Problem 1. Given an *R*-module *M* and a subset $S \subset M$, prove that the following are equivalent.

- (A) "Every element of M is an R-linear combination of elements of S": For all $m \in M$ there exist $r_1, \ldots, r_k \in R$ and $s_1, \ldots, s_k \in S$ such that $m = \sum_{i=1}^k r_i s_i$.
- (B) *"Homomorphisms are determined by their value on elements of S":* For any *R*-module *N* and any homomorphisms $f: M \to N$ and $M \to N$,

$$f|_S = g|_S \implies f = g.$$

(C) "Any homomorphism whose image contains S is a surjection": For any R-module L and any homomorphism $h: L \to M$,

$$h(L) \supseteq S \implies h(L) = M.$$

When these equivalent conditions hold, we say that S generates M (or S spans M, or M is generated by S, or M is spanned by S).

Solution. (A) \implies (B): We have homomorphisms $f, g : M \to N$ such that f(s) = g(s) for all $s \in S$, and we want to show that this implies f = g, i.e. f(m) = g(m) for all $m \in M$. So let $m \in M$ be arbitrary. By property (A), there are $r_1, \ldots, r_k \in R, s_1, \ldots, s_k \in S$ such that $m = \sum_{i=1}^k r_i s_i$. By the fact that f and g are module homomorphisms, we have:

$$f(m) = f(r_1s_1 + \dots + r_ks_k)$$

= $f(r_1s_1) + \dots + f(r_ks_k)$
= $r_1f(s_1) + \dots + r_kf(s_k)$
= $r_1g(s_1) + \dots + r_kg(s_k)$
= $g(r_1s_1) + \dots + g(r_ks_k)$
= $g(r_1s_1 + \dots + r_ks_k)$
= $g(m)$

(B) \implies (C): We'll prove the contrapositive, i.e. that if (C) is false, then (B) is false. So suppose that there is an *R*-module *L* and a homomorphism $h: L \to M$ such that $h(L) \supseteq S$, but $h(L) \neq M$. Then we can form the quotient module N := M/h(L), with the quotient homomorphism $\pi: M \to N$. Note that our assumption that $h(L) \subsetneq M$ means that N = M/h(L) is nonzero.

Since $S \subseteq h(L)$, $\pi|_S = 0$, so π and the 0 morphism $0 : M \to N$ agree on S. However, π is not the 0 morphism, because it is surjective and N is nonzero. In particular, for any $m \in M, m \notin h(L), \pi(m) \neq 0$. Thus, (B) is false.

(C) \implies (A): Define \mathbb{R}^S to be the free \mathbb{R} -module with generators labeled by the elements of S, so it consists of formal \mathbb{R} -linear combinations $\sum_{i=1}^{k} r_i e_{s_i}$ with $s_i \in S$, and e_{s_i} basis elements. Define a homomorphism $h: \mathbb{R}^S \to M$ by sending the basis element e_s to s (this is the "universal property of free modules": there is a unique homomorphism from a free \mathbb{R} -module to another \mathbb{R} -module which sends the basis vectors to specified elements). By construction, S is contained in the image (since $h(e_s) = s$). Therefore, Property (C) implies that h is a surjection. This means that for any $m \in M$, there is some $\alpha \in \mathbb{R}^S$ such that $\pi(\alpha) = m$. But an element α of \mathbb{R}^S can be written uniquely in the form $\alpha = \sum_{i=1}^{k} r_i e_{s_i}$ with $r_i \in \mathbb{R}$. Then we have:

$$m = \pi(\alpha) = \pi \left(r_1 e_{s_1} + \dots + r_k e_{s_k} \right) = r_1 \pi(e_{s_1}) + \dots + r_k \pi(e_{s_k}) = r_1 s_1 + \dots + r_k s_k$$

Since m was an arbitrary element of M, this shows that Property (A) is true.

[TC: Another way to think about this proof of (C) \implies (A) is that the image of $h: \mathbb{R}^S \to M$ is exactly the set of linear combinations of elements of S, which (in light of this question) is the submodule of M spanned by S.]

