Math 210A: Modern Algebra
Thomas Church (tfchurch@stanford.edu)
http://math.stanford.edu/~church/teaching/210A-F17

Homework 2

Due Thursday night, October 5 (technically 5am Oct. 6)

Note that Q2 says "optional, replaces Q[2]'. This means that this question is optional (really!); however, if you write up and submit this optional question Q 3 , you do not have to submit Q 2 .

Recall that:

- a domain is a commutative ring in which $x y=0 \Longrightarrow(x=0$ or $y=0)$;
- a prime ideal $P \subsetneq R$ is an ideal for which $x y \in P \Longrightarrow(x \in P$ or $y \in P)$ (or equivalently, for which the quotient R / P is a domain); and
- a maximal ideal $\mathfrak{m} \subsetneq R$ is one for which the quotient ring R / \mathfrak{m} is a field.

Question 1. Let R be a commutative ring, and let $I=\left\{r \in R \mid \exists k>0\right.$ such that $\left.r^{k}=0\right\}$.
(a) Prove I is an ideal.
(b) Prove I is the intersection of all the prime ideals of R.

You may use without proof the following fact, a consequence of Zorn's lemma: if S is a subset of R satisfying $0 \notin S$ and $S \cdot S \subset S$, then the set of ideals $J \subset R$ for which $J \cap S=\emptyset$ has a maximal element.

Question 2. Let $R=C^{0}([0,1])$ be the ring of real-valued continuous functions on the closed interval $[0,1]$. For every point $p \in[0,1]$, we obtain a maximal ideal $\mathfrak{m}_{p}=\{f \in R \mid f(p)=0\}$.

Prove that every maximal ideal of R is of the form \mathfrak{m}_{p} for a unique $p \in[0,1]$.
(Hint: You may wish to recall that $[0,1]$ is compact, which means that for any collection of open intervals covering it, there is some finite subcollection that still covers it.)

Note that this means that you can recover the set $[0,1]$ just from the ring R.
(This actually works for any compact Hausdorff space, not just $[0,1]$; the proof is the same.)
(Optional, to think about: can you also recover the topology on $[0,1]$ from the ring R ?)

Question 3 (optional, replaces Q22]. [This question is very hard, $\mathbf{1 0 0 \%}$ optional, and cannot be done without material from outside this course.]

Let $R=C^{\infty}\left(S^{1} ; \mathbb{C}\right)$ be the ring of complex-valued smooth functions on the circle S^{1}, which for concreteness I will realize as smooth 1-periodic functions on \mathbb{R} :

$$
R \cong\left\{f \in C^{\infty}(\mathbb{R} ; \mathbb{C}) \mid f(x+1)=f(x)\right\} .
$$

The proof of Q2 applies in exactly the same way to R, showing that every maximal ideal of R is of the form $\mathfrak{m}_{p}=\{f \in R \mid f(p)=0\}$ for a unique $p \in[0,1) \approx S^{1}$; you do not have to prove this. (The complex-valued vs real-valued is not an important point, it just simplifies the following.)

For any $f \in R$ we can define complex numbers $a_{n} \in \mathbb{C}$ for all $n \in \mathbb{Z}$ by $a_{n}=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x$. (Remark: It is a fact that these numbers decay rapidly as $n \rightarrow \infty$, in the sense that for all $k \geq 0$ we have $n^{k}\left|a_{n}\right| \rightarrow 0$ and $n^{k}\left|a_{-n}\right| \rightarrow 0$ as $n \rightarrow+\infty$.)

Let $S \subset R$ be the subring consisting of those functions for which $a_{-1}=a_{-2}=\cdots=0$, i.e.

$$
S=\left\{f \in R \mid \int_{0}^{1} f(x) e^{-2 \pi i n x} d x=0 \text { for all } n<0\right\}
$$

(You do not have to prove that S is a subring of R, though you might benefit from thinking about why it is.) For every $p \in[0,1)$, we still have a maximal ideal $\mathfrak{m}_{p} \subset S$ given by $\mathfrak{m}_{p}=\{f \in S \mid f(p)=0\}$.

Exhibit a maximal ideal of S that is not of this form, and ideally exhibit two such maximal ideals. (If you really want a challenge: can you classify all maximal ideals of S ? Warning: I do not know that this is possible using things you know. But you could at least come up with a guess, even if you can't completely prove it's correct.)

Question 4. Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be coprime. Let C be any abelian group, and let

$$
f:(\mathbb{Z} / a \mathbb{Z}) \times(\mathbb{Z} / b \mathbb{Z}) \rightarrow C
$$

be a \mathbb{Z}-bilinear map. Prove that $f=0$.
Question 5. Let N be a submodule of the R-module M. Prove that if N is finitely generated and M / N is finitely generated, then M is finitely generated.

Question 6. Let M be a finitely generated R-module. Let $\pi: M \rightarrow R^{n}$ be a surjective homomorphism, and let $K=\operatorname{ker}(\pi)$. Prove that the R-module K is finitely generated.

Localization of modules, which features in the next question, will be covered on Monday.
Question 7. Let R be a commutative ring, and let $S \subset R$ be a multiplicative set ($S \cdot S \subset S$). Let M be a finitely generated R-module. Prove that the localization $S^{-1} M$ satisfies

$$
S^{-1} M=0 \quad \Longleftrightarrow \quad \exists s \in S \text { with } s \cdot M=0
$$

Question 8. Let $f: X \rightarrow Y$ be a homomorphism of R-modules.
(a) Consider all pairs (A, α) of an R-module A and a homomorphism $\alpha: A \rightarrow X$ with $f \circ \alpha=0$.

You will prove that these exists a "universal" such pair. Specifically, you must construct some $(M, \mu: M \rightarrow X)$ with $f \circ \mu=0$ with the property that: for any $(A, \alpha: A \rightarrow X)$ with $f \circ \alpha=0$, there exists a unique $a: A \rightarrow M$ such that $\alpha=\mu \circ a$.

(We might abbreviate this property as saying roughly: "Every α with $f \circ \alpha=0$ factors uniquely through M ".)
(b) On the other side, consider all pairs $(B, \beta: Y \rightarrow B)$ with $\beta \circ f=0$.

Prove that these exists a "universal" such pair, by constructing some $(N, \nu: Y \rightarrow N)$ with $\nu \circ f=0$ with the property that: for any $(B, \beta: Y \rightarrow B)$ with $\beta \circ f=0$, there exists a unique $b: N \rightarrow B$ such that $\beta=b \circ \nu$.

(We might abbreviate this property as saying roughly: "Every β with $\beta \circ f=0$ factors uniquely through N ".)

