Math 210A, Fall 2017

HW 5 Solutions
Written by Dan Dore
(If you find any errors, please email ddore@stanford.edu)
Question 1. Let $R=\mathbf{Z}[t] /\left(t^{2}-1\right)$. Regard \mathbf{Z} as an R-module by letting t act by the identity. Compute $\operatorname{Tor}_{k}^{R}(\mathbf{Z}, \mathbf{Z})$ and $\operatorname{Ext}_{R}^{k}(\mathbf{Z}, \mathbf{Z})$ for all $k \geq 0$.

Solution. We computed a free resolution for \mathbf{Z} on the previous assignment:

$$
\cdots \xrightarrow{f_{n+1}} R \xrightarrow{f_{n}} R \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{2}} R \xrightarrow{d_{1}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

Here, f_{n} is multiplication by $t-1$ when n is odd and multiplication by $t+1$ when $n>0$ is even. Since $R \otimes_{R} M \simeq M$ for any R-module M, when we apply the functor $(\cdot) \otimes_{R} \mathbf{Z}$ to this resolution (dropping the last term), we get:

$$
\cdots \xrightarrow{\delta_{n+1}} \mathbf{Z} \xrightarrow{\delta_{n}} \cdots \longrightarrow \mathbf{Z} \xrightarrow{\delta_{1}} \mathbf{Z}
$$

Here, $\delta_{n}=d_{n} \otimes_{R} \mathrm{id}_{\mathbf{Z}}: R \otimes_{R} \mathbf{Z} \rightarrow R \otimes_{R} \mathbf{Z}$. Under the isomorphism $\mathbf{Z} \rightarrow R \otimes_{R} \mathbf{Z}$, which is given by $n \mapsto 1 \otimes n, \delta_{n}: \mathbf{Z} \rightarrow \mathbf{Z}$ becomes the map $n \mapsto(t \pm 1) \cdot n=n \pm n$. For n odd, this is $n \mapsto(t-1) \cdot n=0$; for $n>0$ even, this is $n \mapsto(t+1) \cdot n=2 n$. So we can rewrite this complex as:

$$
\cdots \longrightarrow \mathbf{Z} \xrightarrow{0} \mathbf{Z} \xrightarrow{2} \mathbf{Z} \xrightarrow{0} \mathbf{Z}
$$

So for $k>0$ even, we have $\operatorname{Tor}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=\operatorname{ker}\left(\delta_{k}\right) / \operatorname{im}\left(\delta_{k+1}\right)=\operatorname{ker}\left(\delta_{k}\right) / 0=\operatorname{ker}\left(\delta_{k}\right)$. Since δ_{k} is multiplication by 2 , which is injective on \mathbf{Z}, we have $\operatorname{Tor}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=0$ in this case. For k odd, we have $\operatorname{im}\left(\delta_{k+1}\right)=2 \mathbf{Z}$ and $\operatorname{ker}\left(\delta_{k}\right)=\mathbf{Z}$, so $\operatorname{Tor}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=\mathbf{Z} / 2 \mathbf{Z}$ (viewed as an R-module by having t act as the identity). What about $k=0$? Then $\operatorname{Tor}_{0}^{R}(\mathbf{Z}, \mathbf{Z})=\mathbf{Z} / \operatorname{im}\left(\delta_{1}\right)=\mathbf{Z}$. This makes sense: $\mathbf{Z} \simeq R /(t-1)$, so $\operatorname{Tor}_{0}^{R}(\mathbf{Z}, \mathbf{Z})=\mathbf{Z} \otimes_{R} \mathbf{Z}=\mathbf{Z} /(t-1) \cdot \mathbf{Z}=\mathbf{Z} / 0=\mathbf{Z}$.

To summarize:

$$
\operatorname{Tor}_{k}^{R}(\mathbf{Z}, \mathbf{Z})= \begin{cases}\mathbf{Z} & k=0 \\ 0 & k>0, k \text { is even } \\ \mathbf{Z} / 2 \mathbf{Z} & k \text { is odd }\end{cases}
$$

All of these are given an R-module structure by having t act as the identity.
Now, we can apply the contravariant functor $\operatorname{Hom}_{R}(\cdot, \mathbf{Z})$ to our free resolution of \mathbf{Z}, using the fact that $\operatorname{Hom}_{R}(R, M) \simeq M$ for any R-module M :

$$
\mathbf{Z} \xrightarrow{\delta^{1}} \mathbf{Z} \xrightarrow{\delta^{2}} \mathbf{Z} \xrightarrow{\delta^{3}} \cdots
$$

Via the natural isomorphism $\operatorname{Hom}_{R}(R, M) \xrightarrow{\sim} M$ sending φ to $\varphi(1)$, the maps $\delta^{n}: f \mapsto f \circ \delta^{n}$ become $n \mapsto(t \pm 1) \cdot m=m \pm m$. Thus, $\delta^{n}=0$ when n is odd and $\delta^{n}=2$ when n is even. So the complex is:

$$
\mathbf{Z} \xrightarrow{0} \mathbf{Z} \xrightarrow{2} \mathbf{Z} \xrightarrow{0} \cdots
$$

