Math 210A, Fall 2017
HW 4 Solutions
Written by Dan Dore
(If you find any errors, please email ddore@stanford.edu)
Question 1. Consider the situation of the snake lemma, where each row is exact:

(a) Construct a connecting homomorphism $d: \operatorname{ker} \gamma \rightarrow \operatorname{coker} \alpha$.
(b^{*}) Check that this yields a complex $\operatorname{ker} \alpha \rightarrow \operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma \xrightarrow{d} \operatorname{coker} \alpha \rightarrow \operatorname{coker} \beta \rightarrow \operatorname{coker} \gamma$.
(c*) Check that this sequence is exact at $\operatorname{ker} \beta$ and coker β.
(d) Check that this sequence is exact at $\operatorname{ker} \gamma$ and coker α.
(e^{*}) Check that if f is injective, then $0 \rightarrow \operatorname{ker} \alpha \rightarrow \operatorname{ker} \beta$ is exact at $\operatorname{ker} \alpha$ also;
and that if g^{\prime} is surjective, then coker $\beta \rightarrow \operatorname{coker} \gamma \rightarrow 0$ is exact at coker γ also.
Note you only need to write up (a) and (d).
Solution. [Comment from Prof. Church: yes, writing out the proof of this kind of diagram-chase argument can be painful - that's why we only do it once, so the rest of the time we can just quote the snake lemma! If you prefer, you can watch Jill Clayburgh give a complete proof ${ }^{11}$ for (a) in the 1980 film It's My Turn.]
(a) Let $c \in \operatorname{ker} \gamma$. Since $g: B \rightarrow C$ is surjective, we can lift c to some $b \in B$ such that $g(b)=c$. Since $\gamma(c)=\gamma(g(b))=0$ and $\gamma \circ g=g^{\prime} \circ \beta$ (by commutativity of the diagram), it follows that $g^{\prime}(\beta(b))=0$. In other words, $\beta(b) \in \operatorname{ker} g^{\prime}$. But by exactness of the diagram we know that $\operatorname{ker} g^{\prime}=\operatorname{im} f^{\prime}$, so there is some $a^{\prime} \in A^{\prime}$ such that $f^{\prime}\left(a^{\prime}\right)=\beta(b)$. Note that since f^{\prime} is injective, a^{\prime} is determined uniquely by $\beta(b)$. We will define d by setting $d(c)=\left[a^{\prime}\right]$, where $\left[a^{\prime}\right]$ means the image of a^{\prime} in coker α.
First, we have to check that this makes sense: to construct a^{\prime}, we had to make a non-canonical choice of b with $g(b)=c$. Now, let $b^{\prime} \in B$ be some other choice, so $g\left(b^{\prime}\right)=g(b)=c$. This means that $g\left(b-b^{\prime}\right)=0$, so $b-b^{\prime} \in \operatorname{ker} g=\operatorname{im} f$, so there is some (not necessarily unique, since we don't know that the top row is exact on the left) $a \in A$ such that $b^{\prime}=b+f(a)$. This means that

$$
\beta\left(b^{\prime}\right)=\beta(b)+\beta(f(a))=f^{\prime}(a)+f^{\prime}(\alpha(a))=f^{\prime}\left(a^{\prime}+\alpha(a)\right)
$$

Now, $\left[a^{\prime}\right]=\left[a^{\prime}+\alpha(a)\right]$ in coker $\alpha=A^{\prime} / \operatorname{im} \alpha$, so any two choices of b with $g(b)=c$ give the same element of coker α, so d is well-defined.
Now, we also need to check that d is a homomorphism. If we have $c=r \cdot c_{1}+c_{2}$ and pick some b_{1}, b_{2} with $g\left(b_{1}\right)=c_{1}, g\left(b_{2}\right)=c_{2}$, then we have $g\left(r \cdot b_{1}+b_{2}\right)=c$. Then, $\beta\left(r \cdot b_{1}+b_{2}\right)=r \cdot \beta\left(b_{1}\right)+\beta\left(b_{2}\right)$, so if $f^{\prime}\left(a_{1}^{\prime}\right)=\beta\left(b_{1}\right)$ and $f^{\prime}\left(a_{2}^{\prime}\right)=\beta\left(b_{2}\right)$, then $f^{\prime}\left(r \cdot a_{1}^{\prime}+a_{2}^{\prime}\right)=\beta\left(r \cdot b_{1}+b_{2}\right)$. Thus, $d(c)=$ $r \cdot a_{1}^{\prime}+a_{2}^{\prime}=r \cdot d\left(c_{1}\right)+d\left(c_{2}\right)$.

