
MATH 210A, FALL 2017
HW 2 SOLUTIONS

WRITTEN BY DAN DORE

(If you find any errors, please email ddore@stanford.edu)

Question 1. Let R be a commutative ring, and let I = {r ∈ R | ∃k > 0 such that rk = 0}.

(a) Prove I is an ideal.

(b) Prove I is the intersection of all the prime ideals of R.
You may use without proof the following fact, a consequence of Zorn’s lemma: if S is a subset of R satisfying
0 /∈ S and S · S ⊂ S, then the set of ideals J ⊂ R for which J ∩ S = ∅ has a maximal element.

Solution. (a) Let f1, f2, f ∈ I, a ∈ R. Then we need to show that f1 + f2 ∈ I and af ∈ I for every such
f1, f2, f, a. Since f1, f2, f ∈ I , there are k1, k2, k such that fk11 = fk22 = fk = 0. Then, we have

(af)k = akfk = 0

so af ∈ I . We also have:

(f1 + f2)
k1+k2 =

k1+k2∑
i=1

(
k1 + k2

i

)
f i1f

k1+k2−i
2 = 0

Note that for each i, either i > k1 or k1 + k2 − i > k2, so either f i1 = 0 or fk1+k2−i2 = 0.

(b) First of all, if f ∈ I , then fk = 0 for some k. If p is a prime ideal, then fk = 0 ∈ p, so either f ∈ p or
fk−1 ∈ p by the definition of a prime ideal. By induction, this implies that f ∈ p.

Conversely, let x ∈
⋂
p. We want to show that xk = 0 for some k. I’ll give two proofs of this, with the

first proof more concrete and the second one more conceptual - you should think about why they’re
actually just the same proof.

Proof (i): Otherwise, let’s consider the set S = {xk | k ∈ N}. This doesn’t contain 0 by hypothesis, and
clearly S · S ⊆ S. So, by the fact listed in the hint, we know that the set of ideals J ⊂ R such
that J ∩ S = ∅ contains a maximal element J0. To get a contradiction, we want to show that J0
is prime, since by assumption x ∈

⋂
p, the intersection of all prime ideals.

We know that J0 is a proper ideal of R, since it does not contain the element x. So let y, z ∈ R
such that yz ∈ J0. If y 6∈ J0, then J0 + (y) is a strictly larger ideal than J0. Since J0 is maximal
among ideals not containing a power of x, we know J0 + (y) must contain a power of x; so
we have xm = ay + b with a ∈ R, b ∈ J0. But then, we have xmz = ayz + bz ∈ J0, since
yz, b ∈ J0. Now consider the ideal1

Q = {w ∈ R |xmw ∈ J0}.

This ideal Q certainly contains J0, so either it is equal to J0 or it contains xk for some k. For the
latter to be true would mean that xm+k ∈ J0, contrary to hypothesis. So we must have Q = J0.
In particular, we have z ∈ J0. This concludes the proof that J0 is a prime ideal. But we have
asssumed both that x /∈ J0 and that x is in every prime ideal, a contradiction.

1In Atiyah–Macdonald this Q is called an “ideal quotient” and would be written (J0 : (xm)).
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Proof (ii): Let S = {xk | k ∈ N}, and form the ring R[ 1x ] = S−1R. If xk 6= 0 for any k, this is not the
zero ring. (In general, a localization S−1R is the zero ring ⇐⇒ 0 ∈ S: to have 1 = 0 in S−1R
means that 1

1 = 0
1 , which by our explicit construction happens iff there exists some s ∈ S for

which s · (1 · 1− 0 · 1) = s equals 0.) Note that `(x) = x
1 is invertible in R[ 1x ] by construction,

so it is not contained in any proper ideals.

However, since R[ 1x ] 6= 0, it does have a maximal ideal m. Since maximal ideals are prime, m
is a prime ideal of R[ 1x ]. Now, let ` : R→ R[ 1x ] be the canonical map r 7→ r

1 , and consider the
ideal `−1(m). Since `(x) /∈ m we know that x /∈ `−1(m). However, for any homomorphism
f : A→ B of commutative rings and any prime ideal p of B, the ideal f−1(p) is a prime ideal
of A.2 3 Therefore `−1(m) is a prime ideal that does not contain x. This demonstrates that
0 /∈ {xk} =⇒ x /∈

⋂
p, as desired.

2Proof 1: if a1a2 ∈ f−1(p), then f(a1a2) = f(a1)f(a2) ∈ p so by the fact that p is prime, either f(a1) ∈ p or f(a2) ∈ p,
which is the same thing as saying a1 ∈ f−1(p) or a2 ∈ f−1(p). Also, 1 6∈ `−1(p) since `(1) = 1 6∈ p.

