
MATH 210A, FALL 2017
HW 4 SOLUTIONS

WRITTEN BY DAN DORE

(If you find any errors, please email ddore@stanford.edu)

Question 1. Consider the situation of the snake lemma, where each row is exact:

A
f
//

α
��

B
g
//

β
��

C //

γ
��

0

0 // A′
f ′
// B′

g′
// C ′

(a) Construct a connecting homomorphism d : ker γ → cokerα.

(b*) Check that this yields a complex kerα→ kerβ → ker γ
d−→ cokerα→ cokerβ → coker γ.

(c*) Check that this sequence is exact at kerβ and cokerβ.

(d) Check that this sequence is exact at ker γ and cokerα.

(e*) Check that if f is injective, then 0→ kerα→ kerβ is exact at kerα also;
and that if g′ is surjective, then cokerβ → coker γ → 0 is exact at coker γ also.

Note you only need to write up (a) and (d).

Solution. [Comment from Prof. Church: yes, writing out the proof of this kind of diagram-chase argument
can be painful — that’s why we only do it once, so the rest of the time we can just quote the snake lemma! If
you prefer, you can watch Jill Clayburgh give a complete proof1 for (a) in the 1980 film It’s My Turn.]

(a) Let c ∈ ker γ. Since g : B → C is surjective, we can lift c to some b ∈ B such that g(b) = c. Since
γ(c) = γ(g(b)) = 0 and γ ◦ g = g′ ◦β (by commutativity of the diagram), it follows that g′(β(b)) = 0.
In other words, β(b) ∈ ker g′. But by exactness of the diagram we know that ker g′ = im f ′, so there
is some a′ ∈ A′ such that f ′(a′) = β(b). Note that since f ′ is injective, a′ is determined uniquely by
β(b). We will define d by setting d(c) = [a′], where [a′] means the image of a′ in cokerα.

First, we have to check that this makes sense: to construct a′, we had to make a non-canonical choice
of b with g(b) = c. Now, let b′ ∈ B be some other choice, so g(b′) = g(b) = c. This means that
g(b− b′) = 0, so b− b′ ∈ ker g = im f , so there is some (not necessarily unique, since we don’t know
that the top row is exact on the left) a ∈ A such that b′ = b+ f(a). This means that

β(b′) = β(b) + β(f(a)) = f ′(a) + f ′(α(a)) = f ′(a′ + α(a))

Now, [a′] = [a′ + α(a)] in cokerα = A′/ imα, so any two choices of b with g(b) = c give the same
element of cokerα, so d is well-defined.

Now, we also need to check that d is a homomorphism. If we have c = r · c1 + c2 and pick some b1, b2
with g(b1) = c1, g(b2) = c2, then we have g(r · b1+ b2) = c. Then, β(r · b1+ b2) = r ·β(b1)+β(b2),
so if f ′(a′1) = β(b1) and f ′(a′2) = β(b2), then f ′(r · a′1 + a′2) = β(r · b1 + b2). Thus, d(c) =

r · a′1 + a′2 = r · d(c1) + d(c2).
1https://youtu.be/etbcKWEKnvg. To think about, but not write up: the gender dynamic in this classroom.
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(b)

(c)

(d) The sequence kerα → kerβ → ker γ → cokerα → cokerβ → coker γ is exact at ker γ iff
ker d = im(kerβ → ker γ). In other words, we need to show that if c ∈ ker γ is such that d(c) = 0,
then there is some b ∈ kerβ such that g(b) = c.

To show this, let’s trace through the definition of d again. Let b ∈ B be such that g(b) = c. Then let
a′ ∈ A be such that β(b) = f ′(a′); then d(c) = [a′] ∈ cokerα. If d(c) = [a′] = 0, then a′ ∈ im(α),
so a′ = α(a) for some a ∈ A. Then β(b) = f ′(α(a)) = β(f(a)). Thus, β(b − f(a)) = 0. But
g(b− f(a)) = g(b)− g(f(a)) = g(b), since im f = ker g. Thus, b′ = b− f(a) ∈ kerβ is such that
g(b′) = c. This confirms that ker d ⊂ im(kerβ → ker γ).

