Math 210A: Modern Algebra
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/210A-F17

 Homework 3

 Homework 3}

Due Thursday night, October 12 (technically 5am Oct. 13)
Given R-module homomorphisms $A \xrightarrow{\alpha} B$ and $B \xrightarrow{\beta} C$ with $\beta \circ \alpha=0$, we say they form a short exact sequence, and write $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0, \quad$ if
(i) $\alpha: A \rightarrow B$ is injective;
(ii) $\beta: B \rightarrow C$ is surjective; and
(iii) $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.
(The content is essentially the same as saying that $C \cong B / A$, except that it allows us the freedom to consider e.g. that A might not actually be a subset of B.) We might sometimes leave the labels α and β off, if we don't need names for the maps at the moment, but these maps are still an essential part of the SES.

Question 1. Consider a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$.
Prove that the following are equivalent.
(A) There exists a homomorphism $\sigma: C \rightarrow B$ such that $\beta \circ \sigma=\mathrm{id}_{C}$.
(B) There exists a homomorphism $\tau: B \rightarrow A$ such that $\tau \circ \alpha=\mathrm{id}_{A}$.
(C) There exists an isomorphism $\varphi: B \rightarrow A \oplus C$ under which α corresponds to the inclusion $A \hookrightarrow A \oplus C$ and β corresponds to the projection $A \oplus C \rightarrow C$.
When these equivalent conditions hold, we say the short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ splits. We can also equivalently say " $\beta: B \rightarrow C$ splits" (since by (i) this only depends on β) or " $\alpha: A \rightarrow B$ splits" (by (ii)).

Question 2. Given an R-module, prove that the following are equivalent.
(A) Every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ splits.
(B) There exists some R-module N such that $M \oplus N$ is free.

When these equivalent conditions hold, we say that the R-module M is projective.
Given R-modules M and N, recall that $\operatorname{Hom}_{R}(M, N)$ is an R-module where $(r f+g)(m)=r \cdot f(m)+g(m)$. We can leave off the subscript if the ring R is unambiguous from context.

Question 3*. (Make sure you understand this, but don't write it up.)
Consider a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$.
(a) Prove for any X that $\operatorname{Hom}(C, X)$ can be identified with

$$
\{f \in \operatorname{Hom}(B, X) \mid f \circ \alpha=0\}=\operatorname{ker} \operatorname{Hom}(B, X) \xrightarrow{-\circ \alpha} \operatorname{Hom}(A, X) .
$$

(b) Prove for any Y that $\operatorname{Hom}(Y, A)$ can be identified with

$$
\{f \in \operatorname{Hom}(Y, B) \mid \beta \circ f=0\}=\operatorname{ker} \operatorname{Hom}(Y, B) \xrightarrow{\beta \circ-} \operatorname{Hom}(Y, C) .
$$

Question 4*. (NO LONGER ASSIGNED)
Let R be a commutative ring, and let M be a finitely generated R-module.
Prove that if $\alpha: M \rightarrow M$ is surjective, then it is an isomorphism.
(Note the following useful consequence: any n elements that generate R^{n} are actually a basis of R^{n}.)

To the equivalent definitions $(\mathrm{A}) \Longleftrightarrow(\mathrm{B}) \Longleftrightarrow(\mathrm{C})$ of finite generation on HW1, we could add the following equivalent condition (you don't need to prove this).
An R-module M is finitely generated if and only if:
(D) There exists a short exact sequence $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$ where F is a finitely generated free module.

Question 5. Let M be a finitely generated R-module. Prove that the following are equivalent.
(A) There exists a short exact sequence $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$ where F is a finitely generated free module and A is finitely generated.
(B) For every short exact sequence $0 \rightarrow Q \rightarrow F \rightarrow M \rightarrow 0$ where F is a finitely generated free module, Q is finitely generated.

When these equivalent conditions hold, we say that the R-module M is finitely presented.

Question 6*. (Make sure you understand this, but don't write it up.) Let R be a commutative ring, and $S \subset R$ a multiplicative set. Consider a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$. Applying the localization functor, we obtain maps $S^{-1} A \xrightarrow{S^{-1} \alpha} S^{-1} B$ and $S^{-1} B \xrightarrow{S^{-1} \beta} S^{-1} C$.

Prove that $0 \rightarrow S^{-1} A \xrightarrow{S^{-1} \alpha} S^{-1} B \xrightarrow{S^{-1} \beta} S^{-1} C \rightarrow 0$ is a short exact sequence.
(Hint: this is essentially equivalent to $\operatorname{ker}\left(S^{-1} f\right)=S^{-1} \operatorname{ker}(f)$ and $\operatorname{im}\left(S^{-1} f\right)=S^{-1} \operatorname{im}(f)$, which we saw in class. So just make sure you understand why it holds.)
(cont)

Let R be a commutative ring, and $S \subset R$ a multiplicative set. Given an R-linear map $f: M \rightarrow N$, in class we defined ${ }^{1}$ the $R\left[\frac{1}{S}\right]$-linear map $\frac{f}{S}: S^{-1} M \rightarrow S^{-1} N$ given by $\frac{f}{S}\left(\frac{m}{s}\right)=\frac{f(m)}{s}$.