3Proof 2: A/f−1(p) injects into B/p, which is a domain because p is prime, so its subring A/f−1(p) is a domain as well. These
are really the same proof.
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Question 2. Let R = C0([0, 1]) be the ring of real-valued continuous functions on the closed interval [0, 1].
For every point p ∈ [0, 1], we obtain a maximal ideal mp = {f ∈ R | f(p) = 0}.

Prove that every maximal ideal of R is of the form mp for a unique p ∈ [0, 1].

(Hint: You may wish to recall that [0, 1] is compact, which means that for any collection of open intervals
covering it, there is some finite sub-collection that still covers it.)

Note that this means that you can recover the set [0, 1] just from the ring R.
(This actually works for any compact Hausdorff space, not just [0, 1]; the proof is the same.)

(Optional, to think about: can you also recover the topology on [0, 1] from the ring R?)

Solution. Let m be a maximal ideal of R = C0
(
[0, 1]

)
, and assume that m 6= mx for any x ∈ [0, 1]. Since

m is maximal, this means m 6⊂ mx, so for each x ∈ [0, 1] there is some fx ∈ m such that fx(x) 6= 0. Since
fx is continuous, there is an open interval Ux ⊆ [0, 1] containing x such that fx|Ux is non-vanishing. Then
since for each x ∈ [0, 1], x ∈ Ux, we have

⋃
x Ux = [0, 1]; i.e. the Ux form an open cover of [0, 1]. Since

[0, 1] is compact, this has a finite subcover: there are x1, . . . , xn such that [0, 1] =
⋃n
i=1 Uxi . That means

that for any x ∈ [0, 1], at least one of the functions fx1 , . . . , fxn is non-zero at x. Now, let

f =
(
fx1
)2

+ · · ·+ (fxn)
2

Since f(x) = 0 iff fxi = 0 for all i, this implies that f(x) 6= 0 for any x ∈ [0, 1]. Therefore g(x) = 1
f(x) is

well-defined and continuous on [0, 1], so f is invertible. But this is a contradiction since f ∈ m, a maximal
ideal.

In fact, the map x 7→ mx gives a bijection from [0, 1] to the set of maximal ideals of R. We just saw
that this is surjective. To see that it is injective is easy in this setting: let x 6= y, and we want to show that
mx 6= my. But consider the function f(t) = t− x. This is certainly continuous on [0, 1], so it is an element
of R. Since f(x) = 0 but f(y) = y − x 6= 0, f ∈ mx but f 6∈ my, so mx 6= my.

We can actually also recover the topology of [0, 1] this way. For any f ∈ R, we get an open set
Uf := {x ∈ [0, 1] | f(x) 6= 0}. Under the bijection x 7→ mx, Uf corresponds to the set of maximal ideals
which do not contain f (since every maximal ideal is of the form mx, and f ∈ mx iff f(x) = 0 by definition).
Now, let (a, b) be any open interval in [0, 1]. We can pick some f such that Uf = (a, b): for example, f could
be a piecewise linear function which is the zero function on [0, a] ∪ [b, 0] and positive elsewhere. (Draw a
picture if you don’t believe me!). Now, any open set in [0, 1] is a union of intervals, so any open set is a union
of open sets of the form Uf . This means that Uf is a basis for the topology of [0, 1]. In conclusion, if we
were just handed the ring R and not told that it was a ring of continuous functions, we could construct the
topological space [0, 1] out of R by taking as the underlying set the set of maximal ideals and defining a set
to be open iff it is the union of sets of the form U ′f = {m | f 6∈ m}.

Our results apply to the following more general setting: Let X be a compact Hausdorff space, and let
R = C0(X) its ring of continuous functions. Then for every x ∈ X , there is a maximal ideal mx of R
consisting of functions that vanish at x. Again every maximal ideal of R is of this form — you can simply
replace [0, 1] by X everywhere in the above argument to get this far (this needs only compactness of X). To
get injectivity of the map x 7→ mx, and to see that we can recover the topology on X , we need the following
lemma from topology:
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Lemma 1 (Urysohn’s Lemma). If Z1, Z2 are disjoint closed subsets of a compact Hausdorff space4 X , then
there is a continuous, real-valued function f ∈ C0(X) such that f |Z1 ≡ 0 and f |Z2 ≡ 1.

First of all, the map x 7→ mx from points of X to the set of maximal ideals of R is bijective. We just
proved that it is surjective. To see that it is injective, let x 6= y be two points of X . Since X is Hausdorff, {x}
and {y} are closed, so there is some continuous function f such that f(x) = 0 and f(y) 6= 0. But this means
that the set of functions vanishing at x is not the same as the set of functions vanishing at y, so mx 6= my

(this is an abstract version of the argument we gave above).
Next, we can actually determine the topology of X via R by considering the open sets Uf = {x ∈

X | f 6= 0} for various f ∈ R. This is a basis for the topology on X , which means that for any open set
V ⊆ X and any x ∈ V , there is some f such that x ∈ Uf ⊆ V . This says exactly that for any closed set Z
(Z = X \ U ) and any point x 6∈ Z, there is some continuous function f such that f |Z = 0 and f(x) 6= 0,
and this is another case of Urysohn’s Lemma.

