Math 210A, Fall 2017
HW 1 Solutions
Written by Dan Dore
(If you find any errors, please email ddore@ stanford.edu)

Problem 1. Given an R-module M and a subset $S \subset M$, prove that the following are equivalent.
(A) "Every element of M is an R-linear combination of elements of S ":

For all $m \in M$ there exist $r_{1}, \ldots, r_{k} \in R$ and $s_{1}, \ldots, s_{k} \in S$ such that $m=\sum_{i=1}^{k} r_{i} s_{i}$.
(B) "Homomorphisms are determined by their value on elements of S ":

For any R-module N and any homomorphisms $f: M \rightarrow N$ and $M \rightarrow N$,

$$
\left.f\right|_{S}=\left.g\right|_{S} \Longrightarrow f=g
$$

(C) "Any homomorphism whose image contains S is a surjection":

For any R-module L and any homomorphism $h: L \rightarrow M$,

$$
h(L) \supseteq S \Longrightarrow h(L)=M .
$$

When these equivalent conditions hold, we say that S generates M (or S spans M, or M is generated by S, or M is spanned by S).

Solution. (A) $\Longrightarrow(B):$ We have homomorphisms $f, g: M \rightarrow N$ such that $f(s)=g(s)$ for all $s \in S$, and we want to show that this implies $f=g$, i.e. $f(m)=g(m)$ for all $m \in M$. So let $m \in M$ be arbitrary. By property (A), there are $r_{1}, \ldots, r_{k} \in R, s_{1}, \ldots, s_{k} \in S$ such that $m=\sum_{i=1}^{k} r_{i} s_{i}$. By the fact that f and g are module homomorphisms, we have:

$$
\begin{aligned}
f(m) & =f\left(r_{1} s_{1}+\cdots+r_{k} s_{k}\right) \\
& =f\left(r_{1} s_{1}\right)+\cdots+f\left(r_{k} s_{k}\right) \\
& =r_{1} f\left(s_{1}\right)+\cdots+r_{k} f\left(s_{k}\right) \\
& =r_{1} g\left(s_{1}\right)+\cdots+r_{k} g\left(s_{k}\right) \\
& =g\left(r_{1} s_{1}\right)+\cdots+g\left(r_{k} s_{k}\right) \\
& =g\left(r_{1} s_{1}+\cdots+r_{k} s_{k}\right) \\
& =g(m)
\end{aligned}
$$

$(\mathrm{B}) \Longrightarrow(\mathrm{C}):$ We'll prove the contrapositive, i.e. that if (C) is false, then (B) is false. So suppose that there is an R-module L and a homomorphism $h: L \rightarrow M$ such that $h(L) \supseteq S$, but $h(L) \neq M$. Then we can form the quotient module $N:=M / h(L)$, with the quotient homomorphism $\pi: M \rightarrow N$. Note that our assumption that $h(L) \subsetneq M$ means that $N=$ $M / h(L)$ is nonzero.
Since $S \subseteq h(L),\left.\pi\right|_{S}=0$, so π and the 0 morphism $0: M \rightarrow N$ agree on S. However, π is not the 0 morphism, because it is surjective and N is nonzero. In particular, for any $m \in M, m \notin h(L), \pi(m) \neq 0$. Thus, (B) is false.
$(\mathrm{C}) \Longrightarrow(\mathrm{A}):$ Define R^{S} to be the free R-module with generators labeled by the elements of S, so it consists of formal R-linear combinations $\sum_{i=1}^{k} r_{i} e_{s_{i}}$ with $s_{i} \in S$, and $e_{s_{i}}$ basis elements. Define a homomorphism $h: R^{S} \rightarrow M$ by sending the basis element e_{s} to s (this is the "universal property of free modules": there is a unique homomorphism from a free R-module to another R-module which sends the basis vectors to specified elements). By construction, S is contained in the image (since $h\left(e_{s}\right)=s$). Therefore, Property (C) implies that h is a surjection. This means that for any $m \in M$, there is some $\alpha \in R^{S}$ such that $\pi(\alpha)=m$. But an element α of R^{S} can be written uniquely in the form $\alpha=\sum_{i=1}^{k} r_{i} e_{s_{i}}$ with $r_{i} \in R$. Then we have:

$$
m=\pi(\alpha)=\pi\left(r_{1} e_{s_{1}}+\cdots+r_{k} e_{s_{k}}\right)=r_{1} \pi\left(e_{s_{1}}\right)+\cdots r_{k} \pi\left(e_{s_{k}}\right)=r_{1} s_{1}+\cdots+r_{k} s_{k}
$$

Since m was an arbitrary element of M, this shows that Property (A) is true.
[TC: Another way to think about this proof of $(\mathrm{C}) \Longrightarrow(\mathrm{A})$ is that the image of $h: R^{S} \rightarrow M$ is exactly the set of linear combinations of elements of S, which (in light of this question) is the submodule of M spanned by S.]

