f(1/6k+1) ≡ 5
(mod 10), which is absurd since 5 is odd. Thus, f(1/6k) = 0 for all k. It now follows that f(a/6k) = 0 for
all a, k, as desired.

(iii) A = Q/Z,
Any group homomorphism Q/Z→ Z/10Z can be precomposed with the quotient map Q→ Q/Z to give

a homomorphism Q→ Z/10Z. By (i) there are no such nonzero maps, so (Q/Z)∨ = 0 as well.
(iv) A = Z/10∞Z.
We claim that (Z/10∞Z)∨ ' Z/10Z, and the ten maps are given by fi(r) = ir (mod 10) for each of

i = 0, . . . , 9. These are certainly homomorphisms; it remains to check that they are all possible ones.
Note that f(10r) = 10f(r) ≡ 0 (mod 10), so every multiple of 10 is sent to zero in Z/10Z. Also, every

r ∈ Z/10∞Z can be written as r0 + 10r1 where r0 ∈ {0, . . . , 9} is the ones digit and r1 ∈ Z/10∞Z. Thus, for
f to be a group homomorphism,

f(r) = f(r0 + 10r1) = r0f(1) + 10f(r1) = r0f(1).

Thus, f is uniquely determined by f(1), and we’re done.
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