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Script 1: Divisibility in the Integers

Definition 1.1. Let Z be the integers, that is, the unique ordered commutative ring with identity

whose positive elements satisfy the well-ordering property. In other words, the integers satisfy the

following axioms:

El. (Reflexivity, Symmetry, and Transitivity of Equality)
Reflexivity of Equality  If a € Z, then a = a.
Symmetry of Equality  If a,b € Z and a = b, then b = a.
Transitivity of Equality If a,b,c € Z and a =b and b = ¢, then a = c.
E2. (Additive Property of Equality)
Ifa,b,c€ Z and a =b, thena+c=b+ c.

E3. (Multiplicative Property of Equality)

Ifa,b,c€eZ and a=b,thena-c=b-c.
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(Closure of Addition)
Ifa,beZ, then a+b € Z.

(Associativity of Addition)

If a,b,c € Z, then (a+b)+c=a+ (b+c).
(Commutativity of Addition)
Ifa,be Z, thena+b=">+a.

(Additive Identity)

There is an element 0 € Z such that a +0 = a and 0 + a = a for every a € Z.

(Additive Inverses)

For each element a € Z, there is a unique element —a € Z such that a + (—a) = 0 and
(—a)+a=0.

(Closure of Multiplication)

Ifa,b € Z, thena-b € Z.

(Associativity of Multiplication)

If a,b,c € Z, then (a-b)-c=a- (b-c).

(Commutativity of Multiplication)

Ifa,be Z, thena-b=5-a.

(Multiplicative Identity)

There is an element 1 € Z (with 1 # 0) such that a -1 =a and 1-a = a for every a € Z.
(Distributivity of Multiplication over Addition)

If a,b,c€Z,thena-(b+c)=a-b+a-cand (a+b)-c=a-c+b-c.
(Transitivity of Inequality)

If a,b,c € Z and a < b and b < ¢, then a < c.

(Trichotomy)

If a,b € Z, then exactly one of the following is true: a < b, a =¥b, or a > b.
(Additive Property of Inequality)

Ifa,b,c € Z and a < b, then a +c < b+ c.

(Multiplicative Property of Inequality)

Ifa,b,c€Z and a <band ¢ >0, thena-c<b-c.

(Well-Ordering Property)

If S is a non-empty set of positive integers, then S has a least element (that is, there is some
x € S such that if y € S, then x < y).



To prepare for class on Thursday, September 30: Theorem 1.2 through 1.15.

For Theorems 1.2 through 1.6, you may use Axioms E1-E3, A1-A5, M1-M4, and D.

Theorem 1.2 (Cancellation Law for Addition). If a + ¢ = b+ ¢, then a = b.
Theorem 1.3. If a € Z, then —(—a) = a.
Theorem 1.4. If a € Z, then (—1) - a = —a.
Theorem 1.5. If a € Z, then a - 0 = 0.
Theorem 1.6. If a,b € Z, then:

(i) a(—=b) = —ab and (—a)b = —ab

(i) (—a)(~b) = ab

Challenge Problem 1.7. Prove Theorem 1.2 without assuming that additive inverses are unique
(i.e. delete the word ”unique” from Axiom A5). Then use Theorem 1.2 to prove that —a is in fact

unique anyway.
For Theorems 1.8 through 1.12, you may also use Axioms O1-04.
Theorem 1.8. If a > 0, then —a < 0. (And if @ < 0, then —a > 0.)
Theorem 1.9. If a < b and ¢ < 0, then ac > bc.
Theorem 1.10. If a # 0, then a® > 0.
Exercise 1.11. Prove that 1 > 0.
Theorem 1.12. If a > 1 and b > 0, then ab > b.
For Theorem 1.13, you may also use Axiom W.
Theorem 1.13. There is no integer between 0 and 1.
Challenge Problem 1.14. Prove that Axiom W is necessary to prove Theorem 1.13.

Theorem 1.15 (Cancellation for Multiplication). If a # 0 and a-b=a - ¢, then b = c.



Definition 1.16. Let a,b € Z. We say that b divides a (and that b is a divisor of a) and write

bla provided that there is some n € Z such that a = b - n.

Definition 1.17 (Division). If bja (with b # 0) and c is the integer such that a = b - ¢, then we

define ¢ = c.

Exercise 1.18. Show that 7 is well-defined.

Theorem 1.19. If a|b and alc, then a|(b+ ¢) and a|(b — ¢).
Theorem 1.20. If a|b and ¢ € Z, then a|(b- ¢).

Theorem 1.21. If a|b and b|c, then alc.

Exercise 1.22. Prove that if a|b and a|c and s,t € Z, then al|(sb + tc).

Theorem 1.23. If a > 0, b > 0 and a|b, then a < b.

Exercise 1.24. Show that any non-zero integer has a finite number of divisors.
Theorem 1.25. If a|b and b|a, then a = +b.

Theorem 1.26. If m # 0, then a|b if and only if ma|mb.

Theorem 1.27. (The Division Algorithm) If a,b € Z and b > 0, then there exist unique integers

q and 7 such that a =bg+r and 0 < r < b.

Definition 1.28. Let a,b € Z, not both zero. A common divisor of a and b is defined to be any
integer ¢ such that c|a and c|b. The greatest common divisor of a and b is denoted (a,b) and

represents the largest element of the set {c € Z | c|a, c|b}.

Exercise 1.29. Show that (a,b) = (b,a) = (a, —b).

Theorem 1.30. If d|a and d|b, then d|(a,b). (Hint: Do Theorem 1.31 first.)
Theorem 1.31. If d = (a,b), then there exist integers z,y such that d = za + yb.
Theorem 1.32. If m € Z and m > 0, then (ma, mb) = m(a,b).

Theorem 1.33. If d|a and d[b and d > 0, then (4, %) = (af).




Definition 1.34. Two integers a and b are said to be relatively prime if (a,b) = 1.

Theorem 1.35. If (a,m) =1 and (b,m) = 1, then (ab,m) = 1.

Theorem 1.36. If c|ab and (¢,b) = 1, then cla.

Theorem 1.37. (The Euclidean Algorithm)

Let a,b € Z be positive integers. If we apply the Division Algorithm sequentially as follows:

™

TL—2
Tk—1

then ry = (a,b).

Some definitions that will come in handy:

bg1 + 1
r1Q2 + 12

r2q3 + 13

Tk—1qk + Tk

TEqk+1

0<ri<b
O0<ro<m

0<ry<re

0<rp <TE_1

Definition 1.38 (Subtraction). We define the difference a — b to be the sum a + (—b).

Definition 1.39 (Absolute value). If a € Z, we define the absolute value of a by the following

notation and with the following meaning:

la| =

—a

ifa>0

ifa<0