To see that the sequence is exact at cokerα, we need to show that if [a′] ∈ cokerα is such that
[f ′(a′)] = 0 ∈ cokerβ, then there is some c ∈ ker γ such that d(c) = [a′]. The condition that
[f ′(a′)] = 0 ∈ cokerβ means exactly that there is some b ∈ B such that β(b) = f ′(a′). Now,
let c = g(b). By the definition of d(c), since g(b) = c, if f ′(a′) = β(b), then d(c) = [a′]. Thus,
[a′] ∈ im d.

A free resolution of an R-module M is a complex

· · · → F3 → F2 → F1 → F0 →M → 0

which is exact everywhere and where each Fi is free.
(Similarly, a projective resolution of M is an exact sequence · · · → P2 → P1 → P0 → M → 0

where each Pi is projective, and so on.)

Question 2. Prove that every R-module M has a free resolution

· · · → F2 → F1 → F0 →M → 0.

Solution. Choose F0 to be some free module with a map F0 → M → 0. In other words, pick any (not
necessarily finite) generating set {mi}i∈I of M and let F0 be the free module on generators {ei}i∈I , and
define the map F0 →M by ei 7→ mi. This is surjective because the mi are generators for M . Now, we can
define all of the Fi → Fi−1 by recursion. Assume we have a complex Fn → Fn−1 → · · · → F0 →M → 0

which is exact everywhere except at Fn. Then we need to construct some Fn+1 and a map α : Fn+1 → Fn
such that imα is equal to Kn = ker(Fn → Fn−1). But Kn is some R-module, and we can pick a free
module Fn+1 on a set of generators for Kn just as we did above to get a map Fn+1 −� Kn. Then composing
this map with the inclusion Kn ↪−→ Fn, we get a map α : Fn+1 → Fn such that imα = Kn. We can
continue on this way forever (note that we are not asked to show that the resolution ever terminates, and in
some cases it can’t!).
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Question 3. Let M and N be R-modules, and suppose you have free resolutions
· · · → F2

d−→ F1
d−→ F0 →M

d−→ 0 and · · · → G2
d−→ G1

d−→ G0
d−→ N → 0.

Given a homomorphism f : M → N , prove there exist maps fi : Fi → Gi making a commutative diagram

· · · // F2
d //

f2
��

F1
d //

f1
��

F0
//

f0
��

M

f
��

// 0

· · · // G2
d // G1

d // G0
// N // 0

(To think about, and write up if you find a good answer:) In what sense are the maps fi unique?

Solution. We’ll construct the fi inductively, starting with f0. We have the following diagram:

· · · // F2
d // F1

d // F0
π //

f0
��

M

f
��

// 0

· · · // G2
d // G1

d // G0
π′ // N // 0

We want to fill in the dotted arrow. Since F0 is free, to define f0, we just need to figure out where to map each
generator of F0. Call these {ei | i ∈ I} for some set I . We want π′ ◦ f0 = f ◦ π, so consider the elements
ni = f(π(ei)) ∈ N . Since π′ is surjective, for each i, there is some gi such that π′(gi) = ni. Then we can
define F0 → G0 by sending ei to gi. Then π′ ◦ f0(ei) = π′(gi) = ni = (f ◦ π)(ei), so π′ ◦ f0 = f ◦ π.