Note that since we established a bijection between the points of X and the maximal ideals in R, we can
think of the topology generated by the Uf (i.e. the open sets are unions of Uf ’s; the fact that these form a
basis says exactly that this topology is the given topology on X) as giving us a topology on the set of maximal
ideals of R. This is called the Zariski Topology, and appears in algebraic geometry as well.

These remarks show us that there is a nice correspondence between compact Hausdorff spaces and certain
kinds of rings. In fact, it’s possible to go further and to characterize exactly which kinds of rings show up
this way, and to prove that we actually get an equivalence of categories (a continuous map X → Y induces
a ring homomorphism from C(Y ) to C(X) by sending g to g ◦ f ).5 An analogous (and easier) result in
algebraic geometry says that there is an order-reversing equivalence of categories between the category of
affine algebraic varieties over a field k and polynomial functions between them and the category of finitely
generated k-algebras and maps of k-algebras. This fact is the starting point of modern algebraic geometry.

4more generally, X can be any space with the property that any two disjoint closed subsets have disjoint open neighborhoods
5To actually make this work, you need to replace real-valued functions with complex-valued functions and require the maps on

the ring side to keep track of some additional structure, namely the norm and complex conjugation operation which come from the
fact that the ring is an algebra of complex-valued functions. This structure on a ring is called a C∗-algebra, and this result is called
Gelfand Duality. I have no idea if an analogous result can be made to work where we stick to real-valued functions, and if anyone
does, I’d be curious to find out.
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Question 3 (optional, replaces Q2). [This question is very hard, 100% optional, and cannot be done without
material from outside this course.]

Let R = C∞(S1;C) be the ring of complex-valued smooth functions on the circle S1, which for
concreteness I will realize as smooth 1-periodic functions on R:

R ∼= {f ∈ C∞(R;C) | f(x+ 1) = f(x)}.

The proof of Q2 applies in exactly the same way to R, showing that every maximal ideal of R is of the form
mp = {f ∈ R | f(p) = 0} for a unique p ∈ [0, 1) ≈ S1; you do not have to prove this.
(The complex-valued vs real-valued is not an important point, it just simplifies the following.)

For any f ∈ R we can define complex numbers an ∈ C for all n ∈ Z by an =
´ 1
0 f(x)e

−2πinx dx.
(Remark: It is a fact that these numbers decay rapidly as n→∞,
in the sense that for all k ≥ 0 we have nk|an| → 0 and nk|a−n| → 0 as n→ +∞.)

Let S ⊂ R be the subring consisting of those functions for which a−1 = a−2 = · · · = 0, i.e.

S =

{
f ∈ R

∣∣∣∣∣
ˆ 1

0
f(x)e−2πinx dx = 0 for all n < 0

}

(You do not have to prove that S is a subring of R, though you might benefit from thinking about why it is.)
For every p ∈ [0, 1), we still have a maximal ideal mp ⊂ S given by mp = {f ∈ S | f(p) = 0}.

Exhibit a maximal ideal of S that is not of this form, and ideally exhibit two such maximal ideals. (If you
really want a challenge: can you classify all maximal ideals of S? Warning: I do not know that this is possible using
things you know. But you could at least come up with a guess, even if you can’t completely prove it’s correct.)

Solution. (Solution by TC, edits by DD. “I” means TC. These solutions try to cover many many different directions
you might have taken this; no one was expected to come up with all this by themselves.)

[First, why does the proof of Q2 not work here? The key difference is that if you just know that a function
f ∈ S is nonzero everywhere on S1, then 1

f is a perfectly nice function, but it doesn’t have to lie in S. Simple
example: f = e2πix is in S and nowhere vanishing on S1; but 1

f = e−2πix has a−1 = 1 so 1
f /∈ S.]

