MATH 210A, FALL 2017
HW 4 SOLUTIONS
WRITTEN BY DAN DORE

(If you find any errors, please email |[ddore @stanford.edu)

Question 1. Consider the situation of the snake lemma, where each row is exact:

At .p_9 ¢ 0
= b
0 AN N

(a) Construct a connecting homomorphism d: ker y — coker a.
(b*) Check that this yields a complex ker & — ker 5 — ker~ 4, coker a — coker B — coker .
(c*) Check that this sequence is exact at ker 3 and coker 3.

(d) Check that this sequence is exact at ker v and coker a.

(e*) Check that if f is injective, then 0 — ker o — ker 3 is exact at ker « also;
and that if ¢’ is surjective, then coker 3 — cokery — 0 is exact at coker ~y also.

Note you only need to write up (a) and (d).

Solution. [Comment from Prof. Church: yes, writing out the proof of this kind of diagram-chase argument
can be painful — that’s why we only do it once, so the rest of the time we can just quote the snake lemma! If
you prefer, you can watch Jill Clayburgh give a complete proolﬂ for (a) in the 1980 film It’s My Turn.]

(a) Letc € ker~. Since g: B — C'is surjective, we can lift ¢ to some b € B such that g(b) = c. Since
v(e) =~v(g(b)) = 0and yo g = ¢’ o 5 (by commutativity of the diagram), it follows that ¢’(5(b)) = 0.
In other words, 3(b) € ker ¢’. But by exactness of the diagram we know that ker ¢’ = im f”, so there
is some a’ € A’ such that f’(a’) = 5(b). Note that since f’ is injective, @’ is determined uniquely by
B(b). We will define d by setting d(c) = [a'], where [a] means the image of a’ in coker .
First, we have to check that this makes sense: to construct a’, we had to make a non-canonical choice
of b with g(b) = ¢. Now, let b’ € B be some other choice, so g(b') = g(b) = c¢. This means that
g(b—1b")=0,s0b—1V" € ker g = im f, so there is some (not necessarily unique, since we don’t know
that the top row is exact on the left) a € A such that b’ = b + f(a). This means that

BH') = B(b) + B(f(a)) = f'(a) + f(ala)) = f'(a' + a(a))
Now, [@] = [@' + a(a)] in coker aw = A’/ im «, so any two choices of b with g(b) = ¢ give the same
element of coker «, so d is well-defined.

Now, we also need to check that d is a homomorphism. If we have ¢ = r - ¢; + ¢3 and pick some b1, ba
with g(bl) =cq, g(bg) = ¢9, then we have g(?" -b1 + b2) = c. Then, ,8(7" -b1 + bg) =7r-. ﬁ(bl) —I—,B(bg),
so if f(a}) = B(b1) and f'(a}) = B(be), then f'(r - a} + ab) = B(r - by + ba). Thus, d(c) =
r-ay +ah=r-d(c1) + d(ea).

"nttps://youtu.be/etbcKWEKnvgl To think about, but not write up: the gender dynamic in this classroom.
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(b)
(©)

(d) The sequence kerav — ker 8 — kery — cokera — coker 3 — coker+y is exact at kery iff
ker d = im(ker § — ker+y). In other words, we need to show that if ¢ € kery is such that d(c) = 0,
then there is some b € ker /3 such that g(b) = c.

To show this, let’s trace through the definition of d again. Let b € B be such that g(b) = c. Then let
a’ € Abe such that 5(b) = f'(a’); then d(c) = [a/] € cokera. If d(c) = [a'] = 0, then d’ € im(«),
so @’ = a(a) for some a € A. Then 8(b) = f'(a(a)) = B(f(a)). Thus, B(b — f(a)) = 0. But
g(b— f(a)) = g(b) — g(f(a)) = g(b), since im f = ker g. Thus, b’ = b — f(a) € ker 3 is such that
g(b') = c. This confirms that ker d C im(ker 5 — ker~).