[^0](c)
(d) The sequence $\operatorname{ker} \alpha \rightarrow \operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma \rightarrow \operatorname{coker} \alpha \rightarrow \operatorname{coker} \beta \rightarrow \operatorname{coker} \gamma$ is exact at ker γ iff $\operatorname{ker} d=\operatorname{im}(\operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma)$. In other words, we need to show that if $c \in \operatorname{ker} \gamma$ is such that $d(c)=0$, then there is some $b \in \operatorname{ker} \beta$ such that $g(b)=c$.
To show this, let's trace through the definition of d again. Let $b \in B$ be such that $g(b)=c$. Then let $a^{\prime} \in A$ be such that $\beta(b)=f^{\prime}\left(a^{\prime}\right)$; then $d(c)=\left[a^{\prime}\right] \in \operatorname{coker} \alpha$. If $d(c)=\left[a^{\prime}\right]=0$, then $a^{\prime} \in \operatorname{im}(\alpha)$, so $a^{\prime}=\alpha(a)$ for some $a \in A$. Then $\beta(b)=f^{\prime}(\alpha(a))=\beta(f(a))$. Thus, $\beta(b-f(a))=0$. But $g(b-f(a))=g(b)-g(f(a))=g(b)$, since $\operatorname{im} f=\operatorname{ker} g$. Thus, $b^{\prime}=b-f(a) \in \operatorname{ker} \beta$ is such that $g\left(b^{\prime}\right)=c$. This confirms that $\operatorname{ker} d \subset \operatorname{im}(\operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma)$.
To see that the sequence is exact at coker α, we need to show that if $\left[a^{\prime}\right] \in$ coker α is such that $\left[f^{\prime}\left(a^{\prime}\right)\right]=0 \in \operatorname{coker} \beta$, then there is some $c \in \operatorname{ker} \gamma$ such that $d(c)=\left[a^{\prime}\right]$. The condition that $\left[f^{\prime}\left(a^{\prime}\right)\right]=0 \in \operatorname{coker} \beta$ means exactly that there is some $b \in B$ such that $\beta(b)=f^{\prime}\left(a^{\prime}\right)$. Now, let $c=g(b)$. By the definition of $d(c)$, since $g(b)=c$, if $f^{\prime}\left(a^{\prime}\right)=\beta(b)$, then $d(c)=\left[a^{\prime}\right]$. Thus, $\left[a^{\prime}\right] \in \operatorname{im} d$.

A free resolution of an R-module M is a complex

$$
\cdots \rightarrow F_{3} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

which is exact everywhere and where each F_{i} is free.
(Similarly, a projective resolution of M is an exact sequence $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ where each P_{i} is projective, and so on.)

Question 2. Prove that every R-module M has a free resolution

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

Solution. Choose F_{0} to be some free module with a map $F_{0} \rightarrow M \rightarrow 0$. In other words, pick any (not necessarily finite) generating set $\left\{m_{i}\right\}_{i \in I}$ of M and let F_{0} be the free module on generators $\left\{e_{i}\right\}_{i \in I}$, and define the map $F_{0} \rightarrow M$ by $e_{i} \mapsto m_{i}$. This is surjective because the m_{i} are generators for M. Now, we can define all of the $F_{i} \rightarrow F_{i-1}$ by recursion. Assume we have a complex $F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow M \rightarrow 0$ which is exact everywhere except at F_{n}. Then we need to construct some F_{n+1} and a map $\alpha: F_{n+1} \rightarrow F_{n}$ such that $\operatorname{im} \alpha$ is equal to $K_{n}=\operatorname{ker}\left(F_{n} \rightarrow F_{n-1}\right)$. But K_{n} is some R-module, and we can pick a free module F_{n+1} on a set of generators for K_{n} just as we did above to get a map $F_{n+1} \longrightarrow K_{n}$. Then composing this map with the inclusion $K_{n} \longleftrightarrow F_{n}$, we get a map $\alpha: F_{n+1} \rightarrow F_{n}$ such that im $\alpha=K_{n}$. We can continue on this way forever (note that we are not asked to show that the resolution ever terminates, and in some cases it can't!).

Question 3. Let M and N be R-modules, and suppose you have free resolutions

$$
\cdots \rightarrow F_{2} \xrightarrow{d} F_{1} \xrightarrow{d} F_{0} \rightarrow M \xrightarrow{d} 0 \quad \text { and } \quad \cdots \rightarrow G_{2} \xrightarrow{d} G_{1} \xrightarrow{d} G_{0} \xrightarrow{d} N \rightarrow 0 .
$$

Given a homomorphism $f: M \rightarrow N$, prove there exist maps $f_{i}: F_{i} \rightarrow G_{i}$ making a commutative diagram

(To think about, and write up if you find a good answer:) In what sense are the maps f_{i} unique?
Solution. We'll construct the f_{i} inductively, starting with f_{0}. We have the following diagram:

We want to fill in the dotted arrow. Since F_{0} is free, to define f_{0}, we just need to figure out where to map each generator of F_{0}. Call these $\left\{e_{i} \mid i \in I\right\}$ for some set I. We want $\pi^{\prime} \circ f_{0}=f \circ \pi$, so consider the elements $n_{i}=f\left(\pi\left(e_{i}\right)\right) \in N$. Since π^{\prime} is surjective, for each i, there is some g_{i} such that $\pi^{\prime}\left(g_{i}\right)=n_{i}$. Then we can define $F_{0} \rightarrow G_{0}$ by sending e_{i} to g_{i}. Then $\pi^{\prime} \circ f_{0}\left(e_{i}\right)=\pi^{\prime}\left(g_{i}\right)=n_{i}=(f \circ \pi)\left(e_{i}\right)$, so $\pi^{\prime} \circ f_{0}=f \circ \pi$.