The formula for an = an(f) should suggest Fourier series (as does the fact that we’re talking about
periodic functions in the first place). In fact the an are exactly the Fourier coefficients of f . Note that
the rapid decay of the coefficients guarantees that the sum

∑
n∈N an(f)e

2πinx converges to f(x) uni-
formly/absolutely/however nicely you could possibly want. And it’s straightforward to check that our
formula for an lets us go back and forth between these descriptions; that is, if g(x) =

∑
n∈N bne

2πinx then´ 1
0 g(x)e

−2πimx dx = bm.
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In particular, we can use this to check that

an(fg) =
∑
p+q=n

ap(f)aq(g) (∗)

[the so-called “convolution formula”] by expanding

f(x)g(x) =
(∑
p∈N

ap(f)e
2πipx

)(∑
q∈N

aq(g)e
2πiqx

)
=
∑
n∈N

( ∑
p+q=n

ap(f)aq(g)
)
e2πinx

Note that we don’t actually need a particularly strong convergence of the Fourier series to verify this
convolution identity. In particular, a continuous function on S1 is bounded, so it is in Lp for all 1 ≤ p ≤ ∞.
In particular, if f, g are continuous functions on S1, then f, g, and fg are all L2 functions. We want to show
the following integral identity for any n ∈ Z:

ˆ 1

0
f(x)g(x)e−2πinx dx =

∑
p+q=n,p,q≥0

(ˆ 1

0
f(x)e−2πipx dx

)(ˆ 1

0
g(x)e−2πiqx dx

)

But both sides of the formula give a bounded6, hence continuous, bilinear form on L2(S1), so the above
proof works as soon as we know that the Fourier series

∑
p∈N ap(f)e

2πipx converges to f in the L2 norm,
which Wikipedia says is called the Reisz-Fischer theorem, and is true for any L2 function f . This lets us
fiddle around with the regularity condition in the definition of R in order to get various different function
spaces with similar properties.

In other words, the map from S to the power series ring C[[t]] sending f ∈ S to the formal sum∑
n∈N an(f)t

n is a ring homomorphism. 7 8

In particular, this interpretation suggests one evident maximal ideal, namely (t). This corresponds to the
homomorphism S → C given by f 7→ a0(f), i.e. which sends f to its average avg(f) =

´ 1
0 f(x) dx. I feel

like it should be possible to prove directly that avg(fg) = avg(f) avg(g), but in any case it follows from the
convolution formula above.

6You can check by Hölder’s inequality and Cauchy-Schwarz for finite sums that both sides are bounded by ‖f‖L2‖g‖L2

7It turns out that this is actually an isomorphism between S and the subring of C[[x]] consisting of power series whose coefficients
decay rapidly. One needs to check surjectivity, i.e. that any rapidly decaying coefficients arise from a smooth function (which is
true even without assuming that a−1 = a−2 = · · · = 0). Indeed, knowing only

∑
|an| < ∞ is enough to guarantee uniformly-

absolute convergence of the sum
∑
n∈N ane

2πix (which thus converges to some continuous function f ). In light of the identity
an(f

′) = (−2πin)an(f) (integration by parts), knowing |an| ≤ c
nk+ε guarantees that the resulting function is Ck−1. So rapid

decay guarantees that f ∈ C∞. But this is not necessary for the question.
8One could apply this to all of R to get elements that are some sort of “double-ended” power series “

∑
n∈Z ”antn; however, in

general such power series do not form a ring because multiplication does not make sense (coefficients would be infinite sums). So
one has to use the rapid decay property to even show multiplication is defined. This ends up giving some sort of ring of Laurent
series: if there are only finitely many negative terms, everything works and we go into the localized ring C[[t]][ 1

t
], otherwise we end

up in some ring of complex functions with possibly essential singularities.
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To see other maximal ideals, note that for any complex number z ∈ D in the open unit disk (i.e.
|z| < 1), the sum

∑
n∈N an(f)z

n converges absolutely. This defines a function πz : S → C sending
f 7→

∑
n∈N an(f)z

n, and the formula for an(fg) in (∗) above shows that this is a ring homomorphism. So
we obtain one maximal ideal mz = {f ∈ S |

∑
n∈N an(f)z

n = 0} for each z ∈ D. But note that m0 is the
ideal we found above, corresponding to f 7→ avg(f) [more on this in next paragraph].

Incidentally, for f ∈ S the function F : D → C given by
∑

n∈N an(f)z
n is actually holomorphic on

the open disk D, and it turns out that our ring S is isomorphic to the ring of holomorphic functions on the
open disk D that extend to a smooth function on the boundary S1. (Our Fourier expansion is simply the
Taylor expansion of the holomorphic function around 0, which always has radius of convergence ≥ 1. Note
that when you plug in a complex number z = e2πit ∈ S1, the Taylor series is literally equal to the Fourier
series since

(
e2πit

)n
= e2πint, so by convergence of the Fourier series, you recover the original function.) In

particular, the fact that evaluation g 7→ g(0) at z = 0 coincides with the average avg(g|S1) is the mean value
property for harmonic functions (recall holomorphic functions are harmonic).

A natural conjecture is then the claim that the maximal ideals all come from evaluation at a point of
D ∪ S1. Note that some functions in S have radius of convergence 1, so there are no ideals coming from
points outside the unit disk. (For example, take an = 1

nlogn . Since
∑

n |an| converges (compare it to 1
n2 ), the

Fourier series
∑
ane

2πinx converges to a continuous function, and since |an| decays faster than 1
nk

for any
fixed k, this function is smooth.)