Problem 2. Here is one way to modify the converse direction to obtain an equivalence. (For the solution to the question as written on HW1, just look at (A) \implies (B).)

We say an *R*-module *M* is *finitely generated* if there exists a finite set $S \subset M$ that generates *M*. Prove that the following are equivalent:

- (A) M is finitely generated.
- (B) For any infinite chain $N_1 \subseteq N_2 \subseteq \cdots \subseteq M$ of submodules of M, indexed by an arbitrary well-ordered set I, whose union $\bigcup_{i \in I} N_i = M$ is equal to M, there exists a finite $k \in \mathbb{N}$ such that $N_k = M$.¹
- **Solution.** (A) \implies (B): Let $S = \{m_1, \ldots, m_n\} \subset M$ be a finite generating set. Since $\bigcup_{i \in \mathbb{N}} N_i = M$, for each $i = 1, \ldots, n$ there is a j(i) such that $m_i inN_{j(i)}$. Let j be the maximum of the finitely many j(i). Since $N_{j(i)} \subseteq N_j$ for each i, we must have $m_1, \ldots, m_n \in N_j$. Now, the inclusion $\iota : N_j \hookrightarrow M$ is a homomorphism of R-modules, and by construction we see that $\iota(N_j)$ contains S. Since S generates M, we may apply Property (C) from Problem 1 to conclude that $\iota : N_j \hookrightarrow M$ is surjective. Since N_j is a submodule of M, this means that $N_j = M$.
- (B) \implies (A): We can list *all* of the elements of M as $M = \{m_i\}_{i \in I}$ for some well-ordered set I.² Then, we can define submodules $N_i = \operatorname{span}\{m_j \mid j \leq i\}$, i.e. the set of all sums $\sum_{\ell=1}^k r_\ell m_{j_\ell}$. Since every element of M is m_i for some $i \in I$, we certainly have that $\bigcup_{i \in I} N_i = M$. So we can apply Property (B) and conclude that for some finite $k \in \mathbb{N}$, $N_k = M$. This says that M is the span of m_1, \ldots, m_k , so M is finitely generated.

¹Here, we view N as an "initial segment" of I, i.e. we identify the smallest element of I with 1, the second smallest with 2, etc. This makes sense because of the definition of a well-ordered set. If you'd rather avoid such set-theoretic fuss, feel free to pretend that I = N.

²via the well-ordering theorem, a consequence of the axiom of choice! If M is countable, we can take $I = \mathbf{N}$ and just enumerate the elements.

Problem 3. Prove that Z-modules and abelian groups are the same thing. Specifically, prove that

- (a) Every abelian group A admits one and only one structure of a Z-module (i.e. there is a unique "multiplication map" $\cdot : \mathbb{Z} \times A \to A$ making A into a Z-module).
- (b) For any abelian groups A and B, the set of Z-module homomorphisms f : A → B is exactly the set of abelian group homomorphisms f : A → B.
- (c) Write one sentence summarizing what makes (a) and (b) happen.

Solution. The fanciest way I can think to say this is that Z is the initial object in the category of (not necessarily commutative, but with a unit element) rings, so for any abelian group A, there is a unique ring homomorphism $\mathbb{Z} \to \text{End}(A)$, which is equivalent to a Z-module structure on A. (I suppose slightly more effort is needed to see that (b) holds this way).

The less fancy way to say this is that the axioms of a module require that $1 \cdot a = a, 0 \cdot a = 0$ for all $a \in A$, that $(n+m) \cdot a = n \cdot a + m \cdot a$ for all $n, m \in \mathbb{Z}, a \in A$, and that $(-n) \cdot a = -(n \cdot a)$ for all $n \in \mathbb{Z}, a \in A$. Because every element of \mathbb{Z} is either 0 or a finite sum of 1's and -1's, the axioms pin down exactly what $n \cdot a$ needs to be for any $n \in \mathbb{Z}$ (i.e. $n \cdot a = a + a + \cdots + a$ with a repeated n times for n > 0). This argument shows that A has at most one structure of a \mathbb{Z} -module, and also that since an abelian group homomorphism respects addition and subtraction, it must also respect the \mathbb{Z} -module structure. The only remaining thing to check is that this definition of a \mathbb{Z} -module structure is compatible with multiplication in \mathbb{Z} , i.e. that $(nm) \cdot a = n \cdot (m \cdot a)$. This boils down to the *definition* of multiplication of integers: for n > 0, nm is $m + \cdots + m$, with m repeated n times.