Now assume that we've defined f_{i} for $i=0, \ldots, n$, and we want to define f_{n+1}. In other words, we have the following diagram, where we want to fill in the dotted arrow:

In other words, we want to define f_{n+1} such that $d_{n+1} \circ f_{n+1}=f_{n} \circ d_{n+1}$. Let the generators of F_{n+1} be $\left\{e_{i} \mid i \in I\right\}$, and let $g_{i}=f_{n}\left(d\left(e_{i}\right)\right)$. If we can lift the g_{i} to elements $g_{i}^{\prime} \in G_{n+1}$ such that $d_{n+1}\left(g_{i}^{\prime}\right)=g_{i}$, then defining $f_{n+1}\left(e_{i}\right)=g_{i}^{\prime}$ ensures that $d_{n+1} \circ f_{n+1}=f_{n} \circ d_{n+1}$. Because the bottom row of the diagram is an exact sequence, $\operatorname{im} d_{n+1}=\operatorname{ker} d_{n}$, so we need to show that $g_{i} \in \operatorname{ker} d_{n}$, that is, that $d_{n}\left(g_{i}\right)=0$. But by commutativity of the diagram, we have $d_{n}\left(g_{i}\right)=d_{n}\left(f_{n}\left(d_{n+1}\left(e_{i}\right)\right)\right)=f_{n-1}\left(d_{n}\left(d_{n+1}\left(e_{i}\right)\right)\right)=0$, since $d_{n} \circ d_{n+1}=0$. So now we can define f_{n+1} by sending e_{i} to g_{i}^{\prime}.

The question of uniqueness will be discussed in class.
Note: the same statement is true for projective resolutions, and the proof is fairly similar. See if you can fill in the details.

Question 4. Compute an explicit free resolution for M in the following situations:
Solution. (a) $R=\mathbf{Z}, \quad M=\mathbf{Z} \oplus \mathbf{Z} / 12 \mathbf{Z}$.
M is generated by $(1,0)$ and $(0,1)$, so sending a basis for \mathbf{Z}^{2} to these generators gives the first map $d_{0}: \mathbf{Z}^{2} \rightarrow M$, which is surjective. Explicitly, this sends (a, b) to $(a, b+12 \mathbf{Z})$. The kernel of this map consists of pairs (a, b) such that $(a, b+12 \mathbf{Z})=(0,0)$. Thus, the kernel is exactly the set of pairs $(0,12 n)$ for $n \in \mathbf{Z}$. We get a map $d_{1}: \mathbf{Z} \rightarrow \mathbf{Z}^{2}$ by sending n to $(0,12 n)$, and this exactly parametrizes ker d_{1}. Since multiplication by 12 is injective in the domain Z, this map is injective. So we have a resolution:

$$
0 \longrightarrow \mathbf{Z} \underset{\binom{0}{12}}{\frac{d_{1}}{}} \mathbf{Z}^{2} \xrightarrow{d_{0}} M \longrightarrow 0
$$

Note: Once we have a 0 in a free resolution, we can always just continue with 0 from then on:

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \mathbf{Z} \xrightarrow{d_{1}} \mathbf{Z}^{2} \xrightarrow{d_{0}} M \rightarrow 0
$$

So in the cases below where we have a "finite" free resolution (one with a 0 in it), we'll usually leave off the infinite string of 0 's.
(b) $R=\mathbf{Z}, \quad M=\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}$
M is generated by $(1,0)$ and $(0,1)$ so we have a surjection $d_{0}: \mathbf{Z}^{2} \rightarrow M$ sending (a, b) to $(a+3 \mathbf{Z}, b+4 \mathbf{Z})$. The kernel of this map consists of pairs (a, b) with $a \in 3 \mathbf{Z}, b \in 4 \mathbf{Z}$. Thus, we can define $d_{1}: \mathbf{Z}^{2} \rightarrow \mathbf{Z}^{2}$ by sending (m, n) to $(3 m, 4 n)$, so that $\operatorname{im} d_{1}=\operatorname{ker} d_{0}$. Since every element of $3 \mathbf{Z}$ can be written as $3 m$ for a unique m, and likewise for $4 \mathbf{Z}$, it follows that d_{1} is injective, so this gives our resolution:

$$
0 \longrightarrow \mathbf{Z}^{2} \xrightarrow[\left(\begin{array}{ll}
3 & d_{1} \\
0 & 4
\end{array}\right)]{ } \mathbf{Z}^{2} \xrightarrow{d_{0}} M \longrightarrow 0
$$