Problem 2. Here is one way to modify the converse direction to obtain an equivalence. (For the solution to the question as written on HW1, just look at $(\mathrm{A}) \Longrightarrow$ (B).)

We say an R-module M is finitely generated if there exists a finite set $S \subset M$ that generates M. Prove that the following are equivalent:
(A) M is finitely generated.
(B) For any infinite chain $N_{1} \subseteq N_{2} \subseteq \cdots \subseteq M$ of submodules of M, indexed by an arbitrary well-ordered set I, whose union $\cup_{i \in I} N_{i}=M$ is equal to M, there exists a finite $k \in \mathbf{N}$ such that $N_{k}=M$ П

Solution. (A) \Longrightarrow (B): Let $S=\left\{m_{1}, \ldots, m_{n}\right\} \subset M$ be a finite generating set. Since $\cup_{i \in \mathbb{N}} N_{i}=$ M, for each $i=1, \ldots, n$ there is a $j(i)$ such that m_{i} in $N_{j(i)}$. Let j be the maximum of the finitely many $j(i)$. Since $N_{j(i)} \subseteq N_{j}$ for each i, we must have $m_{1}, \ldots, m_{n} \in N_{j}$. Now, the inclusion $\iota: N_{j} \longleftrightarrow M$ is a homomorphism of R-modules, and by construction we see that $\iota\left(N_{j}\right)$ contains S. Since S generates M, we may apply Property (C) from Problem 1 to conclude that $\iota: N_{j} \longleftrightarrow M$ is surjective. Since N_{j} is a submodule of M, this means that $N_{j}=M$.
(B) \Longrightarrow (A): We can list all of the elements of M as $M=\left\{m_{i}\right\}_{i \in I}$ for some well-ordered set $I \|^{2}$ Then, we can define submodules $N_{i}=\operatorname{span}\left\{m_{j} \mid j \leq i\right\}$, i.e. the set of all sums $\sum_{\ell=1}^{k} r_{\ell} m_{j_{\ell}}$. Since every element of M is m_{i} for some $i \in I$, we certainly have that $\cup_{i \in I} N_{i}=M$. So we can apply Property (B) and conclude that for some finite $k \in \mathbf{N}, N_{k}=M$. This says that M is the span of m_{1}, \ldots, m_{k}, so M is finitely generated.

[^0]Problem 3. Prove that Z-modules and abelian groups are the same thing. Specifically, prove that
(a) Every abelian group A admits one and only one structure of a Z-module (i.e. there is a unique "multiplication map" $\cdot: \mathbf{Z} \times A \rightarrow A$ making A into a \mathbf{Z}-module).
(b) For any abelian groups A and B, the set of Z-module homomorphisms $f: A \rightarrow B$ is exactly the set of abelian group homomorphisms $f: A \rightarrow B$.
(c) Write one sentence summarizing what makes (a) and (b) happen.

Solution. The fanciest way I can think to say this is that \mathbf{Z} is the initial object in the category of (not necessarily commutative, but with a unit element) rings, so for any abelian group A, there is a unique ring homomorphism $\mathbf{Z} \rightarrow \operatorname{End}(A)$, which is equivalent to a \mathbf{Z}-module structure on A. (I suppose slightly more effort is needed to see that (b) holds this way).

The less fancy way to say this is that the axioms of a module require that $1 \cdot a=a, 0 \cdot a=0$ for all $a \in A$, that $(n+m) \cdot a=n \cdot a+m \cdot a$ for all $n, m \in \mathbf{Z}, a \in A$, and that $(-n) \cdot a=-(n \cdot a)$ for all $n \in \mathbf{Z}, a \in A$. Because every element of \mathbf{Z} is either 0 or a finite sum of 1 's and -1 's, the axioms pin down exactly what $n \cdot a$ needs to be for any $n \in \mathbf{Z}$ (i.e. $n \cdot a=a+a+\cdots+a$ with a repeated n times for $n>0$). This argument shows that A has at most one structure of a Z-module, and also that since an abelian group homomorphism respects addition and subtraction, it must also respect the Z-module structure. The only remaining thing to check is that this definition of a Z-module structure is compatible with multiplication in \mathbf{Z}, i.e. that $(n m) \cdot a=n \cdot(m \cdot a)$. This boils down to the definition of multiplication of integers: for $n>0, n m$ is $m+\cdot+m$, with m repeated n times.

