Math 210A: Modern Algebra Thomas Church (tfchurch@stanford.edu) http://math.stanford.edu/~church/teaching/210A-F17

Homework 1

Due Saturday, September 30 by 5:00pm

Do all the **unstarred questions** below. (Starred questions are important and you really should do them, but they will not be collected or graded.)

Reminder: when we just say "R-module" we mean "left R-module", and we allow R to not be commutative. But in these questions, it doesn't really matter whether R is commutative or not.

The material needed for this assignment (R-modules, homomorphisms, submodules) is covered in: Lang p117; or Atiyah–Macdonald pp17–18; or Dummit–Foote p337.

Question 1. Given an *R*-module *M* and a subset $S \subset M$, prove that the following are equivalent.

- (A) "Every element of M is an R-linear combination of elements of S": For all $m \in M$ there exist $r_1, \ldots, r_k \in R$ and $s_1, \ldots, s_k \in S$ such that $m = \sum_{i=1}^k r_i s_i$.
- (B) "Homomorphisms are determined by their value on S": For any *R*-module N and any homomorphisms $f: M \to N$ and $g: M \to N$,

$$f|_S = g|_S \implies f = g_S$$

(C) "Any homomorphism whose image contains S is a surjection": For any R-module L and any homomorphism $h: L \to M$,

 $h(L) \supseteq S \implies h(L) = M.$

When these equivalent conditions hold, we say that S generates M (or S spans M, or M is generated by S, or M is spanned by S).

Question 2. We say an *R*-module *M* is *finitely generated* if there exists a finite set $S \subset M$ that generates *M*. Prove that if *M* is finitely generated, then it has the following property:

For any infinite chain $N_1 \subseteq N_2 \subseteq \cdots \subseteq M$ of submodules of M whose union $\bigcup_{i \in \mathbb{N}} N_i = M$ is equal to M, there exists $k \in \mathbb{N}$ such that $N_k = M$.

(You can think about whether this condition is equivalent to finite generation, but you do not have to prove it.)

Question 3. Prove that \mathbb{Z} -modules and abelian groups are the same thing. Specifically, prove that

- (a*) Every abelian group A admits one and only one structure of a \mathbb{Z} -module (i.e. there is a unique "multiplication map" $: \mathbb{Z} \times A \to A$ making A into a \mathbb{Z} -module).
- (b*) For any abelian groups A and B, the set of \mathbb{Z} -module homomorphisms $f: A \to B$ is exactly the set of abelian-group homomorphisms $f: A \to B$.
- (c) Please write one sentence summarizing what makes (a) and (b) happen (i.e. what's the key idea of your proof?).

[Note (c) is the only part that you need to submit! You should work out (a)+(b) but don't need to write them up.]

Question 4. Let R be a ring, and let $\{M_i\}_{i \in I}$ be a family of R-modules indexed by some set I.

Define the direct product $\prod_{i \in I} M_i$ to be the Cartesian product, i.e. the set of families $(m_i)_{i \in I}$ with $m_i \in M_i$. This becomes an *R*-module with the component-wise addition and multiplication:

$$(m_i)_i + (n_i)_i = (m_i + n_i)_i$$
 $r \cdot (m_i)_i = (r \cdot m_i)_i$

Define the direct sum $\bigoplus_{i \in I} M_i$ to be the submodule consisting of elements where $m_i = 0$ for all but finitely many *i*. (You do not have to prove this is a submodule, but you should understand why it is.) Note that when *I* is finite $\bigoplus_{i \in I} M_i$ is the same as $\prod_{i \in I} M_i$, but in general it is a proper submodule.

For readability, let $P = \prod_{i \in I} M_i$ and $S = \bigoplus_{i \in I} M_i$.

(a) Show that

"a map to
$$P = \prod_{i \in I} M_i$$
 is the same as a family of maps to M_i ",

by proving the following. Let $\pi_i \colon P \to M_i$ be the projection taking $(m_i)_{i \in I} \mapsto m_i$. Prove that for any *R*-module *L*, given homomorphisms $f_i \colon L \to M_i$ there exists a unique homomorphism $f \colon L \to P$ such that $f_i = \pi_i \circ f$ for all *i*.

(b) Show that

"a map from $S = \bigoplus_{i \in I} M_i$ is the same as a family of maps from M_i ",

by **formulating** and **proving** a separate universal property along similar lines to (a). (Hint: consider the inclusions $j_i: M_i \to S$ given by $m_i \mapsto (0, \ldots, 0, m_i, 0, \ldots, 0)$ [0 except in the M_i factor].)