For a different approach, we could use the Chinese remainder theorem to cut down the ranks a bit: since 3 and 4 are coprime, by CRT we have $\mathbf{Z} / 12 \mathbf{Z} \simeq \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}$ as \mathbf{Z}-modules. In other words, the map $d_{0}: \mathbb{Z} \rightarrow \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}$ defined by $a \mapsto(a+3 \mathbf{Z}, a+4 \mathbf{Z})$ is surjective, and the kernel is $3 \mathbf{Z} \cap 4 \mathbf{Z}=12 \mathbf{Z}$. Thus we can take a resolution:

$$
0 \longrightarrow \mathbf{Z} \underset{(12)}{d_{1}} \mathbf{Z} \xrightarrow{d_{0}} M \longrightarrow 0
$$

where $d_{1}: n \mapsto 12 n$.
(c) $R=\mathbf{R}[T], \quad M=\mathbf{R}^{2}$, with R-module structure where T acts by $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$

Let $e_{1}=(1,0), e_{2}=(0,1)$ be the standard basis for \mathbf{R}^{2} as a \mathbf{R}-module. Since e_{1} and e_{2} generate M as a R-module, they certainly generate M as an $R=\mathbf{R}[T]$-module. However, note that by the definition of the T-action, we have $T \cdot e_{2}=2 e_{1}+e_{2}$, so:

$$
\frac{1}{2}(T-1) \cdot e_{2}=\frac{1}{2}\left(T \cdot e_{2}-e_{2}\right)=\frac{1}{2}\left(2 e_{1}+e_{2}-e_{2}\right)=e_{1}
$$

Thus, e_{2} actually generates M as an R-module (i.e. we can write $(x, y) \in \mathbf{R}^{2}$ as $\left(\frac{x}{2}(T-1)+y\right) \cdot e_{2}=$ $\left.x e_{1}+y e_{2}\right)$. This means that we can define a surjective map $d_{0}: R \rightarrow M \rightarrow 0$ sending $p(T)$ to $p(T) \cdot e_{2}$.
Any quotient of R is isomorphic to R / I for some ideal I. In this case, the kernel of d_{0} is the ideal I of R consisting of all polynomials $p(T)$ such that $p(T) \cdot e_{2}=0$, so let us find this ideal I. Since e_{2} and $T e_{2}$ are linearly independent, no constant or linear polynomial belongs to I. But by the same token, since \mathbf{R}^{2} is 2 -dimensional, $T^{2} e_{2}$ must be a linear combination of e_{2} and $T e_{2}$. Direct computation shows that

$$
T^{2} \cdot e_{2}=T\left(2 e_{1}+e_{2}\right)=2 e_{1}+\left(2 e_{1}+e_{2}\right)=4 e_{1}+e_{2}=2 T\left(e_{2}\right)-e_{2}=(2 T-1) \cdot e_{2} .
$$

Therefore the polynomial $f(T):=T^{2}-2 T+1$ belongs to I. Since $R /(f)$ is 2-dimensional over \mathbf{R}, as is $M \cong R / I$, we conclude that $I=(f)$. [You should think about this if you haven't seen if before.] Therefore we can define $d_{1}: R \rightarrow R$ by $d_{1}(p)=f \cdot p$. Since R is a domain, this is injective, and we obtain the free resolution

$$
0 \longrightarrow R \underset{\left(T^{2}-2 T+1\right)}{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

(d) $R=\mathbf{R}[x, y], \quad M=\mathbf{R}$, with R-module structure where x and y act by 0 .

Since $1 \in \mathbf{R}$ generates M as a \mathbf{R}-module, it certainly generates M as a $R=\mathbf{R}[x, y]$-module, so we can define a surjective homomorphism $d_{0}: R \rightarrow M$ by sending $p(x, y)$ to $p(x, y) \cdot 1$. Let $p(x, y)=a_{0}+x p_{1}(x, y)+y p_{2}(x, y)$ for some $p_{1}, p_{2} \in R, a_{0} \in \mathbf{R}$. Then

$$
p(x, y) \cdot 1=a_{0} \cdot 1+p_{1}(x, y) \cdot(x \cdot 1)+p_{2}(x, y) \cdot(y \cdot 1)=a_{0}
$$

So the kernel of d_{0} is the ideal $I \subseteq \mathbf{R}[x, y]$ consisting exactly of those polynomials whose constant coefficient a_{0} is 0 . Every term of such a polynomial has positive degree in either x or y, so if $p \in \operatorname{ker} d_{0}$, we have $p=x p_{1}+y p_{2}$ for $p_{1}, p_{2} \in R$. In other words, the ideal ker d_{0} is generated as an R-module by x and y (though it is not a principal ideal, since no polynomial of positive degree divides both x and $y)$.
So now, we can define a map $d_{1}: R^{2} \rightarrow R$ by sending (p, q) to $x p+y q$, and by what we've just shown, the following sequence is exact:

$$
R^{2} \xrightarrow[(x y)]{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

Now, what is the kernel of d_{1} ? This consists of all $(p, q) \in R^{2}$ such that $x p+y q=0$. Let (p, q) be some such pair. Rearranging this equation, we have $x p=-y q$. Consider this polynomial $f=x p=-y q$. Since $f(x, y)=x \cdot p(x, y)$, every term of f must be divisible by x. Similarly, since $f(x, y)=-y \cdot q(x, y)$ every term of f must be divisible by y. Therefore every term of f must be divisible 2 by $x y$. In other words, we can write $f(x, y)=x y \cdot g(x, y)$ for some unique g. Note that $p=y \cdot g$ and $q=-x \cdot g$.