To see that the sequence is exact at coker o, we need to show that if [a’] € coker « is such that
[f'(a')] = 0 € coker 3, then there is some ¢ € ker~ such that d(¢) = [a/]. The condition that
[f'(a’)] = 0 € coker 3 means exactly that there is some b € B such that 5(b) = f'(a’). Now,
let ¢ = g(b). By the definition of d(c), since g(b) = ¢, if f'(a’) = B(b), then d(c¢) = [d']. Thus,
[a] € imd.

A free resolution of an R-module M is a complex
o= By - - Fy—-M—=0

which is exact everywhere and where each Fj is free.
(Similarly, a projective resolution of M is an exact sequence --- — P, — P, = Py - M — 0

where each P is projective, and so on.)

Question 2. Prove that every R-module M has a free resolution
o= = - Fy— M — 0.

Solution. Choose Fj to be some free module with a map Fy — M — 0. In other words, pick any (not
necessarily finite) generating set {m; };c; of M and let Fy be the free module on generators {e; };c7, and
define the map Fy — M by e; — m;. This is surjective because the m,; are generators for /M. Now, we can
define all of the F; — F;_; by recursion. Assume we have a complex F,, - F,_1 — -+ —> Fg - M — 0
which is exact everywhere except at F},. Then we need to construct some F,; and amap « : Fi,11 — F),
such that im « is equal to K,, = ker(F,, — F,,_1). But K,, is some R-module, and we can pick a free
module F}, 41 on a set of generators for K, just as we did above to get a map ;.1 —» K,,. Then composing
this map with the inclusion K,, — F),, we get a map « : F,,;1 — F, such thatima = K,,. We can
continue on this way forever (note that we are not asked to show that the resolution ever terminates, and in
some cases it can’t!).



Question 3. Let M and N be R-modules, and suppose you have free resolutions
s BEAR SR oM50  and 5 G SG LG LN o
Given a homomorphism f: M — N, prove there exist maps f;: F; — G; making a commutative diagram

d d

Fy Fy Fy M 0
lfQ lh lfo Jf

d d
G Gy Go N 0

(To think about, and write up if you find a good answer:) In what sense are the maps f; unique?

Solution. We’ll construct the f; inductively, starting with fy. We have the following diagram:

RN LN RN Vs 0
|
I fo J{f
d a S
Go Gy Go N 0

We want to fill in the dotted arrow. Since Fj, is free, to define fj, we just need to figure out where to map each
generator of Fy. Call these {¢; | i € I} for some set . We want 7w’ o fy = f o 7, so consider the elements
n; = f(m(e;)) € N. Since 7’ is surjective, for each 4, there is some g; such that 7/(g;) = n,;. Then we can
define Fy — G by sending e; to g;. Then 7’ o fo(e;) = 7'(g;) =n; = (fom)(e;),son’ o fo = fom.

Now assume that we’ve defined f; for ¢ = 0, ..., n, and we want to define f,, 1. In other words, we have
the following diagram, where we want to fill in the dotted arrow:

dn .
Fop ™ p,— B, i Fy—— M ——0
|
| fn+1 lfn anl Jfo lf
<+ dy,
Gl —5 Gy n Gn-1 Go N 0

In other words, we want to define f,,11 such that d,, 11 o f,+1 = fr o dpy1. Let the generators of F), 1 be
{e; | i € I}, and let g; = fn(d(e;)). If we can lift the g; to elements g, € G,11 such that dp,11(g}) = ¢,
then defining f,,+1(e;) = g, ensures that dy41 © fr41 = fn © dnq1. Because the bottom row of the diagram
is an exact sequence, im d,,+1 = ker d,,, so we need to show that g; € ker d,,, that is, that d,,(g;) = 0. But
by commutativity of the diagram, we have d,,(g;) = dn(fn(dnt1(€i))) = fn—1(dn(dn+1(es))) = 0, since
dy, 0 dpy1 = 0. So now we can define f,,;1 by sending e; to g/.

The question of uniqueness will be discussed in class.

Note: the same statement is true for projective resolutions, and the proof is fairly similar. See if you can
fill in the details.



Question 4. Compute an explicit free resolution for M in the following situations:

Solution. (a) R=7Z, M =7Z® Z/12Z.