Problem 4. Let R be a ring, and let $\{M_i\}_{i \in I}$ be a family of R-modules indexed by some set I.

Define the direct product $\prod_{i \in I} M_i$ to be the Cartesian product, i.e. the set of families $(m_i)_{i \in I}$ with $m_i \in M_i$. This becomes an *R*-module with the component-wise addition and multiplication:

$$(m_i)_i + (n_i)_i = (m_i + n_i)_i$$
 $r \cdot (m_i)_i = (r \cdot m_i)_i$

Define the direct sum $\bigoplus_{i \in I} M_i$ to be the submodule consisting of elements where $m_i = 0$ for all but finitely many *i*. (You do not have to prove this is a submodule, but you should understand why it is.) Note that when *I* is finite $\bigoplus_{i \in I} M_i$ is the same as $\prod_{i \in I} M_i$, but in general it is a proper submodule.

For readability, let $P = \prod_{i \in I} M_i$ and $S = \bigoplus_{i \in I} M_i$.

(a) Show that

"a map to
$$P = \prod_{i \in I} M_i$$
 is the same as a family of maps to M_i ",

by proving the following. Let $\pi_i : P \to M_i$ be the projection taking $(m_i)_{i \in I} \mapsto m_i$. Prove that for any *R*-module *L*, given homomorphisms $f_i : L \to M_i$ there exists a unique homomorphism $f : L \to P$ such that $f_i = \pi_i \circ f$ for all *i*.

(b) Show that

"a map from $S = \bigoplus_{i \in I} M_i$ is the same as a family of maps from M_i ",

by formulating and proving a separate universal property along similar lines to (a).

Solution. (a) Let L be an R-module and $f_i : L \to M_i$ homomorphisms. We define f be $f : \ell \mapsto (f_i(\ell))_i$. Since $\pi_i((m_i)_i) = m_i$, we have $(\pi_i \circ f)(\ell) = f_i(\ell)$, so $\pi_i \circ f = f_i$. Now, we need to check that f is an R-module homomorphism. So let $\ell_1, \ell_2 \in L$. Then we have:

$$f(\ell_1 + \ell_2) = (f_i(\ell_1 + \ell_2))_i = (f_i(\ell_1) + f_i(\ell_2))_i = (f_i(\ell_1))_i + (f_i(\ell_2))_i$$

Here, we used the definition of addition in $P = \prod_{i \in I} M_i$ as well as the fact that the f_i are homomorphisms. Compatibility with scalar multiplication is similar. Let $\ell \in L, r \in R$. Then we have:

$$f(r\ell) = (f_i(r \cdot \ell))_i = (r \cdot f_i(\ell))_i = r \cdot (f_i(\ell))_i$$

Again, we use the fact that the f_i are *R*-module homomorphisms and the definition of scalar multiplication in *P*.

Finally, we see that f is unique because the condition that $\pi_i \circ f(\ell) = f_i(\ell)$ for all $\ell \in L, i \in I$ implies that the *i*-th coordinate of $f(\ell)$ is $f_i(\ell)$. Since an element of $P = \prod_i M_i$ is determined by its coordinates, we see that this condition uniquely specifies what $f(\ell)$ must be.

(b) Mimicking the universal property for direct product, we formulate the universal property for direct sum as follows, via the canonical inclusions j_i : M_i → S which send m ∈ M_i to the element with *i*-coordinate m and all other coordinates 0: for any R-module L and any family of R-module homomorphisms f_i : M_i → L, there is a unique R-module homomorphism f : S → L such that f ∘ j_i = f_i.

