Math 210A: Modern Algebra
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/210A-F17

 Homework 1

 Homework 1}

Due Saturday, September 30 by 5:00pm

Do all the unstarred questions below. (Starred questions are important and you really should do them, but they will not be collected or graded.)

Reminder: when we just say " R-module" we mean "left R-module", and we allow R to not be commutative. But in these questions, it doesn't really matter whether R is commutative or not.

The material needed for this assignment (R-modules, homomorphisms, submodules) is covered in: Lang p117; or Atiyah-Macdonald pp17-18; or Dummit-Foote p337.

Question 1. Given an R-module M and a subset $S \subset M$, prove that the following are equivalent.
(A) "Every element of M is an R-linear combination of elements of S ":

For all $m \in M$ there exist $r_{1}, \ldots, r_{k} \in R$ and $s_{1}, \ldots, s_{k} \in S$ such that $m=\sum_{i=1}^{k} r_{i} s_{i}$.
(B) "Homomorphisms are determined by their value on $S "$:

For any R-module N and any homomorphisms $f: M \rightarrow N$ and $g: M \rightarrow N$,

$$
\left.f\right|_{S}=\left.g\right|_{S} \quad \Longrightarrow \quad f=g .
$$

(C) "Any homomorphism whose image contains S is a surjection":

For any R-module L and any homomorphism $h: L \rightarrow M$,

$$
h(L) \supseteq S \quad \Longrightarrow \quad h(L)=M .
$$

When these equivalent conditions hold, we say that S generates M (or S spans M, or M is generated by S, or M is spanned by S).

Question 2. We say an R-module M is finitely generated if there exists a finite set $S \subset M$ that generates M. Prove that if M is finitely generated, then it has the following property:

For any infinite chain $N_{1} \subseteq N_{2} \subseteq \cdots \subseteq M$ of submodules of M whose union $\bigcup_{i \in \mathbb{N}} N_{i}=M$ is equal to M, there exists $k \in \mathbb{N}$ such that $N_{k}=M$.
(You can think about whether this condition is equivalent to finite generation, but you do not have to prove it.)
Question 3. Prove that \mathbb{Z}-modules and abelian groups are the same thing. Specifically, prove that
(a*) Every abelian group A admits one and only one structure of a \mathbb{Z}-module (i.e. there is a unique "multiplication map" $:: \mathbb{Z} \times A \rightarrow A$ making A into a \mathbb{Z}-module).
(b*) For any abelian groups A and B, the set of \mathbb{Z}-module homomorphisms $f: A \rightarrow B$ is exactly the set of abelian-group homomorphisms $f: A \rightarrow B$.
(c) Please write one sentence summarizing what makes (a) and (b) happen (i.e. what's the key idea of your proof?).
[Note (c) is the only part that you need to submit! You should work out (a)+(b) but don't need to write them up.]

Question 4. Let R be a ring, and let $\left\{M_{i}\right\}_{i \in I}$ be a family of R-modules indexed by some set I.
Define the direct product $\prod_{i \in I} M_{i}$ to be the Cartesian product, i.e. the set of families $\left(m_{i}\right)_{i \in I}$ with $m_{i} \in M_{i}$. This becomes an R-module with the component-wise addition and multiplication:

$$
\left(m_{i}\right)_{i}+\left(n_{i}\right)_{i}=\left(m_{i}+n_{i}\right)_{i} \quad r \cdot\left(m_{i}\right)_{i}=\left(r \cdot m_{i}\right)_{i}
$$

Define the direct sum $\bigoplus_{i \in I} M_{i}$ to be the submodule consisting of elements where $m_{i}=0$ for all but finitely many i. (You do not have to prove this is a submodule, but you should understand why it is.) Note that when I is finite $\bigoplus_{i \in I} M_{i}$ is the same as $\prod_{i \in I} M_{i}$, but in general it is a proper submodule.

For readability, let $P=\prod_{i \in I} M_{i}$ and $S=\bigoplus_{i \in I} M_{i}$.
(a) Show that

$$
\text { "a map to } P=\prod_{i \in I} M_{i} \text { is the same as a family of maps to } M_{i} \text { ", }
$$

by proving the following. Let $\pi_{i}: P \rightarrow M_{i}$ be the projection taking $\left(m_{i}\right)_{i \in I} \mapsto m_{i}$. Prove that for any R-module L, given homomorphisms $f_{i}: L \rightarrow M_{i}$ there exists a unique homomorphism $f: L \rightarrow P$ such that $f_{i}=\pi_{i} \circ f$ for all i.
(b) Show that

$$
\text { "a map from } S=\bigoplus_{i \in I} M_{i} \text { is the same as a family of maps from } M_{i} \text { ", }
$$

by formulating and proving a separate universal property along similar lines to (a).
(Hint: consider the inclusions $j_{i}: M_{i} \rightarrow S$ given by $m_{i} \mapsto\left(0, \ldots, 0, m_{i}, 0, \ldots, 0\right)$ [0 except in the M_{i} factor].)

