Math 210A: Modern Algebra
Thomas Church (tfchurch@stanford.edu)
http://math.stanford.edu/~church/teaching/210A-F17

Homework 4

Due Thursday night, October 19 (technically 5am Oct. 20)

Question 1. Consider the situation of the snake lemma, where each row is exact:

(a) Construct a connecting homomorphism $d:$ ker $\gamma \rightarrow \operatorname{coker} \alpha$.
(b*) Check that this yields a complex $\operatorname{ker} \alpha \rightarrow \operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma \xrightarrow{d} \operatorname{coker} \alpha \rightarrow \operatorname{coker} \beta \rightarrow \operatorname{coker} \gamma$.
$\left(c^{*}\right)$ Check that this sequence is exact at $\operatorname{ker} \beta$ and coker β.
(d) Check that this sequence is exact at $\operatorname{ker} \gamma$ and coker α.
(e^{*}) Check that if f is injective, then $0 \rightarrow \operatorname{ker} \alpha \rightarrow \operatorname{ker} \beta$ is exact at $\operatorname{ker} \alpha$ also; and that if g^{\prime} is surjective, then $\operatorname{coker} \beta \rightarrow \operatorname{coker} \gamma \rightarrow 0$ is exact at coker γ also.

Note you only need to write up (a) and (d).
A free resolution of an R-module M is a complex

$$
\cdots \rightarrow F_{3} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

which is exact everywhere and where each F_{i} is free.
(Similarly, a projective resolution of M is an exact sequence $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ where each P_{i} is projective, and so on.)

Question 2. Prove that every R-module M has a free resolution

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

Question 3. Let M and N be R-modules, and suppose you have free resolutions
$\cdots \rightarrow F_{2} \xrightarrow{d} F_{1} \xrightarrow{d} F_{0} \rightarrow M \xrightarrow{d} 0 \quad$ and $\quad \cdots \rightarrow G_{2} \xrightarrow{d} G_{1} \xrightarrow{d} G_{0} \xrightarrow{d} N \rightarrow 0$.
Given a homomorphism $f: M \rightarrow N$, prove there exist maps $f_{i}: F_{i} \rightarrow G_{i}$ making a commutative diagram

(To think about, and write up if you find a good answer:) In what sense are the maps f_{i} unique?

Question 4. Compute an explicit free resolution for M in the following situations:
(a) $R=\mathbb{Z}, \quad M=\mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$
(b) $R=\mathbb{Z}, \quad M=\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
(c) $R=\mathbb{R}[T], \quad M=\mathbb{R}^{2}$, with R-module structure where T acts by $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
(d) $R=\mathbb{R}[x, y], \quad M=\mathbb{R}$, with R-module structure where x and y act by 0 .
(e) $R=\mathbb{Z}[\sqrt{-30}], \quad M=\mathbb{F}_{2}$, with R-module structure where $\sqrt{-30}$ acts by 0 .
(f) $R=\mathbb{R}[x, y], \quad M=\mathbb{R}[x, y] / I$
where I is the ideal of all polynomials with no constant, linear, or quadratic term. (in other words, M consists of at-most-quadratic polynomials in x and y)
(g) $R=\mathbb{Z}[t] /\left(t^{2}-1\right), \quad M=\mathbb{Z}$, with R-module structure where t acts by the identity.
(h) $R=$ a ring of your choice, $\quad M=$ an interesting module of your choice.

Question 5. Consider the map $f: M \rightarrow N$ from $M=\mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$ to $N=\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ sending $(a \in \mathbb{Z}, b \in \mathbb{Z} / 12 \mathbb{Z})$ to ($\bar{a} \in \mathbb{Z} / 3 \mathbb{Z}, \bar{b} \in \mathbb{Z} / 4 \mathbb{Z})$. If

$$
\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 \quad \text { and } \quad \cdots \rightarrow G_{1} \rightarrow G_{0} \rightarrow N \rightarrow 0
$$

are the free resolutions of M and N that you constructed in Q4(a) and Q4(b), describe explicitly the maps $f_{i}: F_{i} \rightarrow G_{i}$ as in Q3.

