Math 210A: Modern Algebra Thomas Church (tfchurch@stanford.edu) http://math.stanford.edu/~church/teaching/210A-F17

Homework 3

Due Thursday night, October 12 (technically 5am Oct. 13)

Given *R*-module homomorphisms $A \xrightarrow{\alpha} B$ and $B \xrightarrow{\beta} C$ with $\beta \circ \alpha = 0$, we say they form a short exact sequence, and write $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$, if

- (i) $\alpha \colon A \to B$ is injective;
- (ii) $\beta: B \to C$ is surjective; and
- (iii) $\operatorname{im}(\alpha) = \operatorname{ker}(\beta)$.

(The content is essentially the same as saying that $C \cong B/A$, except that it allows us the freedom to consider e.g. that A might not actually be a *subset* of B.) We might sometimes leave the labels α and β off, if we don't need names for the maps at the moment, but these maps are still an essential part of the SES.

Question 1. Consider a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$. Prove that the following are equivalent.

- (A) There exists a homomorphism $\sigma: C \to B$ such that $\beta \circ \sigma = \mathrm{id}_C$.
- (B) There exists a homomorphism $\tau: B \to A$ such that $\tau \circ \alpha = \mathrm{id}_A$.
- (C) There exists an isomorphism $\varphi \colon B \to A \oplus C$ under which α corresponds to the inclusion $A \hookrightarrow A \oplus C$ and β corresponds to the projection $A \oplus C \twoheadrightarrow C$.

When these equivalent conditions hold, we say the short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ splits. We can also equivalently say " $\beta: B \to C$ splits" (since by (i) this only depends on β) or " $\alpha: A \to B$ splits" (by (ii)).

Question 2. Given an *R*-module, prove that the following are equivalent.

- (A) Every short exact sequence $0 \to A \to B \to M \to 0$ splits.
- (B) There exists some *R*-module *N* such that $M \oplus N$ is free.

When these equivalent conditions hold, we say that the R-module M is projective.

Given R-modules M and N, recall that $\operatorname{Hom}_R(M, N)$ is an R-module where $(rf+g)(m) = r \cdot f(m) + g(m)$. We can leave off the subscript if the ring R is unambiguous from context.

Question 3*. (Make sure you understand this, but don't write it up.) Consider a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$.

(a) Prove for any X that Hom(C, X) can be identified with

$$\{f \in \operatorname{Hom}(B, X) \mid f \circ \alpha = 0\} = \ker \operatorname{Hom}(B, X) \xrightarrow{-\circ \alpha} \operatorname{Hom}(A, X).$$

(b) Prove for any Y that Hom(Y, A) can be identified with

$$\{f \in \operatorname{Hom}(Y,B) \mid \beta \circ f = 0\} = \ker \operatorname{Hom}(Y,B) \xrightarrow{\beta \circ -} \operatorname{Hom}(Y,C).$$

Question 4^{*}. (NO LONGER ASSIGNED)

Let R be a commutative ring, and let M be a finitely generated R-module. Prove that if $\alpha: M \to M$ is surjective, then it is an isomorphism.

(Note the following useful consequence: any n elements that generate \mathbb{R}^n are actually a basis of \mathbb{R}^n .)

To the equivalent definitions (A) \iff (B) \iff (C) of finite generation on HW1, we could add the following equivalent condition (you don't need to prove this). An *R*-module *M* is finitely generated if and only if:

(D) There exists a short exact sequence $0 \to A \to F \to M \to 0$ where F is a finitely generated free module.

Question 5. Let M be a finitely generated R-module. Prove that the following are equivalent.

- (A) There exists a short exact sequence $0 \to A \to F \to M \to 0$ where F is a finitely generated free module and A is finitely generated.
- (B) For every short exact sequence $0 \to Q \to F \to M \to 0$ where F is a finitely generated free module, Q is finitely generated.

When these equivalent conditions hold, we say that the R-module M is finitely presented.

Question 6^{*}. (Make sure you understand this, but don't write it up.) Let R be a commutative ring, and $S \subset R$ a multiplicative set. Consider a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$. Applying the localization functor, we obtain maps $S^{-1}A \xrightarrow{S^{-1}\alpha} S^{-1}B$ and $S^{-1}B \xrightarrow{S^{-1}\beta} S^{-1}C$.

Prove that $0 \to S^{-1}A \xrightarrow{S^{-1}\alpha} S^{-1}B \xrightarrow{S^{-1}\beta} S^{-1}C \to 0$ is a short exact sequence. (Hint: this is essentially equivalent to $\ker(S^{-1}f) = S^{-1}\ker(f)$ and $\operatorname{im}(S^{-1}f) = S^{-1}\operatorname{im}(f)$, which we saw in class. So just make sure you understand why it holds.)

