MATH 210A, FALL 2017
HW 1 SOLUTIONS
WRITTEN BY DAN DORE
(If you find any errors, please email |[ddore @stanford.edu))

Problem 1. Given an R-module M and a subset S C M, prove that the following are equivalent.

(A) “Every element of M is an R-linear combination of elements of S”:

For all m € M there existr,...,r; € Rand sq1,...,s5; € S such that m = Zle 7 S;.

(B) “Homomorphisms are determined by their value on elements of S

For any R-module N and any homomorphisms f : M — N and M — N,
fls=gls = f=g

(C) “Any homomorphism whose image contains S is a surjection”:

For any R-module L and any homomorphism h : L — M,
hML)2S = h(L)= M.

When these equivalent conditions hold, we say that S generates M (or S spans M, or M is
generated by S, or M is spanned by S).

Solution. (A) — (B): We have homomorphisms f,g : M — N such that f(s) = g(s) for all
s € S, and we want to show that this implies f = g, i.e. f(m) = g(m) forallm € M. So
let m € M be arbitrary. By property (A), there are ry,...,7r, € R, sq1,...,S, € S such that
m = Zle r;S;. By the fact that f and g are module homomorphisms, we have:

f(m) = f(ris1 4+ 4+ risg)
)+ e+ fresk)
=rif(s1) +- +rif(se)
=r1g(s1) + -+ 1rig(sk)
= g(ris1) + -+ + g(rsk)
=g(risi+ -+ 1eSk)
= g(m)
(B) = (C): We’ll prove the contrapositive, i.e. that if (C') is false, then (B) is false. So
suppose that there is an R-module L and a homomorphism & : L. — M such that h(L) O S,
but h(L) # M. Then we can form the quotient module N := M /h(L), with the quotient

homomorphism 7 : M — N. Note that our assumption that h(L) C M means that N =
M /h(L) is nonzero.

Since S C h(L), m|s = 0, so 7 and the 0 morphism 0 : M — N agree on S. However,
7 1s not the 0 morphism, because it is surjective and N is nonzero. In particular, for any
m € M,m & h(L), m(m) # 0. Thus, (B) is false.
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(C) = (A): Define R® to be the free R-module with generators labeled by the elements of
S, so it consists of formal R-linear combinations Zle ries, with s; € S, and e, basis
elements. Define a homomorphism h : R® — M by sending the basis element e, to s (this
is the “universal property of free modules™: there is a unique homomorphism from a free
R-module to another R-module which sends the basis vectors to specified elements). By
construction, S is contained in the image (since h(e;) = s). Therefore, Property (C) implies
that & is a surjection. This means that for any m € M, there is some o € R® such that
7(a) = m. But an element o of R can be written uniquely in the form o = Zle ries, with
r; € R. Then we have:

m = 7T(CY) =T (7”1631 R +Tkesk) = 7“17'((681) + ...rkﬂ-(esk> =118, + -+ TRSk

Since m was an arbitrary element of M, this shows that Property (A) is true.

[TC: Another way to think about this proof of (C) = (A) is that the image of h: R® — M
is exactly the set of linear combinations of elements of .S, which (in light of this question) is
the submodule of M spanned by S']



Problem 2. Here is one way to modify the converse direction to obtain an equivalence. (For the
solution to the question as written on HW1, just look at (A) = (B).)

We say an R-module M is finitely generated if there exists a finite set S C M that generates
M. Prove that the following are equivalent:

(A) M is finitely generated.

(B) For any infinite chain Ny C N, C --- C M of submodules of M, indexed by an arbitrary
well-ordered set /, whose union U;c; N; = M is equal to M, there exists a finite £ € N such
that N, = M[T]

Solution. (A) — (B): LetS = {my,...,m,} C M be afinite generating set. Since U;enV; =
M, foreach i = 1,...,n there is a j(¢) such that m; inN;(;). Let j be the maximum of the
finitely many j(i). Since N;; C Nj for each ¢, we must have m4,...,m, € N;. Now,
the inclusion ¢ : N; —— M is a homomorphism of [2-modules, and by construction we see
that +(IV;) contains S. Since S generates M, we may apply Property (C) from Problem 1 to
conclude that ¢ : N; —— M is surjective. Since N; is a submodule of A/, this means that
N; =M.