I (DD this time, not TC) have no idea whether all maximal ideals come from evaluation at a point of D
for the ring S we’re considering, but there are some analogous cases where this is true and some where this is
false. The rest of this solution is DD’s attempt to present a lot of complicated analysis arguments he found on
the Internet and does not fully understand, so for the analysis-minded among you, please let him know if you
find any mistakes or simplifications, and especially if you manage to settle the question for S.

(I) To see an example where this is false, consider the ring O(D) of all holomorphic functions on the unit
disk, with no condition whatsoever about their behavior on the boundary S1. Then it’s a theorem that
every finitely generated maximal ideal of this ring is the ideal of functions vanishing at some point
in D. This is not so terribly hard to prove, and is proven for example in the book Classical Topics
in Complex Function Theory by Remmert, around p. 136.9 The key fact is that if u, v ∈ O(D) are
two holomorphic functions with no common zeros, then there are a, b ∈ O(D) such that au+ bv = 1.
Unfortunately, the method used to produce these a, b (via writing the meromorphic function 1

uv in a
Mittag-Leffler series, i.e. a normally convergent series of meromorphic functions where each term
has only a single pole with the same principal part at that pole as 1

uv ) does not provide any boundary
regularity (as far as DD can tell!).

To see a maximal ideal that is not of this form, let f0 ∈ O(D) be a function which vanishes exactly
on an infinite discrete set {xn} ⊂ D (necessarily accumulating at a point on S1). Such a function
exists by the Weierstrass product theorem for the unit disk, or we can construct one by using the
Cayley transformation to map the (open!) unit disk bi-holomorphically to the (open!) upper half-plane,
where we can take the function sin(2πix), which vanishes exactly when x = in for an integer n.
Let I be the ideal of functions which vanish at infinitely many xn. This is certainly a proper ideal

9Stanford students can access this book by clicking here:
https://stanford.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4757-2956-6.
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(since 1 /∈ I) so it is contained in some maximal ideal m. However, there is no point z ∈ D such
that f(z) = 0 for all f ∈ I: we can multiply f0 by the meromorphic function 1

(z−xn)ordxnf0
to get a

function in I which does not vanish at xn (this function is holomorphic on D since away from xn
it is the product of meromorphic functions, and near xn we can write f0(z) = (z − xn)ordxn f0g(z)
with g(z) holomorphic and non-vanishing at xn). So I contains a function which does not vanish at
xn for each n, and also I contains f0, which does not vanish anywhere other than on the xn. So, this
maximal ideal is not given by evaluation at a point. However, if there were some f0 as above with
continuous (let alone smooth) restriction to S1, this counterexample would go through and contradict
the next result, so such a function cannot exist. Somebody who is better at complex analysis than DD is
could probably prove this fact directly, perhaps using some sharper version of the maximum modulus
principle.

(II) To see an example where this is true, consider the ring A(D) of all holomorphic functions on the open
unit disk D with continuous extension to the boundary. By the more general argument given above, this
ring is isomorphic to a ring of continuous functions on S1 with all negative Fourier coefficients equal
to 0 (more care needs to be taken here to see that the associated power series of a continuous function f
on S1 really defines a holomorphic function f̃ such that f̃ restricts to f on S1: this should be possible
to show using the Cauchy integral formula to define the holomorphic function, which implies that
the power series expansion is given by the an. Convergence of the integral must be checked.). This
ring is nice because it is a Banach algebra with respect to the supremum norm. That is to say that
the function ‖f‖ = supz∈D |f(z)| is a norm, Cauchy series with respect to this norm converge, and
addition and multiplication are both sub-additive with respect to this norm. The key fact we’ll use from
functional analysis is that any maximal ideal of a Banach algebra A is necessarily closed, so A /m is
a field which is also a Banach algebra. Then, the Gelfand-Mazur10 Theorem implies that A /m ' C,
so that the maximal ideal m defines a continuous homomorphism from A to C. This means that its
values are determined on any dense set. In order to conclude, we’ll need a special case of a hard
fact from complex analysis: this is Mergelyan’s theorem, which says that if K ⊆ C is compact with
C \K connected, then any continuous function on K which is holomorphic in the interior of K can be
uniformly approximated by polynomials.11 Uniform convergence is the same thing as convergence in
the supremum norm, so this implies that polynomials are dense in the Banach algebra A(D). Now, our
maximal ideal m of A(D) gives a continuous homomorphism χ : A(D)→ C, and so it is determined
by its values on the polynomial subring C[z] ⊆ A(D) (polynomials certainly are continuous on S1

and holomorphic in the disk!). Now, the restriction of χ to C[z] is still a homomorphism of C-algebras,
and it is surjective because C[z] contains the constant functions. Now, it is true that any surjective
homomorphism of C-algebras from C[z] to C is given by f 7→ f(z0) for some z0 ∈ C (prove it!).
Let’s show that |z0| ≤ 1. We can return to the previous example with f(z) = 1 +