We have found that whenever we have a pair (p, q) with $x p+y q=0$, there exists a unique g such that $(p, q)=(y g,-x g)$. In other words, the map $d_{2}: R \rightarrow R^{2}$ defined by $g \mapsto(y g,-x g)$ surjects to ker d_{1}. This map is injective since R is a domain, so we have our resolution:

$$
0 \longrightarrow R \underset{\binom{y}{-x}}{\left.\frac{d_{2}}{(x} y\right)} R^{2} \xrightarrow{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

[^1](e) $R=\mathbf{Z}[\sqrt{-30}], \quad M=\mathbf{F}_{2}$, with R-module structure where $\sqrt{-30}$ acts by 0 .
M is generated by 1 , so we can take a surjection $d_{0}: R \rightarrow M$ sending $a+b \sqrt{-30}$ to $(a+b \sqrt{-30}) \cdot 1=$ $a(\bmod 2)$. This identifies M with the quotient R / I, where $I=\operatorname{ker} d_{0}$ consists of those $a+b \sqrt{-30}$ where a is even. So we have a short exact sequence
$$
0 \rightarrow I \hookrightarrow R \xrightarrow{d_{0}} M \rightarrow 0
$$

To continue this, we must find generators for I. We claim that I is generated by the elements 2 and $\sqrt{-30}$; indeed, if b is even then (since a is assumed even) $a+b \sqrt{-30}$ is already a multiple of 2 , and if b is odd then by subtracting $\sqrt{-30}$ we can reduce to the previous case. (This shows that their \mathbb{Z}-linear combinations generate; but we'd have even their R-linear combinations, if we needed them!)
So if we define $d_{1}: R^{2} \rightarrow R$ by $(x, y) \mapsto 2 \cdot x+\sqrt{-30} \cdot y$, we have $\operatorname{im} d_{1}=\operatorname{ker} d_{0}=I$. This gives a partial resolution

$$
\left.R^{2} \xrightarrow[{(2 \sqrt{-30}})\right]{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

To continue we must compute ker d_{1}. We will do this
Suppose that $(x, y) \in \operatorname{ker} d_{1}$. Write $x=c+d \sqrt{-30}$ and $y=e+f \sqrt{-30}$. Then

$$
d_{1}(x, y)=2 \cdot(c+d \sqrt{-30})+\sqrt{-30}(e+f \sqrt{-30})=(2 c-30 f)+(2 d+e) \sqrt{-30}
$$

Therefore $(x, y) \in \operatorname{ker} d_{1} \Longleftrightarrow c=15 f$ and $e=-2 d$. At this point, let us make a detour to observe that the kernel of d_{1} is isomorphic to I itself. Indeed, this kernel consists of $(x, y)=$ $(15 f+d \sqrt{-30},-2 d+f \sqrt{-30})$. Note that y automatically belongs to I, and given $y \in I$ there is a unique x such that $(x, y) \in \operatorname{ker} d_{1}$. In other words,

$$
\operatorname{ker} d_{1}=\left\{\left.\left(\frac{-\sqrt{-30}}{2} y, y\right) \right\rvert\, y \in I\right\} \simeq I
$$

So the inclusion of ker d_{1} into R^{2} can be viewed as a map $I \rightarrow R^{2}$ giving a short exact sequence

$$
0 \rightarrow I \rightarrow R^{2} \rightarrow I \rightarrow 0
$$

Thus we should be able to just repeat the same computations over and over, so we expect a periodic free resolution.

Returning to ker d_{1}, it is clear that ker d_{1} is generated by the elements $(-\sqrt{-30}, 2)$ and $(15, \sqrt{-30})$ (since even their \mathbb{Z}-linear combinations span). These generators yield a map $d_{2}: R^{2} \rightarrow R^{2}$ giving a partial resolution

$$
R ^ { 2 } \underset { \substack { - \sqrt { - 3 0 } \\
2 \\
2 \\
\sqrt { - 3 0 } } } { d _ { 2 } } R ^ { 2 } \xrightarrow [{\left.{ (\begin{array}{ll}
2 \sqrt{-30})
\end{array}}
\end{array}\right]{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow
$$

