Math 210A: Modern Algebra Thomas Church (tfchurch@stanford.edu) http://math.stanford.edu/~church/teaching/210A-F17

Homework 4

Due Thursday night, October 19 (technically 5am Oct. 20)

Question 1. Consider the situation of the snake lemma, where each row is exact:

- (a) Construct a connecting homomorphism $d: \ker \gamma \to \operatorname{coker} \alpha$.
- (b*) Check that this yields a complex ker $\alpha \to \ker \beta \to \ker \gamma \xrightarrow{d} \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma$.
- (c*) Check that this sequence is exact at ker β and coker β .
- (d) Check that this sequence is exact at ker γ and coker α .
- (e*) Check that if f is injective, then $0 \to \ker \alpha \to \ker \beta$ is exact at $\ker \alpha$ also; and that if g' is surjective, then $\operatorname{coker} \beta \to \operatorname{coker} \gamma \to 0$ is exact at $\operatorname{coker} \gamma$ also.

Note you only need to write up (a) and (d).

A free resolution of an R-module M is a complex

$$\cdots \to F_3 \to F_2 \to F_1 \to F_0 \to M \to 0$$

which is exact everywhere and where each F_i is free.

(Similarly, a projective resolution of M is an exact sequence $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ where each P_i is projective, and so on.)

Question 2. Prove that every *R*-module *M* has a free resolution

$$\cdots \to F_2 \to F_1 \to F_0 \to M \to 0.$$

Question 3. Let M and N be R-modules, and suppose you have free resolutions

 $\dots \to F_2 \xrightarrow{d} F_1 \xrightarrow{d} F_0 \to M \xrightarrow{d} 0$ and $\dots \to G_2 \xrightarrow{d} G_1 \xrightarrow{d} G_0 \xrightarrow{d} N \to 0$. Given a homomorphism $f: M \to N$, prove there exist maps $f_i: F_i \to G_i$ making a commutative diagram

(To think about, and write up if you find a good answer:) In what sense are the maps f_i unique?

Question 4. Compute an explicit free resolution for M in the following situations:

- (a) $R = \mathbb{Z}, \quad M = \mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}$
- (b) $R = \mathbb{Z}, \quad M = \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$

(c) $R = \mathbb{R}[T]$, $M = \mathbb{R}^2$, with *R*-module structure where *T* acts by $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

- (d) $R = \mathbb{R}[x, y]$, $M = \mathbb{R}$, with *R*-module structure where x and y act by 0.
- (e) $R = \mathbb{Z}[\sqrt{-30}], \quad M = \mathbb{F}_2$, with *R*-module structure where $\sqrt{-30}$ acts by 0.
- (f) $R = \mathbb{R}[x, y], \quad M = \mathbb{R}[x, y]/I$ where *I* is the ideal of all polynomials with no constant, linear, or quadratic term. (in other words, *M* consists of at-most-quadratic polynomials in *x* and *y*)
- (g) $R = \mathbb{Z}[t]/(t^2 1)$, $M = \mathbb{Z}$, with *R*-module structure where *t* acts by the identity.
- (h) R = a ring of your choice, M = an interesting module of your choice.

Question 5. Consider the map $f: M \to N$ from $M = \mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}$ to $N = \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ sending $(a \in \mathbb{Z}, b \in \mathbb{Z}/12\mathbb{Z})$ to $(\overline{a} \in \mathbb{Z}/3\mathbb{Z}, \overline{b} \in \mathbb{Z}/4\mathbb{Z})$. If

$$\cdots \to F_1 \to F_0 \to M \to 0$$
 and $\cdots \to G_1 \to G_0 \to N \to 0$

are the free resolutions of M and N that you constructed in Q4(a) and Q4(b), describe explicitly the maps $f_i: F_i \to G_i$ as in Q3.