Problem 4. Let R be a ring, and let $\left\{M_{i}\right\}_{i \in I}$ be a family of R-modules indexed by some set I.
Define the direct product $\prod_{i \in I} M_{i}$ to be the Cartesian product, i.e. the set of families $\left(m_{i}\right)_{i \in I}$ with $m_{i} \in M_{i}$. This becomes an R-module with the component-wise addition and multiplication:

$$
\left(m_{i}\right)_{i}+\left(n_{i}\right)_{i}=\left(m_{i}+n_{i}\right)_{i} \quad r \cdot\left(m_{i}\right)_{i}=\left(r \cdot m_{i}\right)_{i}
$$

Define the direct sum $\oplus_{i \in I} M_{i}$ to be the submodule consisting of elements where $m_{i}=0$ for all but finitely many i. (You do not have to prove this is a submodule, but you should understand why it is.) Note that when I is finite $\oplus_{i \in I} M_{i}$ is the same as $\prod_{i \in I} M_{i}$, but in general it is a proper submodule.

For readability, let $P=\prod_{i \in I} M_{i}$ and $S=\oplus_{i \in I} M_{i}$.
(a) Show that
"a map to $P=\prod_{i \in I} M_{i}$ is the same as a family of maps to M_{i} ",
by proving the following. Let $\pi_{i}: P \rightarrow M_{i}$ be the projection taking $\left(m_{i}\right)_{i \in I} \mapsto m_{i}$. Prove that for any R-module L, given homomorphisms $f_{i}: L \rightarrow M_{i}$ there exists a unique homomorphism $f: L \rightarrow P$ such that $f_{i}=\pi_{i} \circ f$ for all i.
(b) Show that
"a map from $S=\oplus_{i \in I} M_{i}$ is the same as a family of maps from M_{i} ",
by formulating and proving a separate universal property along similar lines to (a).
Solution. (a) Let L be an R-module and $f_{i}: L \rightarrow M_{i}$ homomorphisms. We define f be $f: \ell \mapsto\left(f_{i}(\ell)\right)_{i}$. Since $\pi_{i}\left(\left(m_{i}\right)_{i}\right)=m_{i}$, we have $\left(\pi_{i} \circ f\right)(\ell)=f_{i}(\ell)$, so $\pi_{i} \circ f=f_{i}$. Now, we need to check that f is an R-module homomorphism. So let $\ell_{1}, \ell_{2} \in L$. Then we have:

$$
f\left(\ell_{1}+\ell_{2}\right)=\left(f_{i}\left(\ell_{1}+\ell_{2}\right)\right)_{i}=\left(f_{i}\left(\ell_{1}\right)+f_{i}\left(\ell_{2}\right)\right)_{i}=\left(f_{i}\left(\ell_{1}\right)\right)_{i}+\left(f_{i}\left(\ell_{2}\right)\right)_{i}
$$

Here, we used the definition of addition in $P=\prod_{i \in I} M_{i}$ as well as the fact that the f_{i} are homomorphisms. Compatibility with scalar multiplication is similar. Let $\ell \in L, r \in R$. Then we have:

$$
f(r \ell)=\left(f_{i}(r \cdot \ell)\right)_{i}=\left(r \cdot f_{i}(\ell)\right)_{i}=r \cdot\left(f_{i}(\ell)\right)_{i}
$$

Again, we use the fact that the f_{i} are R-module homomorphisms and the definition of scalar multiplication in P.
Finally, we see that f is unique because the condition that $\pi_{i} \circ f(\ell)=f_{i}(\ell)$ for all $\ell \in$ $L, i \in I$ implies that the i-th coordinate of $f(\ell)$ is $f_{i}(\ell)$. Since an element of $P=\prod_{i} M_{i}$ is determined by its coordinates, we see that this condition uniquely specifies what $f(\ell)$ must be.
(b) Mimicking the universal property for direct product, we formulate the universal property for direct sum as follows, via the canonical inclusions $j_{i}: M_{i} \rightarrow S$ which send $m \in M_{i}$ to the element with i-coordinate m and all other coordinates 0 : for any R-module L and any family of R-module homomorphisms $f_{i}: M_{i} \rightarrow L$, there is a unique R-module homomorphism $f: S \rightarrow L$ such that $f \circ j_{i}=f_{i}$.
Let $s \in S$ be arbitrary. By the definition of S, we know that all but finitely many of the coordinates of s are 0 . Let i_{1}, \ldots, i_{k} be the non-zero coordinates. Then, we have:

$$
s=j_{i_{1}}\left(s_{i_{1}}\right)+\cdots+j_{i_{k}}\left(s_{i_{k}}\right)
$$

The notation may make this statement seem harder than it is, so let's look at a quick example with $I=\{1,2,3\}$. Then $S=M_{1} \times M_{2} \times M_{3}=M_{1} \oplus M_{2} \oplus M_{3}$ is the set of triples $s=\left(m_{1}, m_{2}, m_{3}\right)$ with $m_{i} \in M_{i}$. Given such a triple, we have:

$$
s=\left(m_{1}, m_{2}, m_{3}\right)=\left(m_{1}, 0,0\right)+\left(0, m_{2}, 0\right)+\left(0,0, m_{3}\right)=j_{1}\left(m_{1}\right)+j_{2}\left(m_{2}\right)+j_{3}\left(m_{3}\right)
$$