But we can check that ker d_{2} is actually equal to ker d_{1}. Indeed, the second coordinate of d_{2} is exactly the same as d_{1}; and the first coordinate is $\frac{-\sqrt{-30}}{2}$ times the second, so they vanish at the same time. Therefore we can keep using the same map over and over, yielding a free resolution:

$$
\left.\cdots \longrightarrow R^{2} \xrightarrow\left[{\left(\begin{array}{cc}
-\sqrt{-30} & 15 \\
2 & \sqrt{-30}
\end{array}\right.}\right)\right]{d_{k}} R^{2} \longrightarrow \cdots \longrightarrow R^{2} \frac{d_{2}}{\left(\begin{array}{cc}
-\sqrt{-30} & 15 \\
2 & \sqrt{-30}
\end{array}\right)} R^{2} \frac{d_{1}}{\left(\begin{array}{ll}
2 \sqrt{-30}
\end{array}\right)} R \xrightarrow{d_{0}} M \longrightarrow
$$

[Note from TC: this is a good example of why it's nice sometimes to be able to use projective resolutions. The ideal $I=(2, \sqrt{-30})$ is projective, as I mentioned in class; so if we are just looking for a projective resolution we could just take

$$
0 \rightarrow I \rightarrow R \rightarrow M \rightarrow 0
$$

and not need to go any further.]
(f) $R=\mathbf{R}[x, y], \quad M=\mathbf{R}[x, y] / I$
where I is the ideal of all polynomials with no constant, linear, or quadratic term.
(in other words, M consists of at-most-quadratic polynomials in x and y)
We already have M written as $\mathbf{R}[x, y] / I=R / I$, so we have an exact sequence:

$$
0 \longrightarrow I \longrightarrow R \xrightarrow{d_{0}} M \longrightarrow 0
$$

If $p(x, y) \in I$, then every term of $p(x, y)$ has degree at least 3 . Thus, each term is divisible by some monomial of degree 3. There are four of these: $\alpha=x^{3}, \beta=x^{2} y, \gamma=x y^{2}, \delta=y^{3}$. These 4 elements generate the ideal I, and thus define a surjection $R^{4} \rightarrow I$ sending

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \mapsto p_{1} \alpha+p_{2} \beta+p_{3} \gamma+p_{4} \delta=p_{1} x^{3}+p_{2} x^{2} y+p_{3} x y^{2}+p_{4} y^{3} .
$$

Composing this with $I \hookrightarrow R$, we have $d_{1}: R^{4} \rightarrow R$ with im $d_{1}=I=\operatorname{ker} d_{0}$:

$$
\left.R_{\left(x^{3} x^{2} y x y^{2} y^{3}\right.}^{4}\right) R \xrightarrow{d_{1}} R \xrightarrow{d_{0}} M
$$

To continue, we need to find relations among the elements α, β, γ, and δ. A few relations jump right out at us: $y \alpha=x \beta$ (both equal $x^{3} y$), $y \beta=x \gamma$ (both equal $x^{2} y^{2}$), and $y \gamma=x \delta$ (both equal $x y^{3}$). These three relations lead us to consider the map $d_{2}: R^{3} \rightarrow R^{4}$ sending the basis to the elements $(y,-x, 0,0),(0, y,-x, 0)$, and $(0,0, y,-x)$.
Since these were relations, we know that $d_{1} \circ d_{2}=0$, or in other words im $d_{2} \subset \operatorname{ker} d_{1}$. Now, one natural way to proceed would be to prove that these relations generate all relations between $\alpha, \beta, \gamma, \delta$; in other words, that $\operatorname{im} d_{2}=\operatorname{ker} d_{1}$. This would work fine, but for variety, we will take a different approach.

We have a complex

$$
R^{3} \xrightarrow\left[\left(\begin{array}{cc}
y & d_{2} \\
-x & y \\
& -x
\end{array}\right]{\substack{y \\
\\
\\
\\
-x}}\right) R^{4} \xrightarrow[\left(x^{3} x^{2} y x y^{2} y^{3}\right)]{d_{1}} I \longrightarrow 0
$$

but keep in mind that we do not yet know it is exact at R^{4}. Instead, let us show that d_{2} is injective. This is surprisingly easy. Suppose $(f, g, h) \in R^{3}$ belongs to $\operatorname{ker} d_{2}$. Applying d_{2}, we have

$$
d_{2}(f, g, h)=(y f, y g-x f, y h-x g,,-x h) .
$$

If this is 0 , then examining the first coordinate shows that $y f=0$, and thus $f=0$ (since R is a domain). Given this, examining the second coordinate shows that $y g=0$, and thus $g=0$; and then the
third coordinate shows that $y h=0$ and thus $h=0$. Therefore d_{2} is injective, and so we know this complex is exact except possibly at R^{4}.

$$
0 \longrightarrow R^{3} \xrightarrow[\left(\begin{array}{ccc}
y & d_{2} \\
-x & y & \\
& -x & y \\
& & -x
\end{array}\right)]{ } R^{4} \xrightarrow[\left(x^{3} x^{2} y x y^{2} y^{3}\right)]{d_{1}} I \longrightarrow 0
$$

It remains to show that $\operatorname{im} d_{2}$ is all of ker d_{1}. We can do this by showing that they have the "same dimension" in a certain sense. As a vector space, we can split $R=\mathrm{R}[x, y]$ as a direct sum $R=$ $\bigoplus_{n \geq 0} R_{n}$ where $R_{n}=\left\langle x^{n}, x^{n-1} y, \ldots, x y^{n-1}, y^{n}\right\rangle$ is the "degree n " part of R. note that $\operatorname{dim}_{R} R_{n}=$ $n+1$.