M is generated by (1,0) and (0, 1), so sending a basis for Z? to these generators gives the first map
do: Z% — M, which is surjective. Explicitly, this sends (a, b) to (a, b + 12Z). The kernel of this map
consists of pairs (a, b) such that (a,b + 12Z) = (0,0). Thus, the kernel is exactly the set of pairs
(0,12n) forn € Z. We get amap dq : Z — Z2 by sending n to (0, 12n), and this exactly parametrizes
ker dy. Since multiplication by 12 is injective in the domain Z, this map is injective. So we have a
resolution:

0 7 M, 72

(1)

Note: Once we have a 0 in a free resolution, we can always just continue with 0 from then on:

DN 0

50502022572 D M 0

So in the cases below where we have a “finite” free resolution (one with a 0 in it), we’ll usually leave
off the infinite string of 0’s.

) R=27, M=17/3ZaZ/4AZ
M is generated by (1,0) and (0, 1) so we have a surjection do: Z? — M sending (a, b) to (a + 3Z, b + 47Z).
The kernel of this map consists of pairs (a,b) with a € 3Z, b € 4Z. Thus, we can define d; : Z% — Z?
by sending (m,n) to (3m, 4n), so that im d; = ker dy. Since every element of 3Z can be written as
3m for a unique m, and likewise for 4Z, it follows that d; is injective, so this gives our resolution:

Do ——0

For a different approach, we could use the Chinese remainder theorem to cut down the ranks a bit:
since 3 and 4 are coprime, by CRT we have Z/12Z ~ Z/3Z @& Z/AZ as Z-modules. In other words,
the map dy: Z — Z/3Z & Z/4AZ defined by a — (a + 3Z, a + 47Z) is surjective, and the kernel is
3Z N4Z = 127Z. Thus we can take a resolution:

where d1: n — 12n.



(©)

(d)

1 2
R=R[T], M = R?, with R-module structure where T acts by (0 1)

Lete; = (1,0), ea = (0, 1) be the standard basis for R? as a R-module. Since e; and ey generate
M as a R-module, they certainly generate M as an R = R[T]-module. However, note that by the
definition of the T-action, we have T' - e5 = 2e1 + €9, so:

1 1 1
5(T—l)-e’z:§(T'€2—€2)25(2614"5’2_‘92):el

Thus, e actually generates M as an R-module (i.e. we can write (z,y) € R?as (£2(T — 1) + y) ez =
xe1 +yez). This means that we can define a surjective map dy: R — M — 0 sending p(7T') to p(T') - es.

Any quotient of R is isomorphic to R/I for some ideal I. In this case, the kernel of dy is the ideal I of
R consisting of all polynomials p(T") such that p(T") - ea = 0, so let us find this ideal /. Since e3 and
T'ey are linearly independent, no constant or linear polynomial belongs to /. But by the same token,
since R? is 2-dimensional, 7%e5 must be a linear combination of es and T'ey. Direct computation
shows that

T? -eg =T(2e1 + e2) = 2e1 + (21 + e2) = deg +eg = 2T (e3) —eg = (2T — 1) - ea.

Therefore the polynomial f(7') := T2 — 2T + 1 belongs to I. Since R/(f) is 2-dimensional over R,
asis M = R/I, we conclude that I = (f). [You should think about this if you haven’t seen if before.]
Therefore we can define d;: R — R by di(p) = f - p. Since R is a domain, this is injective, and we
obtain the free resolution

0 R— M L p %,y 0
(T2-27+1)

R =RJ[z,y], M =R, with R-module structure where = and y act by 0.

Since 1 € R generates M as a R-module, it certainly generates M as a R = R|[z,y|-module,
so we can define a surjective homomorphism dy: R — M by sending p(z,y) to p(z,y) - 1. Let
p(z,y) = ao + zp1(z,y) + ypa(x,y) for some p1, p2 € R,ap € R. Then

p(x,y)-1=ao-1+pi(z,y) - (z-1)+p2z,y) - (y-1) =ao

So the kernel of d is the ideal I C Rz, y] consisting exactly of those polynomials whose constant
coefficient ag is 0. Every term of such a polynomial has positive degree in either x or y, so if p € ker dj,
we have p = xp1 + yps for p1, p2 € R. In other words, the ideal ker dj is generated as an R-module
by x and y (though it is not a principal ideal, since no polynomial of positive degree divides both z and
Y).