Now assume that we’ve defined fi for i = 0, . . . , n, and we want to define fn+1. In other words, we have
the following diagram, where we want to fill in the dotted arrow:

· · · // Fn+1
dn+1

//

fn+1

��

Fn
dn //

fn
��

Fn−1 //

fn−1

��

· · · // F0
//

f0
��

M

f

��

// 0

· · · // Gn+1
dn+1

// Gn
dn // Gn−1 // · · · // G0

// N // 0

In other words, we want to define fn+1 such that dn+1 ◦ fn+1 = fn ◦ dn+1. Let the generators of Fn+1 be
{ei | i ∈ I}, and let gi = fn(d(ei)). If we can lift the gi to elements g′i ∈ Gn+1 such that dn+1(g

′
i) = gi,

then defining fn+1(ei) = g′i ensures that dn+1 ◦ fn+1 = fn ◦ dn+1. Because the bottom row of the diagram
is an exact sequence, im dn+1 = ker dn, so we need to show that gi ∈ ker dn, that is, that dn(gi) = 0. But
by commutativity of the diagram, we have dn(gi) = dn(fn(dn+1(ei))) = fn−1(dn(dn+1(ei))) = 0, since
dn ◦ dn+1 = 0. So now we can define fn+1 by sending ei to g′i.

The question of uniqueness will be discussed in class.
Note: the same statement is true for projective resolutions, and the proof is fairly similar. See if you can

fill in the details.
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Question 4. Compute an explicit free resolution for M in the following situations:

Solution. (a) R = Z, M = Z⊕ Z/12Z.

M is generated by (1, 0) and (0, 1), so sending a basis for Z2 to these generators gives the first map
d0 : Z

2 →M , which is surjective. Explicitly, this sends (a, b) to (a, b+ 12Z). The kernel of this map
consists of pairs (a, b) such that (a, b + 12Z) = (0, 0). Thus, the kernel is exactly the set of pairs
(0, 12n) for n ∈ Z. We get a map d1 : Z→ Z2 by sending n to (0, 12n), and this exactly parametrizes
ker d1. Since multiplication by 12 is injective in the domain Z, this map is injective. So we have a
resolution:

0 // Z
d1(
0
12

) // Z2 d0 //M // 0

Note: Once we have a 0 in a free resolution, we can always just continue with 0 from then on:

· · · → 0→ 0→ 0→ Z
d1−→ Z2 d0−→M → 0

So in the cases below where we have a “finite” free resolution (one with a 0 in it), we’ll usually leave
off the infinite string of 0’s.

(b) R = Z, M = Z/3Z⊕ Z/4Z

M is generated by (1, 0) and (0, 1) so we have a surjection d0 : Z2 →M sending (a, b) to (a+ 3Z, b+ 4Z).
The kernel of this map consists of pairs (a, b) with a ∈ 3Z, b ∈ 4Z. Thus, we can define d1 : Z2 → Z2

by sending (m,n) to (3m, 4n), so that im d1 = ker d0. Since every element of 3Z can be written as
3m for a unique m, and likewise for 4Z, it follows that d1 is injective, so this gives our resolution:

0 // Z2 d1(
3 0
0 4

)// Z2 d0 //M // // 0

For a different approach, we could use the Chinese remainder theorem to cut down the ranks a bit:
since 3 and 4 are coprime, by CRT we have Z/12Z ' Z/3Z⊕ Z/4Z as Z-modules. In other words,
the map d0 : Z → Z/3Z ⊕ Z/4Z defined by a 7→ (a + 3Z, a + 4Z) is surjective, and the kernel is
3Z ∩ 4Z = 12Z. Thus we can take a resolution:

0 // Z
d1

( 12 )
//// Z

d0 //M // 0

where d1 : n 7→ 12n.
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(c) R = R[T ], M = R2, with R-module structure where T acts by

(
1 2

0 1

)
Let e1 = (1, 0), e2 = (0, 1) be the standard basis for R2 as a R-module. Since e1 and e2 generate
M as a R-module, they certainly generate M as an R = R[T ]-module. However, note that by the
definition of the T -action, we have T · e2 = 2e1 + e2, so:

1

2
(T − 1) · e2 =

1

2
(T · e2 − e2) =

1

2
(2e1 + e2 − e2) = e1

Thus, e2 actually generatesM as anR-module (i.e. we can write (x, y) ∈ R2 as
(
x
2 (T − 1) + y

)
·e2 =

xe1+ye2). This means that we can define a surjective map d0 : R→M → 0 sending p(T ) to p(T ) ·e2.