Because every element in the matrix for d_{2} is a pure linear polynomial, the map d_{2} is "homogeneous", in the sense that $d_{2}\left(R_{n}^{3}\right) \subset R_{n+1}^{4}$. Similarly, since every element in the matrix for d_{1} is a pure cubic polynomial, the map d_{1} is homogeneous: $d_{1}\left(R_{m}^{4}\right) \subset R_{m+3}$. Therefore we can split this complex up as a direct sum over $k \geq 0$ of the complexes

$$
0 \longrightarrow R_{k-4}^{3} \xrightarrow{d_{2}^{(k)}} R_{k-3}^{4} \xrightarrow{d_{1}^{(k)}} I_{k} \longrightarrow 0
$$

In particular, im $d_{2}^{(k)}$ is a subspace of ker $d_{1}^{(k)}$. Let us look at the dimensions here for large k first (we'll check small k afterwards). For large k we have $\operatorname{dim} R_{k-3}^{4}=4((k-3)+1)=4(k-2)=4 k-8$, and $\operatorname{dim} I_{k}=\operatorname{dim} R_{k}=k+1$. Since $d_{1}^{(k)}$ is surjective, we conclude that

$$
\operatorname{dim} \operatorname{ker} d_{1}^{(k)}=\operatorname{dim} R_{k-3}^{4}-\operatorname{dim} I_{k}=3 k-9
$$

But at the same time $\operatorname{dim} R_{k-4}^{3}=3((k-4)+1)=3(k-3)=3 k-9$. Since $d_{2}^{(k)}$ is injective, we find that $\operatorname{dim} \operatorname{im} d_{2}^{(k)}=3 k-9=\operatorname{dim} \operatorname{ker} d_{1}^{(k)}$. It follows that $\operatorname{im} d_{2}^{(k)}=\operatorname{ker} d_{1}^{(k)}$, at least for large k. The computation above holds as long as $k-4 \geq 0$, i.e. when $k \geq 4$. For $k=3$ the complex is just

$$
0 \rightarrow 0 \rightarrow R_{0}^{4} \xrightarrow{d_{1}^{(3)}} I_{3} \rightarrow 0
$$

Since $\operatorname{dim} I_{3}=\operatorname{dim} R_{3}=4$, and $d_{1}^{(3)}$ is surjective, it is an isomorphism, so this is still exact. Finally, for $k<3$ all three terms here vanish. We conclude that $\operatorname{im} d_{2}^{(k)}=\operatorname{ker} d_{1}^{(k)}$ for all k, and thus $\operatorname{im} d_{2}=\operatorname{ker} d_{1}$. Therefore our free resolution is

$$
0 \longrightarrow R^{3} \xrightarrow[\left(\begin{array}{ccc}
y & d_{2} \\
-x & y & \\
& -x & y \\
& & -x
\end{array}\right)]{R_{(}^{4} \xrightarrow[\left(x^{3} x^{2} y x y^{2} y^{3}\right)]{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0 ~ . ~}
$$

(g) $R=\mathbf{Z}[t] /\left(t^{2}-1\right), \quad M=\mathbf{Z}$, with R-module structure where t acts by the identity.
M is generated by 1 , so we have a surjection $\pi: R \rightarrow M$ sending r to $r \cdot 1$. We can write an element $r \in R$ uniquely as $a+b t:$ if $p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0} \in \mathbf{Z}[t]$ for $n \geq 2$, then in R, $p(t)=p(t)-t^{n-2}\left(t^{2}-1\right)$, and this has degree $n-1$. We can repeat this process until we reach a representative with degree 1 . This representation is unique since $(a+b t)-\left(a^{\prime}+b^{\prime} t\right)$ is always linear, so it is never divisible by $t^{2}-1$ in $\mathbf{Z}[t]$. Then we have $\pi(a+b t)=(a+b t) \cdot 1=a+b$. This is zero iff $a=-b$, i.e. if $r=b(t-1)$ for some $b \in \mathbf{Z}$. Conversely, if $r=r^{\prime}(t-1)$ for some $r^{\prime} \in R$, we have $r \cdot 1=r^{\prime} \cdot((t-1) \cdot 1)=r^{\prime} \cdot 0=0$. Thus, ker $\pi=(t-1) R$, so we can take $f_{0}: R \rightarrow R$ to be multiplication by $(t-1)$, and im $f_{0}=\operatorname{ker} \pi$.
Since R is not a domain, we can't automatically conclude that f_{0} is injective as we have before. In fact, f_{0} is not injective, since $(t+1) \neq 0$ in R, but $f_{0}(t+1)=(t-1)(t+1)=t^{2}-1=0$ in R. Thus, $(t+1) R \subseteq \operatorname{ker} f_{0}$. Conversely, let $r \in \operatorname{ker} f_{0}$. We can write r as $r=a+b t$ for $a, b \in \mathbf{Z}$. Then $0=f_{0}(r)=(t-1)(a+b t)=b t^{2}+(a-b) t-a=b\left(t^{2}-1\right)+(a-b) t-(a-b)=(a-b)(t-1)$. Since the representation of an element of R as $a+b t$ is unique, this implies that $a-b=0$, so we have $r=a(1+t)$. Thus, we see that ker $f_{0}=(t+1) R$. This allows us to define $f_{1}: R \rightarrow R$ to be multiplication by $(t+1)$, and $\operatorname{im} f_{1}=\operatorname{ker} f_{0}$.