So now, we can define a map d;: R?> — R by sending (p, q) to xp + yq, and by what we’ve just shown,
the following sequence is exact:

R2



Now, what is the kernel of d;? This consists of all (p,q) € R? such that zp + yqg = 0. Let
(p, q) be some such pair. Rearranging this equation, we have xp = —yq. Consider this polynomial
f =xp= —yq. Since f(z,y) = x - p(z,y), every term of f must be divisible by x. Similarly, since
f(z,y) = —y - q(z,y) every term of f must be divisible by y. Therefore every term of f must be
divisibl by zy. In other words, we can write f(x,y) = zy - g(x,y) for some unique g. Note that
p=y-gandq=—zx-g.

We have found that whenever we have a pair (p, ¢) with zp 4+ yg = 0, there exists a unique g such
that (p, q) = (yg, —xg). In other words, the map dy: R — R? defined by g — (yg, —xg) surjects to
ker dy. This map is injective since R is a domain, so we have our resolution:

d2 gy do

(v) G i H

M 0

’In general you might use that Rz, y] is a unique factorization domain for an argument like this, but for 2 and y we can just do
it directly.



(e) R=1Z[v/—-30], M = F,, with R-module structure where v/—30 acts by 0.

M is generated by 1, so we can take a surjection dy: R — M sending a+bv/—30to (a+by/—30)-1 =
a (mod 2). This identifies M with the quotient R/I, where I = ker dj consists of those a + bv/—30
where a is even. So we have a short exact sequence

0—>I<—>Rd—°>M—>O.

To continue this, we must find generators for /. We claim that [ is generated by the elements 2 and
v/ —30; indeed, if b is even then (since a is assumed even) a + by/—30 is already a multiple of 2, and if
b is odd then by subtracting v/—30 we can reduce to the previous case. (This shows that their Z-linear
combinations generate; but we’d have even their R-linear combinations, if we needed them!)

So if we define di: R?> — Rby (z,y) — 2- 2 + /=30 - y, we have im d; = ker dy = I. This gives a

partial resolution
dy

(2 v=30)
To continue we must compute ker d;. We will do this

Suppose that (z,y) € kerd;. Write z = ¢+ dv/—30 and y = e + f1/—30. Then
di(z,y) =2 (c+dv—-30) + V-30(e + fvV—30) = (2¢ — 30f) + (2d + e)v/—30.

Therefore (z,y) € kerdy <= ¢ = 15f and e = —2d. At this point, let us make a detour
to observe that the kernel of dy is isomorphic to I itself. Indeed, this kernel consists of (z,y) =
(15f + dv/—30, —2d + f+/—30). Note that 3 automatically belongs to I, and given y € I there is a
unique z such that (z,y) € ker d;. In other words,

do

R? R M 0

kerd; = {(Z5 Py, y) |ye I} ~1
So the inclusion of ker d; into R? can be viewed as a map I — R? giving a short exact sequence
0—1—R>—=1—0.

Thus we should be able to just repeat the same computations over and over, so we expect a periodic
free resolution.

Returning to ker d, it is clear that ker d; is generated by the elements (—+/—30, 2) and (15, /—30)
(since even their Z-linear combinations span). These generators yield a map do: R? — R? giving a
partial resolution

PR BN — M ——0
(ﬂ/f:'so 15 ) (2 v=30)
2 v/—=30

But we can check that ker dy is actually equal to ker d;. Indeed, the second coordinate of ds is exactly
the same as d1; and the first coordinate is L;?’O times the second, so they vanish at the same time.
Therefore we can keep using the same map over and over, yielding a free resolution:

R % 2 R g B p Doy 0
(—\/—30 15 ) (—\/—30 15 ) (2 v=30)
2 /=30 2 /=30



()

[Note from TC: this is a good example of why it’s nice sometimes to be able to use projective resolutions.
The ideal I = (2, /—30) is projective, as I mentioned in class; so if we are just looking for a projective
resolution we could just take

0O—=+I—R—->M=—0

and not need to go any further.]