∑∞
n=1

1
nlogn z

n. Let
fn be the n-th partial sum of this power series, and note that ‖fm − fn‖ for m ≥ n is bounded above
by
∑m

k=n

∣∣∣ 1
klog k

∣∣∣, so since the series
∑∞

n=1
1

klog k
converges absolutely, this is a Cauchy sequence in

10Sorry, not Barry Mazur, although he has worked in a ton of different fields. This is Stanislaw Mazur, a mid-20th century Polish
mathematician.

11Perhaps this is easier to do on the closed unit disk than for a general compact domain, and someone who likes complex analysis
could try to do so.
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A(D), so fn → f in the norm of A(D). Thus, χ(fn)→ χ(f). Now assume that χ(p(z)) = p(z0) for
any polynomial p with z0 ∈ C. Then

χ(f) = lim
N→∞

χ(fN ) = lim
N→∞

N∑
n=1

1

nlogn
(z0)

n

Since the radius of convergence of this power series is 1, as we can check by evaluating

lim sup
n→∞

n
√
nlogn = lim sup

n→∞
e(logn)

2/n = 1,

this limit must diverge for |z0| > 1, hence z0 ∈ D. Finally, since f 7→ f(z0) and f 7→ χ(f) are both
continuous homomorphisms which agree on all polynomials, they must agree, so our maximal ideal is
the ideal of functions vanishing at some z0 ∈ D.

Why doesn’t this proof extend to the case of smooth functions? The first problem is that functions with
smooth boundary are not a Banach space: a uniform limit of holomorphic functions which are smooth
on the boundary need not be smooth (e.g. all polynomials are smooth on the boundary and we just saw
that they can converge uniformly in D to anything which is continuous on S1 and holomorphic on D),
so we have to control convergence of all of the derivatives as well. This involves an infinite family of
norms, so we just get a Fréchet algebra, not a Banach algebra. Now, maximal ideals need not be smooth
in this setting, so the homomorphisms into fields may not be continuous, so the preceding argument
does not apply. If we relax the smooth boundary condition to a Ck boundary condition for some finite
k, then we only need to control finitely many derivatives, so we can put all of their supremum norms
together into a norm and get a Banach algebra again. However, it’s not clear (to DD) that we can reduce
the problem to polynomials as we did above: Mergelyan’s theorem does not require the derivatives to
converge. Perhaps a better analyst than DD could show by hand that a holomorphic function on D with
Ck boundary condition can be approximated uniformly, along with all of its derivatives, by smooth
functions.
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Question 4. Let a ∈ Z and b ∈ Z be coprime. Let C be any abelian group, and let

f : (Z/aZ)× (Z/bZ)→ C

be a Z-bilinear map. Prove that f = 0.

Solution. Note that a bilinear map must satisfy f(0, z) = 0 for any z. Since a, b are coprime, a is a unit
in the ring Z/bZ, so there is some c ∈ Z/bZ such that ac = 1. (In elementary terms, because a and b
are coprime, we can find n and m in Z such that na +mb = 1.) Now, let x, y be arbitrary elements of
Z/aZ,Z/bZ respectively. We have:

f(x, y) = f(x, (ac)y) = f(x, a(cy)) = f(ax, cy) = f(0, cy) = 0

To get from f(x, a(cy)) to f(ax, cy) we used the bilinearity of f , and then the fact that ax = 0 for all
x ∈ Z/aZ. We’ll see once we learn about tensor products that this statement is equivalent to the statement
that (

Z/aZ
)
⊗Z

(
Z/bZ

)
= 0.
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Question 5. Let N be a submodule of the R-module M . Prove that if N is finitely generated and M/N is
finitely generated, then M is finitely generated.

Solution. Let [m1], . . . , [m`] be a finite generating set of M/N (here, the notation [mi] means “the equiva-
lence class mod N including mi”). Choosing representatives arbitrarily gives us elements m1, . . . ,m` in
M . In addition, let n`+1, . . . , n`+k be a generating set of N ⊆M . Now, we have the set of `+ k elements
S = {m1, . . . ,m`, n`+1, . . . , n`+k} of M . Let’s show that S generates M .