A natural question is whether every $R\left[\frac{1}{S}\right]$-linear map from $S^{-1} M$ to $S^{-1} N$ is of this form. Thinking a moment shows this can't quite be true: for example, the map $g: \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow \mathbb{Z}\left[\frac{1}{2}\right]$ given by $g(x)=\frac{1}{2^{10}} \cdot x$ can't come from a map $\mathbb{Z} \rightarrow \mathbb{Z}$.

So the real question is whether, for every $g: S^{-1} M \rightarrow S^{-1} N$, there exist $s \in S$ and $f: M \rightarrow N$ such that $s \cdot g=\frac{f}{S}$. In this question, you will show that this holds when M is finitely presented.

Question 7. If we set $L(f)=\frac{f}{S}$, this gives a set function

$$
L: \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R\left[\frac{1}{S}\right]}\left(S^{-1} M, S^{-1} N\right) .
$$

Observe that L is actually R-linear (you do not need to prove this).
Prove that if M is finitely presented, then L is the localization map of the R-module $\operatorname{Hom}_{R}(M, N)$. More precisely, for any M the universal property gives a map

$$
L^{\prime}: S^{-1} \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R\left[\frac{1}{S}\right]}\left(S^{-1} M, S^{-1} N\right) ;
$$

you must prove that if M is finitely presented, then L^{\prime} is an isomorphism.

Question 8. Give a counterexample to Q 7 when M is not finitely presented, by exhibiting some $g: S^{-1} M \rightarrow S^{-1} N$ for which there do not exist $s \in S$ and $f: M \rightarrow N$ such that $s \cdot g=\frac{f}{S}$. (Note: you don't have to take R to be some crazy ring for this.)

[^0]Question 9. Given elements r_{1}, \ldots, r_{k} in a commutative ring R, prove the following are equivalent.
(A) These elements generate the unit ideal: $\left(r_{1}, \ldots, r_{k}\right)=R$;
in other words, there exist $a_{1}, \ldots, a_{k} \in R$ such that $a_{1} r_{1}+\cdots+a_{k} r_{k}=1$.
(B) An R-module M is $0 \Longleftrightarrow$ the $R\left[\frac{1}{r_{i}}\right]$-module $M\left[\frac{1}{r_{i}}\right]$ is 0 for all $i=1, \ldots, k$.

Question 10. Let R be a commutative ring, and let M be an R-module.
Prove that if M is finitely presented, the following are equivalent.
(A) M is projective. (see Q2]
(B) M is locally free, meaning there exist r_{1}, \ldots, r_{k} in R with $\left(r_{1}, \ldots, r_{k}\right)=R$ such that $M\left[\frac{1}{r_{i}}\right]$ is a free $R\left[\frac{1}{r_{i}}\right]$-module for all $i=1, \ldots, n$.
(C) M_{P} is a free R_{P}-module for all prime ideals P.
(D) $M_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$-module for all maximal ideals \mathfrak{m}.

Question 11. (Hard) Extend the equivalence in Q 10 to include the following equivalent condition (still under the assumption that M is finitely presented):
(E) Every linear dependence in M is trivial, in the sense below.

A linear dependence in M is a list of module elements $m_{1}, \ldots, m_{n} \in M$ and ring elements $r_{1}, \ldots, r_{n} \in R$ such that $r_{1} m_{1}+\cdots+r_{n} m_{n}=0$ in M.

A trivial linear dependence is, colloquially, something like

$$
\begin{aligned}
& \left(10 v_{1}-3 v_{2}\right) \\
+ & 2 \cdot\left(-3 v_{1}+v_{2}\right) \\
+ & \left(-4 v_{1}+v_{2}\right) \\
= & (10-6-4) v_{1}+(-3+2+1) v_{2} \\
= & 0 v_{1}+0 v_{2}=0 .
\end{aligned}
$$

Formally, a linear dependence is trivial if there exist module elements $v^{1}, \ldots, v^{k} \in M$ and ring elements $a_{i}^{j} \in R$ such that

$$
\begin{array}{lc}
a_{i}^{1} v^{1}+a_{i}^{2} v^{2}+\cdots+a_{i}^{k} v^{k}=m_{i} & \text { for all } i \\
r_{1} a_{1}^{j}+r_{2} a_{2}^{j}+\cdots+r_{n} a_{n}^{j}=0 & \text { for all } j
\end{array}
$$

[^0]: ${ }^{1}$ in class I called this $S^{-1} f$ instead of $\frac{f}{S}$, but that will get too hard to write.