(B) = (A): We can list all of the elements of M as M = {m,};c; for some well-ordered set / E]
Then, we can define submodules N; = span{m; | j < i}, i.e. the set of all sums z];:l rems,.
Since every element of M is m; for some ¢ € I, we certainly have that U;c; N; = M. So we
can apply Property (B) and conclude that for some finite k € N, N, = M. This says that M
is the span of my, ..., my, so M is finitely generated.

'Here, we view N as an “initial segment” of I, i.e. we identify the smallest element of I with 1, the second smallest
with 2, etc. This makes sense because of the definition of a well-ordered set. If you’d rather avoid such set-theoretic
fuss, feel free to pretend that I = N.

2yia the well-ordering theorem, a consequence of the axiom of choice! If M is countable, we can take I = N and
just enumerate the elements.



Problem 3. Prove that Z-modules and abelian groups are the same thing. Specifically, prove that

(a) Every abelian group A admits one and only one structure of a Z-module (i.e. there is a
unique “multiplication map” - : Z x A — A making A into a Z-module).

(b) For any abelian groups A and B, the set of Z-module homomorphisms f : A — B is exactly
the set of abelian group homomorphisms f : A — B.

(c) Write one sentence summarizing what makes (a) and (b) happen.

Solution. The fanciest way I can think to say this is that Z is the initial object in the category of
(not necessarily commutative, but with a unit element) rings, so for any abelian group A, there is
a unique ring homomorphism Z — End(A), which is equivalent to a Z-module structure on A. (I
suppose slightly more effort is needed to see that (b) holds this way).

The less fancy way to say this is that the axioms of a module require that 1-a = a,0-a = 0 for
alla € A, that (n+m)-a =n-a+m-aforalln,m € Z,a € A, and that (—n)-a = —(n-a) for all
n € Z,a € A. Because every element of Z is either 0 or a finite sum of 1’s and —1’s, the axioms
pin down exactly what n - a needs to be foranyn € Z (i.e. n-a = a+a+ - - - + a with a repeated
n times for n > 0). This argument shows that A has at most one structure of a Z-module, and also
that since an abelian group homomorphism respects addition and subtraction, it must also respect
the Z-module structure. The only remaining thing to check is that this definition of a Z-module
structure is compatible with multiplication in Z, i.e. that (nm) -a = n - (m - a). This boils down to
the definition of multiplication of integers: for n > 0, nm is m + - + m, with m repeated n times.



Problem 4. Let R be a ring, and let { M, };c; be a family of R-modules indexed by some set 1.
Define the direct product [],.; M; to be the Cartesian product, i.e. the set of families (12;)ics
with m; € M;. This becomes an R-module with the component-wise addition and multiplication:

(m4)i + (n)i = (M +n4); re(my) = (- my);

Define the direct sum @;c; M; to be the submodule consisting of elements where m; = 0 for
all but finitely many ¢. (You do not have to prove this is a submodule, but you should understand
why it is.) Note that when I is finite ®;c;M; is the same as [ [,., M;, but in general it is a proper
submodule.

For readability, let P = [],., M; and S = @i M;.

(a) Show that

“amapto P = H M, is the same as a family of maps to M,”,
iel
by proving the following. Let m; : P — M, be the projection taking (m;)c; — m;.

Prove that for any R-module L, given homomorphisms f; : L — M, there exists a unique
homomorphism f : L — P such that f; = m; o f for all 7.

(b) Show that
“amap from S = P, M; is the same as a family of maps from M;”,

by formulating and proving a separate universal property along similar lines to (a).