Let $s \in S$ be arbitrary. By the definition of S, we know that all but finitely many of the coordinates of s are 0. Let i_1, \ldots, i_k be the non-zero coordinates. Then, we have:

$$s = j_{i_1}(s_{i_1}) + \dots + j_{i_k}(s_{i_k})$$

The notation may make this statement seem harder than it is, so let's look at a quick example with $I = \{1, 2, 3\}$. Then $S = M_1 \times M_2 \times M_3 = M_1 \oplus M_2 \oplus M_3$ is the set of triples $s = (m_1, m_2, m_3)$ with $m_i \in M_i$. Given such a triple, we have:

$$s = (m_1, m_2, m_3) = (m_1, 0, 0) + (0, m_2, 0) + (0, 0, m_3) = j_1(m_1) + j_2(m_2) + j_3(m_3)$$

The point of the requirement that all but finitely many coordinates are 0 is that it ensures that even when I is infinite, such a decomposition always works. We could extend our previous example so that $I = \mathbf{N}$, but our particular s satisfies $s_i = 0$ for i > 3, so

$$s = (m_1, m_2, m_3, 0, 0, 0, \ldots)$$

= $(m_1, 0, 0, 0, \ldots) + (0, m_2, 0, 0, \ldots) + (0, 0, m_3, 0, \ldots)$
= $j_1(m_1) + j_2(m_2) + j_3(m_3)$

Now, we can define f by

$$f(j_{i_1}(s_{i_1}) + \dots + j_{i_k}(s_{i_k})) = f_{i_1}(s_{i_1}) + \dots + f_{i_k}(s_{i_k})$$

This is well-defined since the sum is finite and any particular s can be written *uniquely* as a sum of (appropriate j_i 's of) its non-zero coordinates. Another way to write this, which makes it a bit more obvious that the definition does not depend on any arbitrary choices, is:

$$f\left((m_i)_i\right) = \sum_{i \in I} f_i(m_i)$$

since $(m_i)_i \in S$, the sum is guaranteed to have only finitely many non-zero terms.

Now, let's verify that f is an R-module homomorphism, remembering that the operations on S are defined in terms of the operations on P:

$$f\left((m_i)_i + (n_i)_i\right) = f\left((m_i + n_i)_i\right)$$
$$= \sum_{i \in I} f_i(m_i + n_i)$$
$$= \sum_{i \in I} f_i(m_i) + f_i(n_i)$$
$$= \left(\sum_{i \in I} f_i(m_i)\right) + \left(\sum_{i \in I} f_i(n_i)\right)$$
$$= f\left((m_i)_i\right) + f\left((n_i)_i\right)$$

$$f(r \cdot (m_i)_i) = f((r \cdot m_i)_i)$$
$$= \sum_{i \in I} f_i(r \cdot m_i)$$
$$= \sum_{i \in I} r \cdot f_i(m_i)$$
$$= r \cdot \left(\sum_{i \in I} f_i(m_i)\right)$$
$$= r \cdot f((m_i)_i)$$

Since all of the sums are finite, we can manipulate them without worry!

Finally, f is uniquely determined by the condition that $f \circ j_i = f_i$: this means that $f(j_i(m_i)) = f_i(m_i)$, and since f is required to be a module homomorphism,

$$f\left(\sum_{\ell=1}^{k} j_{i_{\ell}}(m_{i_{\ell}})\right) = \sum_{\ell=1}^{k} f\left(j_{i_{\ell}}(m_{i_{\ell}})\right) = \sum_{\ell=1}^{k} f_{i_{\ell}}(m_{i_{\ell}}) = \sum_{i \in I} f_{i}(m_{i})$$

(the last equality holds because the only non-zero coordinates of $\sum_{\ell=1}^{k} j_{i_{\ell}}(m_{i_{\ell}})$ are the i_{ℓ}). Since any element of S can be written in such a form, we see that the only possible definition of f is the one that we gave.