Any quotient of R is isomorphic to R/I for some ideal I . In this case, the kernel of d0 is the ideal I of
R consisting of all polynomials p(T ) such that p(T ) · e2 = 0, so let us find this ideal I . Since e2 and
Te2 are linearly independent, no constant or linear polynomial belongs to I . But by the same token,
since R2 is 2-dimensional, T 2e2 must be a linear combination of e2 and Te2. Direct computation
shows that

T 2 · e2 = T (2e1 + e2) = 2e1 + (2e1 + e2) = 4e1 + e2 = 2T (e2)− e2 = (2T − 1) · e2.

Therefore the polynomial f(T ) := T 2 − 2T + 1 belongs to I . Since R/(f) is 2-dimensional over R,
as is M ∼= R/I , we conclude that I = (f). [You should think about this if you haven’t seen if before.]
Therefore we can define d1 : R→ R by d1(p) = f · p. Since R is a domain, this is injective, and we
obtain the free resolution

0 // R
d1

(T 2−2T+1 )
// R

d0 //M // 0

(d) R = R[x, y], M = R, with R-module structure where x and y act by 0.

Since 1 ∈ R generates M as a R-module, it certainly generates M as a R = R[x, y]-module,
so we can define a surjective homomorphism d0 : R → M by sending p(x, y) to p(x, y) · 1. Let
p(x, y) = a0 + xp1(x, y) + yp2(x, y) for some p1, p2 ∈ R, a0 ∈ R. Then

p(x, y) · 1 = a0 · 1 + p1(x, y) · (x · 1) + p2(x, y) · (y · 1) = a0

So the kernel of d0 is the ideal I ⊆ R[x, y] consisting exactly of those polynomials whose constant
coefficient a0 is 0. Every term of such a polynomial has positive degree in either x or y, so if p ∈ ker d0,
we have p = xp1 + yp2 for p1, p2 ∈ R. In other words, the ideal ker d0 is generated as an R-module
by x and y (though it is not a principal ideal, since no polynomial of positive degree divides both x and
y).

So now, we can define a map d1 : R2 → R by sending (p, q) to xp+ yq, and by what we’ve just shown,
the following sequence is exact:

R2 d1

(x y )
// R

d0 //M // 0
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Now, what is the kernel of d1? This consists of all (p, q) ∈ R2 such that xp + yq = 0. Let
(p, q) be some such pair. Rearranging this equation, we have xp = −yq. Consider this polynomial
f = xp = −yq. Since f(x, y) = x · p(x, y), every term of f must be divisible by x. Similarly, since
f(x, y) = −y · q(x, y) every term of f must be divisible by y. Therefore every term of f must be
divisible2 by xy. In other words, we can write f(x, y) = xy · g(x, y) for some unique g. Note that
p = y · g and q = −x · g.

We have found that whenever we have a pair (p, q) with xp + yq = 0, there exists a unique g such
that (p, q) = (yg,−xg). In other words, the map d2 : R→ R2 defined by g 7→ (yg,−xg) surjects to
ker d1. This map is injective since R is a domain, so we have our resolution:

0 // R
d2(
y
−x
)// R2 d1

(x y )
// R

d0 //M // 0

2In general you might use that R[x, y] is a unique factorization domain for an argument like this, but for x and y we can just do
it directly.
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(e) R = Z[
√
−30], M = F2, with R-module structure where

√
−30 acts by 0.

M is generated by 1, so we can take a surjection d0 : R→M sending a+b
√
−30 to (a+b

√
−30)·1 =

a (mod 2). This identifies M with the quotient R/I , where I = ker d0 consists of those a+ b
√
−30

where a is even. So we have a short exact sequence

0→ I ↪→ R
d0−→M → 0.

To continue this, we must find generators for I . We claim that I is generated by the elements 2 and√
−30; indeed, if b is even then (since a is assumed even) a+ b

√
−30 is already a multiple of 2, and if

b is odd then by subtracting
√
−30 we can reduce to the previous case. (This shows that their Z-linear

combinations generate; but we’d have even their R-linear combinations, if we needed them!)