The point of the requirement that all but finitely many coordinates are 0 is that it ensures that even when I is infinite, such a decomposition always works. We could extend our previous example so that $I=\mathbf{N}$, but our particular s satisfies $s_{i}=0$ for $i>3$, so

$$
\begin{aligned}
s & =\left(m_{1}, m_{2}, m_{3}, 0,0,0, \ldots\right) \\
& =\left(m_{1}, 0,0,0, \ldots\right)+\left(0, m_{2}, 0,0, \ldots\right)+\left(0,0, m_{3}, 0, \ldots\right) \\
& =j_{1}\left(m_{1}\right)+j_{2}\left(m_{2}\right)+j_{3}\left(m_{3}\right)
\end{aligned}
$$

Now, we can define f by

$$
f\left(j_{i_{1}}\left(s_{i_{1}}\right)+\cdots+j_{i_{k}}\left(s_{i_{k}}\right)\right)=f_{i_{1}}\left(s_{i_{1}}\right)+\cdots+f_{i_{k}}\left(s_{i_{k}}\right)
$$

This is well-defined since the sum is finite and any particular s can be written uniquely as a sum of (appropriate j_{i} 's of) its non-zero coordinates. Another way to write this, which makes it a bit more obvious that the definition does not depend on any arbitrary choices, is:

$$
f\left(\left(m_{i}\right)_{i}\right)=\sum_{i \in I} f_{i}\left(m_{i}\right)
$$

since $\left(m_{i}\right)_{i} \in S$, the sum is guaranteed to have only finitely many non-zero terms.
Now, let's verify that f is an R-module homomorphism, remembering that the operations on S are defined in terms of the operations on P :

$$
\begin{aligned}
f\left(\left(m_{i}\right)_{i}+\left(n_{i}\right)_{i}\right) & =f\left(\left(m_{i}+n_{i}\right)_{i}\right) \\
& =\sum_{i \in I} f_{i}\left(m_{i}+n_{i}\right) \\
& =\sum_{i \in I} f_{i}\left(m_{i}\right)+f_{i}\left(n_{i}\right) \\
& =\left(\sum_{i \in I} f_{i}\left(m_{i}\right)\right)+\left(\sum_{i \in I} f_{i}\left(n_{i}\right)\right) \\
& =f\left(\left(m_{i}\right)_{i}\right)+f\left(\left(n_{i}\right)_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
f\left(r \cdot\left(m_{i}\right)_{i}\right) & =f\left(\left(r \cdot m_{i}\right)_{i}\right) \\
& =\sum_{i \in I} f_{i}\left(r \cdot m_{i}\right) \\
& =\sum_{i \in I} r \cdot f_{i}\left(m_{i}\right) \\
& =r \cdot\left(\sum_{i \in I} f_{i}\left(m_{i}\right)\right) \\
& =r \cdot f\left(\left(m_{i}\right)_{i}\right)
\end{aligned}
$$

Since all of the sums are finite, we can manipulate them without worry!
Finally, f is uniquely determined by the condition that $f \circ j_{i}=f_{i}$: this means that $f\left(j_{i}\left(m_{i}\right)\right)=$ $f_{i}\left(m_{i}\right)$, and since f is required to be a module homomorphism,

$$
f\left(\sum_{\ell=1}^{k} j_{i_{\ell}}\left(m_{i_{\ell}}\right)\right)=\sum_{\ell=1}^{k} f\left(j_{i_{\ell}}\left(m_{i_{\ell}}\right)\right)=\sum_{\ell=1}^{k} f_{i_{\ell}}\left(m_{i_{\ell}}\right)=\sum_{i \in I} f_{i}\left(m_{i}\right)
$$

(the last equality holds because the only non-zero coordinates of $\sum_{\ell=1}^{k} j_{i_{\ell}}\left(m_{i_{\ell}}\right)$ are the $\left.i_{\ell}\right)$. Since any element of S can be written in such a form, we see that the only possible definition of f is the one that we gave.

[^0]: ${ }^{1}$ Here, we view \mathbf{N} as an "initial segment" of I, i.e. we identify the smallest element of I with 1 , the second smallest with 2 , etc. This makes sense because of the definition of a well-ordered set. If you'd rather avoid such set-theoretic fuss, feel free to pretend that $I=\mathbf{N}$.
 ${ }^{2}$ via the well-ordering theorem, a consequence of the axiom of choice! If M is countable, we can take $I=\mathbf{N}$ and just enumerate the elements.