R=R[z,y], M =R|z,y|/I
where [ is the ideal of all polynomials with no constant, linear, or quadratic term.

(in other words, M consists of at-most-quadratic polynomials in  and y)

We already have M written as Rz, y]/I = R/I, so we have an exact sequence:

do

0 1 R M 0

If p(x,y) € I, then every term of p(z,y) has degree at least 3. Thus, each term is divisible by some
monomial of degree 3. There are four of these: o = 23, B = 2%y, v = xy?, § = 3>. These 4 elements
generate the ideal 7, and thus define a surjection R* — I sending

3 2 2 3
(P1,P2,P3,Pa) = Pra+ P2 + p3y + pad = p1a” + pax”y + p3ry” + pay”.
Composing this with I —— R, we have d; : R* - R withimd; = I = kerdy:

R4 g ®
(13 xzy xyz ys)

M 0

To continue, we need to find relations among the elements «, 3, 7y, and J. A few relations jump right
out at us: yo = x3 (both equal z3y), y3 = =7 (both equal z?3?), and yy = 28 (both equal zy?>).
These three relations lead us to consider the map dp: R? — R* sending the basis to the elements
(y,—,0,0), (0,y,—,0), and (0,0, y, —x).

Since these were relations, we know that d; o do = 0, or in other words im dy C ker d;. Now, one
natural way to proceed would be to prove that these relations generate all relations between «, 3, 7, 9;
in other words, that im do = ker d;. This would work fine, but for variety, we will take a different
approach.

We have a complex
LN % LN JUN)

RS
(_yx y ) (x3m2yxy2y3)

—x Yy
—X

but keep in mind that we do not yet know it is exact at R*. Instead, let us show that ds is injective. This
is surprisingly easy. Suppose (f, g, h) € R3 belongs to ker do. Applying dg, we have

do(f,9,h) = (yf, yg—af, yh—xg, ,—xh).

If this is 0, then examining the first coordinate shows that yf = 0, and thus f = 0 (since R is a
domain). Given this, examining the second coordinate shows that yg = 0, and thus g = 0; and then the



third coordinate shows that yh = 0 and thus h = 0. Therefore dy is injective, and so we know this
complex is exact except possibly at R*,

It remains to show that im ds is all of ker d;. We can do this by showing that they have the “same
dimension” in a certain sense. As a vector space, we can split R = R[z,y| as a direct sum R =
©D,.>0 Bn where R, = (2", 2" Ly, .. 2y y") is the “degree n” part of R. note that dimg R, =
n+ 1.

Because every element in the matrix for ds is a pure linear polynomial, the map ds is “homogeneous”,
in the sense that do(R3) C R, ;. Similarly, since every element in the matrix for d; is a pure cubic
polynomial, the map d; is homogeneous: d1(R? ) C R,,3. Therefore we can split this complex up as
a direct sum over k£ > 0 of the complexes

d;k) dgk)

0 R, Rl ,——1;,——0

In particular, im dék) is a subspace of ker dgk). Let us look at the dimensions here for large £ first (we’ll
check small k afterwards). For large k we have dim R} , = 4((k — 3) + 1) = 4(k — 2) = 4k — 8,

and dim I, = dim R, = k + 1. Since dgk) is surjective, we conclude that
dimkerd® = dim R} , — dim I = 3k — 9.

But at the same time dim R} _, = 3((k —4) + 1) = 3(k — 3) = 3k — 9. Since dék) is injective, we
find that dim im dgk) =3k — 9 = dimker dgk). It follows that im dgk) = ker dgk), at least for large k.

The computation above holds as long as k — 4 > 0, i.e. when k > 4. For k = 3 the complex is just

e
00— Ry 25130

Since dim I3 = dim R3 = 4, and d§3) is surjective, it is an isomorphism, so this is still exact. Finally,
for £ < 3 all three terms here vanish. We conclude that im d;k) = ker d(lk) for all k, and thus
im do = ker dy. Therefore our free resolution is




(g R=12Z[t]/(t* —1), M = Z, with R-module structure where ¢ acts by the identity.