So if we define d1 : R2 → R by (x, y) 7→ 2 · x+
√
−30 · y, we have im d1 = ker d0 = I . This gives a

partial resolution

R2 d1

( 2
√
−30 )

// R
d0 //M // 0

To continue we must compute ker d1. We will do this

Suppose that (x, y) ∈ ker d1. Write x = c+ d
√
−30 and y = e+ f

√
−30. Then

d1(x, y) = 2 · (c+ d
√
−30) +

√
−30(e+ f

√
−30) = (2c− 30f) + (2d+ e)

√
−30.

Therefore (x, y) ∈ ker d1 ⇐⇒ c = 15f and e = −2d. At this point, let us make a detour
to observe that the kernel of d1 is isomorphic to I itself. Indeed, this kernel consists of (x, y) =

(15f + d
√
−30,−2d+ f

√
−30). Note that y automatically belongs to I , and given y ∈ I there is a

unique x such that (x, y) ∈ ker d1. In other words,

ker d1 =
{(−√−30

2 y, y
) ∣∣ y ∈ I} ' I

So the inclusion of ker d1 into R2 can be viewed as a map I → R2 giving a short exact sequence

0→ I → R2 → I → 0.

Thus we should be able to just repeat the same computations over and over, so we expect a periodic
free resolution.

Returning to ker d1, it is clear that ker d1 is generated by the elements (−
√
−30, 2) and (15,

√
−30)

(since even their Z-linear combinations span). These generators yield a map d2 : R2 → R2 giving a
partial resolution

R2 d2(
−
√
−30 15
2

√
−30

)// R2 d1

( 2
√
−30 )

// R
d0 //M // 0

But we can check that ker d2 is actually equal to ker d1. Indeed, the second coordinate of d2 is exactly
the same as d1; and the first coordinate is −

√
−30
2 times the second, so they vanish at the same time.

Therefore we can keep using the same map over and over, yielding a free resolution:

· · · // R2 dk(
−
√
−30 15
2

√
−30

)// R2 // · · · // R2 d2(
−
√
−30 15
2

√
−30

)// R2 d1

( 2
√
−30 )

// R
d0 //M // 0
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[Note from TC: this is a good example of why it’s nice sometimes to be able to use projective resolutions.
The ideal I = (2,

√
−30) is projective, as I mentioned in class; so if we are just looking for a projective

resolution we could just take
0→ I → R→M → 0

and not need to go any further.]

(f) R = R[x, y], M = R[x, y]/I

where I is the ideal of all polynomials with no constant, linear, or quadratic term.
(in other words, M consists of at-most-quadratic polynomials in x and y)

We already have M written as R[x, y]/I = R/I , so we have an exact sequence:

0 // I // R
d0 //M // 0

If p(x, y) ∈ I , then every term of p(x, y) has degree at least 3. Thus, each term is divisible by some
monomial of degree 3. There are four of these: α = x3, β = x2y, γ = xy2, δ = y3. These 4 elements
generate the ideal I , and thus define a surjection R4 → I sending

(p1, p2, p3, p4) 7→ p1α+ p2β + p3γ + p4δ = p1x
3 + p2x

2y + p3xy
2 + p4y

3.

Composing this with I ↪−→ R, we have d1 : R4 → R with im d1 = I = ker d0:

R4 d1

(x3 x2y xy2 y3 )
// R

d0 //M // 0

To continue, we need to find relations among the elements α, β, γ, and δ. A few relations jump right
out at us: yα = xβ (both equal x3y), yβ = xγ (both equal x2y2), and yγ = xδ (both equal xy3).
These three relations lead us to consider the map d2 : R3 → R4 sending the basis to the elements
(y,−x, 0, 0), (0, y,−x, 0), and (0, 0, y,−x).

Since these were relations, we know that d1 ◦ d2 = 0, or in other words im d2 ⊂ ker d1. Now, one
natural way to proceed would be to prove that these relations generate all relations between α, β, γ, δ;
in other words, that im d2 = ker d1. This would work fine, but for variety, we will take a different
approach.