From the fact that the [mi] generate M/N , we know that for any m ∈M , we can write [m] in M/N as:

[m] = r1[m1] + · · ·+ r`[m`]

Thus, the elements m and r1m1+ · · ·+ r`m` have the same image in M/N , so their difference is an element
n of N . Since the nj generate N , we can write:

m = r1m1 + · · ·+ r`m` + n = r1m1 + · · ·+ r`m` + r`+1n`+1 + · · ·+ r`+kn`+k

Thus, m is an R-linear combination of elements of S, so S generates M and in particular M is finitely
generated.
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Question 6. Let M be a finitely generated R-module. Let π : M � Rn be a surjective homomorphism, and
let K = ker(π). Prove that the R-module K is finitely generated.

Solution.
Step 1: Because Rn is a free module, there exists a section i : Rn → M , meaning a homomorphism i

such that π ◦ i = idRn .
Why does this section i exist? We can pick a basis e1, . . . , en of Rn. Because π is surjective, for

each ej we can choose some i(ej) (non-uniquely) in M such that π(i(ej)) = ej . Because Rn is free, this
choice of where to send basis vectors uniquely extends to a map i : Rn → M . (we don’t need uniqueness
right now, just the fact that it extends) Furthermore, since π(i(ej)) = ej for each j, the two R-module
homomorphisms π ◦ i and idRn from Rn to Rn agree on the generating set {e1, . . . , en}. So by one of the
equivalent characterizations of what it means for a set to generate a module from HW1, this implies that
π ◦ i = idRn .12

Step 2: The existence of a splitting implies thatM ' K⊕Rn, with the injectionK ↪−→M corresponding
to the map k 7→ (k, 0) and the surjective homomorphism π : M → Rn corresponding to the map (k, a) 7→ a.
An isomorphism ϕ : K ⊕ Rn → M is given by sending K to K ⊆ M and mapping Rn into M by i. The
map ϕ is injective, since if ϕ(k, a) = 0, then k + i(a) = 0, so π(k) + π(i(a)) = a = 0, since π ◦ i = idRn

and π|K = 0. It is surjective because if m ∈ M , then π(i(π(m))) = π(m), so m − i(π(m)) = k ∈ K.
Thus, m = ϕ(k, π(m)).

Step 3: It is true more generally that if K,N are R-modules such that M := K ⊕N is finitely generated,
then K and N are already finitely generated.

To see this, note that M = K ⊕ N has a surjective homomorphism πK : K ⊕ N � K given by
πK(k, n) = k. 13 So the image πK(S) of a finite generating set for M will be a finite generating set for K
(by the first condition on HW1 Q1). The same argument applies by symmetry to N .

12We’ll see later that there is a more general class of modules P such that every short exact sequence 0→ K →M → P → 0

admits a splitting; these modules are called projective.
13In a sense, we are using here that the finite direct sum K ⊕N coincides with the finite product K ×N .
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Question 7. Let R be a commutative ring, and let S ⊂ R be a multiplicative set (S · S ⊂ S). Let M be a
finitely generated R-module. Prove that the localization S−1M satisfies

S−1M = 0 ⇐⇒ ∃s ∈ S with s ·M = 0.

Solution. The elements of S−1M are all of the form m
s with m ∈ M, s ∈ S. By the construction of the

localization, we know that ms = 0 = 0
1 iff there is some s′ ∈ S such that s′(1 ·m− s · 0) = s′ ·m = 0. This

means that S−1M = 0 iff for every m ∈M , there is some sm ∈ S such that sm ·m = 0. This immediately
shows that the⇐ direction is true, since if s ·M = 0, we can take sm = s for all m ∈M . So far, this much
is true without using the fact that M is finitely generated.

Now we are reduced to showing that if for every m ∈M , there is some sm such that sm ·m = 0, then in
fact there is a single s such that s ·m = 0 for all m ∈M . The key is to observe that if X is a generating set
of M , then

s · x = 0 for all x ∈ X =⇒ s ·M = 0.

One way to see this is that multiplication by s is an R-module homomorphism from M to M (since R is
commutative!), so it is determined by its values on a generating set — but our hypothesis says it agrees with
the zero homomorphism on the generating set X .

Now suppose that we have a finite generating set {m1, . . . ,mn}. By hypothesis, there is some s1, . . . , sn
such that si · mi = 0. Now, S is multiplicatively closed, so the product of all these elements s :=

s1 · s2 · (· · · ) · sn belongs to S. And this product satisfies s · mi = 0 for i = 1, . . . , n (we can use
commutativity of R to put si last in the expression for s). So s ·M = 0, as desired.
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Question 8. Let f : X → Y be a homomorphism of R-modules.

(a) Consider all pairs (A,α) of an R-module A and a homomorphism α : A→ X with f ◦ α = 0.

A
α //

0
  

X

f
��

Y

You will prove that these exists a “universal” such pair. Specifically, you must construct
some (M,µ : M → X) with f ◦ µ = 0 with the property that:
for any (A,α : A→ X) with f ◦ α = 0, there exists a unique a : A→M such that α = µ ◦ a.