M is generated by 1, so we have a surjection 7: R — M sending r to r - 1. We can write an element
r € R uniquely as a + bt: if p(t) = apt™ + ap_1t"" '+ - + ag € Z[t] forn > 2, then in R,
p(t) = p(t) — t"~2(t? — 1), and this has degree n — 1. We can repeat this process until we reach a
representative with degree 1. This representation is unique since (a + bt) — (a’ + b't) is always linear,
so it is never divisible by t> — 1 in Z[t]. Then we have 7(a + bt) = (a + bt) - 1 = a + b. This is zero
iffa = —b,i.e. if r = b(t — 1) for some b € Z. Conversely, if » = /(¢ — 1) for some r’ € R, we
haver-1=7r"-((t—1)-1) =7"-0=0. Thus, ker m = (¢t — 1) R, so we can take fp: R — R to be
multiplication by (¢t — 1), and im fy = ker 7.

Since R is not a domain, we can’t automatically conclude that fj is injective as we have before. In
fact, fo is not injective, since (t + 1) # 0in R, but fo(t+1) = (t —1)(t+1) =t> -1 =0in R.
Thus, (¢t + 1)R C ker fy. Conversely, let r € ker fy. We can write 7 as » = a + bt for a,b € Z. Then
0=fo(r)=(t—1D(a+bt)=bt>+(a—bt—a=>b{t>—1)+(a—b)t—(a—b) = (a—0b)(t—1).
Since the representation of an element of R as a + bt is unique, this implies that a — b = 0, so we
have r = a(1 4 t). Thus, we see that ker fy = (¢ + 1) R. This allows us to define f;: R — R to be
multiplication by (¢ + 1), and im f; = ker fp.

Now, ker f1 consists of those elements a + bt such that (t + 1)(a + bt) = bt> + (a + b)t + a =
(a +0b)(t —1) = 0. As above, this is true iff a + b = 0, so ker f; consists of elements of the form
a(t — 1), i.e. ker f{ = (t — 1) R. Note that this is the same as ker 7, so we can define fo: R — R to
be equal to fy, and repeat off to infinity. What we end up with is an infinite resolution:

Rf4Rf3Rf2Rf1Rf0Rw

M 0

with f,, equal to multiplication by (¢ + 1) when n is odd and f,, equal to multiplication by (¢t — 1)
when n is even.

Question 5. Consider the map f: M — N from M = Z @ Z/127Z to N = 7Z/3Z & 7Z/AZ sending
(a € Z,b€ Z/12Z) to (a € Z/3Z,b € ZJAZ). If

o> > Fg—>M—0 and oG —>Gyg— N—=0

are the free resolutions of M and N that you constructed in Q4(a) and Q4(b), describe explicitly the maps
fit F; — G; asin Q3.

Solution. Copying down the free resolutions written above, we have:

0 A L LR Y} 0
| |
I f1 I fo J{f
4 ) N\ d6

0 Z Z N 0

and our job is to describe the vertical arrows. Recall that dy: Z? — M is defined by (a,b) + (a, b + 127Z)
and dj,: Z — N is defined by n — (n+3Z,n+4Z). Now, f(do(1,0)) = f(1,0) = (1+3Z,0). Following
the proof of Question 3, we define fy(1,0) by choosing some n € Z such that dj(n) = (1+3Z,0). Choosing

10



n = 4 works, since 4 is 1 mod 3 and 0 mod 4. Note that the possible choices for fy(1,0) are exactly 4 + 127Z.
Similarly, to define f(0, 1), we need to pick some n € Z such that djy(n) = (0,1 +4Z). n = 9 works, since
this is 0 mod 3 and 1 mod 4 (and again, the possible choices are 9 + 127Z).

So fo: Z? — Z sends (a, b) to 4a + 9b. Now, f; is uniquely determined by f;(1). This is defined to by
choosing some n € Z such that dj(n) = fo(d1(1)). But recall that d; : Z — Z? is the map sending n to
(0,12n), so fo(d1(1)) = fo(0,12) = 108. Now, d is defined to be multiplication by 12, so we must choose
f1(1) = 9. Thus, f; is multiplication by 9. Note that if we had chosen fy differently, by replacing 9 with
9 + 12k for some k € Z, f1 would have to become multiplication by 9 + 12k.
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