We have a complex

R3 d2 y
−x y
−x y
−x


// R4 d1

(x3 x2y xy2 y3 )
// I // 0

but keep in mind that we do not yet know it is exact at R4. Instead, let us show that d2 is injective. This
is surprisingly easy. Suppose (f, g, h) ∈ R3 belongs to ker d2. Applying d2, we have

d2(f, g, h) = (yf, yg − xf, yh− xg, ,−xh).

If this is 0, then examining the first coordinate shows that yf = 0, and thus f = 0 (since R is a
domain). Given this, examining the second coordinate shows that yg = 0, and thus g = 0; and then the
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third coordinate shows that yh = 0 and thus h = 0. Therefore d2 is injective, and so we know this
complex is exact except possibly at R4.

0 // R3 d2 y
−x y
−x y
−x


// R4 d1

(x3 x2y xy2 y3 )
// I // 0

It remains to show that im d2 is all of ker d1. We can do this by showing that they have the “same
dimension” in a certain sense. As a vector space, we can split R = R[x, y] as a direct sum R =⊕

n≥0Rn where Rn = 〈xn, xn−1y, . . . , xyn−1, yn〉 is the “degree n” part of R. note that dimRRn =

n+ 1.

Because every element in the matrix for d2 is a pure linear polynomial, the map d2 is “homogeneous”,
in the sense that d2(R3

n) ⊂ R4
n+1. Similarly, since every element in the matrix for d1 is a pure cubic

polynomial, the map d1 is homogeneous: d1(R4
m) ⊂ Rm+3. Therefore we can split this complex up as

a direct sum over k ≥ 0 of the complexes

0 // R3
k−4

d
(k)
2 // R4

k−3
d
(k)
1 // Ik // 0

In particular, im d
(k)
2 is a subspace of ker d(k)1 . Let us look at the dimensions here for large k first (we’ll

check small k afterwards). For large k we have dimR4
k−3 = 4((k − 3) + 1) = 4(k − 2) = 4k − 8,

and dim Ik = dimRk = k + 1. Since d(k)1 is surjective, we conclude that

dimker d
(k)
1 = dimR4

k−3 − dim Ik = 3k − 9.

But at the same time dimR3
k−4 = 3((k − 4) + 1) = 3(k − 3) = 3k − 9. Since d(k)2 is injective, we

find that dim im d
(k)
2 = 3k − 9 = dimker d

(k)
1 . It follows that im d

(k)
2 = ker d

(k)
1 , at least for large k.

The computation above holds as long as k − 4 ≥ 0, i.e. when k ≥ 4. For k = 3 the complex is just

0→ 0→ R4
0

d
(3)
1−−→ I3 → 0

Since dim I3 = dimR3 = 4, and d(3)1 is surjective, it is an isomorphism, so this is still exact. Finally,
for k < 3 all three terms here vanish. We conclude that im d

(k)
2 = ker d

(k)
1 for all k, and thus

im d2 = ker d1. Therefore our free resolution is

0 // R3 d2 y
−x y
−x y
−x


// R4 d1

(x3 x2y xy2 y3 )
// R

d0 //M // 0.
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(g) R = Z[t]/(t2 − 1), M = Z, with R-module structure where t acts by the identity.

M is generated by 1, so we have a surjection π : R→M sending r to r · 1. We can write an element
r ∈ R uniquely as a + bt: if p(t) = ant

n + an−1t
n−1 + · · · + a0 ∈ Z[t] for n ≥ 2, then in R,

p(t) = p(t) − tn−2(t2 − 1), and this has degree n − 1. We can repeat this process until we reach a
representative with degree 1. This representation is unique since (a+ bt)− (a′ + b′t) is always linear,
so it is never divisible by t2 − 1 in Z[t]. Then we have π(a+ bt) = (a+ bt) · 1 = a+ b. This is zero
iff a = −b, i.e. if r = b(t − 1) for some b ∈ Z. Conversely, if r = r′(t − 1) for some r′ ∈ R, we
have r · 1 = r′ · ((t− 1) · 1) = r′ · 0 = 0. Thus, kerπ = (t− 1)R, so we can take f0 : R→ R to be
multiplication by (t− 1), and im f0 = kerπ.