A a
//

0

""

α

''
M

0

��

µ
// X

��

Y

(We might abbreviate this property as saying roughly: “Every α with f ◦ α = 0 factors uniquely through M”.)

(b) On the other side, consider all pairs (B, β : Y → B) with β ◦ f = 0.

X

f
��

0

  

Y
β
// B

Prove that these exists a “universal” such pair, by constructing
some (N, ν : Y → N) with ν ◦ f = 0 with the property that:
for any (B, β : Y → B) with β ◦ f = 0, there exists a unique b : N → B such that β = b ◦ ν.

X

f

��

0

��

0

!!

Y
ν //

β

77N
b // B

(We might abbreviate this property as saying roughly: “Every β with β ◦ f = 0 factors uniquely through N”.)
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Solution. (a) We will define M to be the kernel of the homomorphism f , i.e. the submodule of X given
by {x ∈ X | f(x) = 0}, and µ : M → X the inclusion of this submodule. Certainly f ◦ µ = 0, since this is
nothing other than f |M , which is 0 by definition.

Now, let α : A→ X be a homomorphism such that f ◦α = 0. This means that for all b ∈ A, f(α(b)) = 0.
This implies that α(b) ∈ M . We can construct a homomorphism a : A → M by sending b to α(b) ∈ M .
This is a homomorphism since α is, and the operations in M are just the restrictions of the operations in X .
In other words, we know that α is a homomorphism so α(r1b1 + r2b2) = r1α(b1) + r2α(b2) in X , but since
all of these elements are actually in M , the same holds for the restricted map a. Next, we can check that
µ ◦ a = α by checking this on every b ∈ A: we have µ(a(b)) = µ(α(b)) = α(b), since µ is just the inclusion
map.

Why is a unique? Let a′ : A→ X be another homomorphism such that µ ◦ a′ = α. This means that for
all b ∈ A, µ(a′(b)) = α(b). But since µ(m) = m for any m ∈M , this says that a′(b) = α(b) = a(b) for all
b ∈ B, so a = a′.14

(b) This time, N will be the cokernel of the homomorphism, i.e. the quotient module Y/ im(f), where
im(f) = {y ∈ Y | ∃x ∈ X, y = f(x)} (this is a submodule of Y because f is a homomorphism).15

The map ν : Y → N is the projection map y 7→ [y] = y + im(f) (as usual, we think of elements of the
quotient as equivalence classes mod im(f)). Since f maps X into im(f), we have that ν ◦ f = 0 (i.e.
ν(f(x)) = f(x) + im(f) = 0 + im(f)).

Now, let β : Y → B be a homomorphism such that β ◦ f = 0. We want to construct a homomorphism
b : N → B such that b ◦ ν = β. Since β ◦ f = 0, for any x ∈ X , β(f(x)) = 0, so β|im(f) = 0. This means
that we get a well-defined function b : N → B by sending [y] to β(y), since β(y) = β(y + f(x)) for any
f(x) ∈ im(f). This is a homomorphism because β is and because the operations on N are induced from
those on Y . What this means explicitly is that

b
(
r1[y1] + r2[y2]

)
= b
(
[r1y1 + r2y2]

)
= β(r1y1 + r2y2) = r1β(y1) + r2β(y2) = r1b([y1]) + r2b([y2]).

Now, we can check that b ◦ ν = β, since (b ◦ ν)(y) = b([y]) = β(y).

Finally, we need to show that b is unique. Let b′ be a homomorphism from N to B such that b′ ◦ ν = β.
Then for any y ∈ Y , b′(ν(y)) = b′([y]) = β(y) = b([y]). Since every element of N can be written as [y] for
some y ∈ Y , this forces b′ = b.16

14Note that this argument for uniqueness did not use anything in particular about α; in fact, we only need to know that µ is
injective. For any injective homomorphism µ : M → N of R-modules any homomorphisms f, g : L→M for some R-module L,
µ ◦ f = µ ◦ g iff f = g. The categorical term for this property is that µ is a monomorphism. In any category, these are typically
morphisms which are “injective” in some sense depending on the type of category we’re looking at.

15Incidentally, the reason for the term cokernel is because the property we’re about to show for N is formally “dual” to the
property from part (a) of the kernel.

16The dual of the footnote for the previous part applies here: we didn’t use anything particular about β, and we only needed the
surjectivity of ν. A surjective homomorphism ν of R-modules has the property that f ◦ ν = g ◦ ν =⇒ f = g, and the categorical
term for this property is that ν is an epimorphism. This notion usually agrees with some suitable idea of surjectivity in sufficiently
nice ’algebraic’ categories like the category of R-modules, but is often weaker than surjectivity in ’geometric’ settings. For example,
in the category of topological Hausdorff spaces and continuous maps, a map is an epimorphism as soon as the image is dense.
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