Now, ker f_{1} consists of those elements $a+b t$ such that $(t+1)(a+b t)=b t^{2}+(a+b) t+a=$ $(a+b)(t-1)=0$. As above, this is true iff $a+b=0$, so ker f_{1} consists of elements of the form $a(t-1)$, i.e. ker $f_{1}=(t-1) R$. Note that this is the same as ker π, so we can define $f_{2}: R \rightarrow R$ to be equal to f_{0}, and repeat off to infinity. What we end up with is an infinite resolution:

$$
\cdots \longrightarrow R \xrightarrow[\longrightarrow]{f_{4}} R \xrightarrow{f_{3}} R \xrightarrow{f_{2}} R \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R \xrightarrow{\pi} M \longrightarrow
$$

with f_{n} equal to multiplication by $(t+1)$ when n is odd and f_{n} equal to multiplication by $(t-1)$ when n is even.

Question 5. Consider the map $f: M \rightarrow N$ from $M=\mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$ to $N=\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ sending $(a \in \mathbb{Z}, b \in \mathbb{Z} / 12 \mathbb{Z})$ to ($\bar{a} \in \mathbb{Z} / 3 \mathbb{Z}, \bar{b} \in \mathbb{Z} / 4 \mathbb{Z}$). If

$$
\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 \quad \text { and } \quad \cdots \rightarrow G_{1} \rightarrow G_{0} \rightarrow N \rightarrow 0
$$

are the free resolutions of M and N that you constructed in Q4(a) and Q4(b), describe explicitly the maps $f_{i}: F_{i} \rightarrow G_{i}$ as in Q3.

Solution. Copying down the free resolutions written above, we have:

and our job is to describe the vertical arrows. Recall that $d_{0}: \mathbf{Z}^{2} \rightarrow M$ is defined by $(a, b) \mapsto(a, b+12 \mathbf{Z})$ and $d_{0}^{\prime}: \mathbf{Z} \rightarrow N$ is defined by $n \mapsto(n+3 \mathbf{Z}, n+4 \mathbf{Z})$. Now, $f\left(d_{0}(1,0)\right)=f(1,0)=(1+3 \mathbf{Z}, 0)$. Following the proof of Question 3, we define $f_{0}(1,0)$ by choosing some $n \in \mathbf{Z}$ such that $d_{0}^{\prime}(n)=(1+3 \mathbf{Z}, 0)$. Choosing
$n=4$ works, since 4 is $1 \bmod 3$ and $0 \bmod 4$. Note that the possible choices for $f_{0}(1,0)$ are exactly $4+12 \mathbf{Z}$. Similarly, to define $f_{0}(0,1)$, we need to pick some $n \in \mathbf{Z}$ such that $d_{0}^{\prime}(n)=(0,1+4 \mathbf{Z}) . n=9$ works, since this is $0 \bmod 3$ and $1 \bmod 4($ and again, the possible choices are $9+12 \mathbf{Z})$.

So $f_{0}: \mathbf{Z}^{2} \rightarrow \mathbf{Z}$ sends (a, b) to $4 a+9 b$. Now, f_{1} is uniquely determined by $f_{1}(1)$. This is defined to by choosing some $n \in \mathbf{Z}$ such that $d_{1}^{\prime}(n)=f_{0}\left(d_{1}(1)\right)$. But recall that $d_{1}: \mathbf{Z} \rightarrow \mathbf{Z}^{2}$ is the map sending n to $(0,12 n)$, so $f_{0}\left(d_{1}(1)\right)=f_{0}(0,12)=108$. Now, d_{1}^{\prime} is defined to be multiplication by 12 , so we must choose $f_{1}(1)=9$. Thus, f_{1} is multiplication by 9 . Note that if we had chosen f_{0} differently, by replacing 9 with $9+12 k$ for some $k \in \mathbf{Z}, f_{1}$ would have to become multiplication by $9+12 k$.

[^0]: ${ }^{1}$ https://youtu.be/etbcKWEKnvg. To think about, but not write up: the gender dynamic in this classroom.

[^1]: ${ }^{2}$ In general you might use that $\mathbf{R}[x, y]$ is a unique factorization domain for an argument like this, but for x and y we can just do it directly.