Solution. (a) Let L be an R-module and f; : L — M; homomorphisms. We define f be
f 0 (f;(0));. Since m;((m;);) = m;, we have (m; o f)(¢) = f;(£), som; o f = f;. Now,
we need to check that f is an R-module homomorphism. So let /1, ¢; € L. Then we have:

Ul +0a) = (filly + £2))i = (fillr) + filla))i = (fi(€1))i + (fi(la))s

Here, we used the definition of addition in P = Hie ; M; as well as the fact that the f; are
homomorphisms. Compatibility with scalar multiplication is similar. Let ¢/ € L.,r € R.
Then we have:

frt) = (filr-0)i = (r- fi(0))i = 7 - (fi(€))s

Again, we use the fact that the f; are R-module homomorphisms and the definition of scalar
multiplication in P.

Finally, we see that f is unique because the condition that 7; o f(¢) = f;(¢) for all £ €
L,i € I implies that the i-th coordinate of f(¢) is f;(¢). Since an element of P = [[, M, is
determined by its coordinates, we see that this condition uniquely specifies what f(¢) must
be.



(b) Mimicking the universal property for direct product, we formulate the universal property for
direct sum as follows, via the canonical inclusions j; : M; — S which send m € M, to the
element with i-coordinate m and all other coordinates 0: for any R-module L and any family
of R-module homomorphisms f; : M; — L, there is a unique R-module homomorphism
f S — Lsuchthat foj;, = f;.

Let s € S be arbitrary. By the definition of S, we know that all but finitely many of the
coordinates of s are 0. Let 71, . .., 75 be the non-zero coordinates. Then, we have:

§ = Juy(si) + -+ Jir(s3,)
The notation may make this statement seem harder than it is, so let’s look at a quick example
with [ = {1,2,3}. Then S = M; x My x M3 = M; & M, @ Mj is the set of triples
s = (my, mg, mg) with m; € M;. Given such a triple, we have:
s = (m1, ma, m3) = (my,0,0) + (0,mz,0) + (0,0,m3) = ji(m1) + ja(mz) + jz(ms)

The point of the requirement that all but finitely many coordinates are 0 is that it ensures that
even when [ is infinite, such a decomposition always works. We could extend our previous
example so that I = NN, but our particular s satisfies s; = 0 for¢ > 3, so

s = (my, ma,m3,0,0,0,...)
= (m1,0,0,0,...) + (0,m2,0,0,...) + (0,0,ms3,0,...)
= Jji(ma) + ja(m2) + js(ms)
Now, we can define f by

fGan(si) + o+ i (si)) = fir(si) + -+ fir(si)
This is well-defined since the sum is finite and any particular s can be written uniquely as

a sum of (appropriate j;’s of) its non-zero coordinates. Another way to write this, which
makes it a bit more obvious that the definition does not depend on any arbitrary choices, is:

iel
since (m;); € S, the sum is guaranteed to have only finitely many non-zero terms.

Now, let’s verify that f is an R-module homomorphism, remembering that the operations on
S are defined in terms of the operations on P:

f ((mz)z + (nz)z) =f ((mz + nz)z)
= Z fi(m; +ny)

:Zfi(mi)+fi<ni)
= Zﬁ(mn + Zﬂ(m)

=f ((mz)z) +f ((nz)z)



Since all of the sums are finite, we can manipulate them without worry!
Finally, f is uniquely determined by the condition that foj; = f;: this means that f(j;(m;)) =
fi(m;), and since f is required to be a module homomorphism,

k

f Zjiz(mie) = Zf (]w(mle)) = Zfie(mie) = Zfz(m%>
(=1 =1

(=1 iel

(the last equality holds because the only non-zero coordinates of E'Lf:l Ji,(my,) are the iy).
Since any element of S can be written in such a form, we see that the only possible definition
of f is the one that we gave.