Since R is not a domain, we can’t automatically conclude that f0 is injective as we have before. In
fact, f0 is not injective, since (t + 1) 6= 0 in R, but f0(t + 1) = (t − 1)(t + 1) = t2 − 1 = 0 in R.
Thus, (t+ 1)R ⊆ ker f0. Conversely, let r ∈ ker f0. We can write r as r = a+ bt for a, b ∈ Z. Then
0 = f0(r) = (t− 1)(a+ bt) = bt2 + (a− b)t− a = b(t2− 1)+ (a− b)t− (a− b) = (a− b)(t− 1).
Since the representation of an element of R as a + bt is unique, this implies that a − b = 0, so we
have r = a(1 + t). Thus, we see that ker f0 = (t+ 1)R. This allows us to define f1 : R → R to be
multiplication by (t+ 1), and im f1 = ker f0.

Now, ker f1 consists of those elements a + bt such that (t + 1)(a + bt) = bt2 + (a + b)t + a =

(a + b)(t − 1) = 0. As above, this is true iff a + b = 0, so ker f1 consists of elements of the form
a(t− 1), i.e. ker f1 = (t− 1)R. Note that this is the same as kerπ, so we can define f2 : R→ R to
be equal to f0, and repeat off to infinity. What we end up with is an infinite resolution:

· · · // R
f4
// R

f3
// R

f2
// R

f1
// R

f0
// R

π //M // 0

with fn equal to multiplication by (t + 1) when n is odd and fn equal to multiplication by (t − 1)

when n is even.

Question 5. Consider the map f : M → N from M = Z ⊕ Z/12Z to N = Z/3Z ⊕ Z/4Z sending
(a ∈ Z, b ∈ Z/12Z) to (a ∈ Z/3Z, b ∈ Z/4Z). If

· · · → F1 → F0 →M → 0 and · · · → G1 → G0 → N → 0

are the free resolutions of M and N that you constructed in Q4(a) and Q4(b), describe explicitly the maps
fi : Fi → Gi as in Q3.

Solution. Copying down the free resolutions written above, we have:

0 // Z
d1 //

f1
��

Z2 d0 //

f0
��

M //

f
��

0

0 // Z
d′1 // Z

d′0 // N // 0

and our job is to describe the vertical arrows. Recall that d0 : Z2 →M is defined by (a, b) 7→ (a, b+ 12Z)

and d′0 : Z→ N is defined by n 7→ (n+3Z, n+4Z). Now, f(d0(1, 0)) = f(1, 0) = (1+3Z, 0). Following
the proof of Question 3, we define f0(1, 0) by choosing some n ∈ Z such that d′0(n) = (1+3Z, 0). Choosing
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n = 4 works, since 4 is 1 mod 3 and 0 mod 4. Note that the possible choices for f0(1, 0) are exactly 4+ 12Z.
Similarly, to define f0(0, 1), we need to pick some n ∈ Z such that d′0(n) = (0, 1+ 4Z). n = 9 works, since
this is 0 mod 3 and 1 mod 4 (and again, the possible choices are 9 + 12Z).

So f0 : Z2 → Z sends (a, b) to 4a+ 9b. Now, f1 is uniquely determined by f1(1). This is defined to by
choosing some n ∈ Z such that d′1(n) = f0(d1(1)). But recall that d1 : Z → Z2 is the map sending n to
(0, 12n), so f0(d1(1)) = f0(0, 12) = 108. Now, d′1 is defined to be multiplication by 12, so we must choose
f1(1) = 9. Thus, f1 is multiplication by 9. Note that if we had chosen f0 differently, by replacing 9 with
9 + 12k for some k ∈ Z, f1 would have to become multiplication by 9 + 12k.
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