(cont)

Let R be a commutative ring, and $S \subset R$ a multiplicative set. Given an R-linear map $f: M \to N$, in class we defined¹ the $R[\frac{1}{S}]$ -linear map $\frac{f}{S}: S^{-1}M \to S^{-1}N$ given by $\frac{f}{S}(\frac{m}{s}) = \frac{f(m)}{s}$. A natural question is whether every $R[\frac{1}{S}]$ -linear map from $S^{-1}M$ to $S^{-1}N$ is of this form.

A natural question is whether every $R[\frac{1}{S}]$ -linear map from $S^{-1}M$ to $S^{-1}N$ is of this form. Thinking a moment shows this can't quite be true: for example, the map $g: \mathbb{Z}[\frac{1}{2}] \to \mathbb{Z}[\frac{1}{2}]$ given by $g(x) = \frac{1}{2^{10}} \cdot x$ can't come from a map $\mathbb{Z} \to \mathbb{Z}$.

So the real question is whether, for every $g: S^{-1}M \to S^{-1}N$, there exist $s \in S$ and $f: M \to N$ such that $s \cdot g = \frac{f}{S}$. In this question, you will show that this holds when M is finitely presented.

Question 7. If we set $L(f) = \frac{f}{S}$, this gives a set function

$$L\colon \operatorname{Hom}_{R}(M,N) \to \operatorname{Hom}_{R[\frac{1}{S}]}(S^{-1}M,S^{-1}N).$$

Observe that L is actually R-linear (you do not need to prove this).

Prove that if M is finitely presented, then L is the localization map of the R-module $\operatorname{Hom}_R(M, N)$. More precisely, for any M the universal property gives a map

$$L' \colon S^{-1}\operatorname{Hom}_{R}(M, N) \to \operatorname{Hom}_{R[\frac{1}{S}]}(S^{-1}M, S^{-1}N);$$

you must prove that if M is finitely presented, then L' is an isomorphism.

Question 8. Give a counterexample to Q7 when M is not finitely presented, by exhibiting some $g: S^{-1}M \to S^{-1}N$ for which there do not exist $s \in S$ and $f: M \to N$ such that $s \cdot g = \frac{f}{S}$. (Note: you don't have to take R to be some crazy ring for this.)

¹in class I called this $S^{-1}f$ instead of $\frac{f}{S}$, but that will get too hard to write.

Question 9. Given elements r_1, \ldots, r_k in a commutative ring R, prove the following are equivalent.

- (A) These elements generate the unit ideal: $(r_1, \ldots, r_k) = R$; in other words, there exist $a_1, \ldots, a_k \in R$ such that $a_1r_1 + \cdots + a_kr_k = 1$.
- (B) An *R*-module *M* is 0 \iff the $R[\frac{1}{r_i}]$ -module $M[\frac{1}{r_i}]$ is 0 for all $i = 1, \ldots, k$.

Question 10. Let R be a commutative ring, and let M be an R-module. Prove that if M is **finitely presented**, the following are equivalent.

- (A) M is projective. (see Q2)
- (B) *M* is *locally free*, meaning there exist r_1, \ldots, r_k in *R* with $(r_1, \ldots, r_k) = R$ such that $M[\frac{1}{r_i}]$ is a free $R[\frac{1}{r_i}]$ -module for all $i = 1, \ldots, n$.
- (C) M_P is a free R_P -module for all prime ideals P.
- (D) $M_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$ -module for all maximal ideals \mathfrak{m} .

Question 11. (Hard) Extend the equivalence in Q10 to include the following equivalent condition (still under the assumption that M is finitely presented):

(E) Every linear dependence in M is trivial, in the sense below.

A linear dependence in M is a list of module elements $m_1, \ldots, m_n \in M$ and ring elements $r_1, \ldots, r_n \in R$ such that $r_1m_1 + \cdots + r_nm_n = 0$ in M.

A trivial linear dependence is, colloquially, something like

$$(10v_1 - 3v_2)$$

+2\cdot (-3v_1 + v_2)
+(-4v_1 + v_2)
=(10 - 6 - 4)v_1 + (-3 + 2 + 1)v_2
=0v_1 + 0v_2 = 0.

Formally, a linear dependence is *trivial* if there exist module elements $v^1, \ldots, v^k \in M$ and ring elements $a_i^j \in R$ such that

$$a_i^1 v^1 + a_i^2 v^2 + \dots + a_i^k v^k = m_i \qquad \text{for all } i$$
$$r_1 a_1^j + r_2 a_2^j + \dots + r_n a_n^j = 0 \qquad \text{for all } j$$