When $k>0$ is even, we have $\operatorname{Ext}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=\operatorname{ker} \delta^{k+1} / \operatorname{im} \delta^{k}=\mathbf{Z} / 2 \mathbf{Z}$. When k is odd, $\operatorname{Ext}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=$ $\operatorname{ker} \delta^{k+1} / \operatorname{im} \delta^{k}=0$, and when $k=0$, we have $\operatorname{Ext}_{k}^{R}(\mathbf{Z}, \mathbf{Z})=\operatorname{ker} \delta^{0}=\mathbf{Z}$. These have R-module structures
via t acting by the identity, as before. To summarize:

$$
\operatorname{Ext}_{k}^{R}(\mathbf{Z}, \mathbf{Z})= \begin{cases}\mathbf{Z} & k=0 \\ \mathbf{Z} / 2 \mathbf{Z} & k>0, k \text { is even } \\ 0 & k \text { is odd }\end{cases}
$$

Question 2. Let $R=\mathbf{Z}[\sqrt{-30}]$. Regard \mathbf{F}_{2} as an R-module by letting $\sqrt{-30}$ act by 0 . Compute $\operatorname{Tor}_{k}^{R}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)$ and $\operatorname{Ext}_{R}^{k}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)$ for all $k \geq 0$.

Solution. Recall from last week that $\mathbf{F}_{2} \cong R / I$ where $I=(2, \sqrt{-30})$. Since I is projective, as we know from class 1 , we have a projective resolution

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow I \xrightarrow{i} R \rightarrow \mathbf{F}_{2} \rightarrow 0 .
$$

where $i: I \hookrightarrow R$ is the inclusion. Applying $(\cdot) \otimes_{R} R / I$ and dropping the last term, we get the complex:

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow I \otimes(R / I) \xrightarrow{i \otimes 1} R \otimes(R / I) \rightarrow 0
$$

which we can simplify to

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow I / I^{2} \xrightarrow{0} R / I \rightarrow 0
$$

Note that the map is 0 since the image of $i: I \hookrightarrow R$ is zero in $R / I)$, so the kernels and images are even easier to compute, and we just get

$$
\operatorname{Tor}_{k}^{R}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)= \begin{cases}\mathbf{F}_{2} & k=0 \\ I / I^{2} & k=1 \\ 0 & k \geq 2\end{cases}
$$

The last thing to do is compute what I / I^{2} is. Recall that $I=\{x+y \sqrt{-30} \mid x \in 2 \mathbb{Z}, y \in \mathbb{Z}\}$. Multiplying out

$$
(2 a+b \sqrt{-30})(2 c+d \sqrt{-30})=(4 a c-30 b d)+(2 a d+2 b c) \sqrt{-30}
$$

shows that $I^{2} \subset\{x+y \sqrt{-30} \mid x \in 2 \mathbb{Z}, y \in 2 \mathbb{Z}\}=(2)$, and we can guess that this might be equality. To show that this guess is correct, we just need to show that $(2) \subset I^{2}$, i.e. that $2 \in I^{2}$. This is easy: $2 \cdot 2=4$ belongs to I^{2}, and $(\sqrt{-30}) \cdot(\sqrt{-30})=-30$ belongs to I^{2}, so $-30+4+4+4+4+4+4+4+4=2$ belongs to I^{2}. In particular, I^{2} is an index-2 subgroup of I, and so $I / I^{2} \simeq \mathbf{F}_{2}$ (it is easy to check that this has the same R-module structure as the \mathbf{F}_{2} we started with) ${ }^{2}$ Therefore:

$$
\operatorname{Tor}_{k}^{R}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)= \begin{cases}\mathbf{F}_{2} & k=0 \\ \mathbf{F}_{2} & k=1 \\ 0 & k \geq 2\end{cases}
$$

[^0]For Ext, we can apply the contravariant functor $\operatorname{Hom}_{R}\left(\cdot, \mathbf{F}_{2}\right)$ to the projective resolution $\cdots \rightarrow 0 \rightarrow$ $0 \rightarrow I \xrightarrow{i} R \rightarrow \mathbf{F}_{2} \rightarrow 0$ (dropping the first term) to obtain

$$
0 \rightarrow \operatorname{Hom}_{R}\left(R, \mathbf{F}_{2}\right) \xrightarrow{i^{*}} \operatorname{Hom}_{R}\left(I, \mathbf{F}_{2}\right) \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

Note that $\operatorname{Hom}_{R}\left(R, \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}$ has only one nonzero element, namely $f: R \rightarrow \mathbf{F}_{2}$ sending $x+y \sqrt{-30}$ to $x \bmod 2$. Since this restricts to 0 on $I \subset R$, the map i^{*} here is 0 . So it remains only to compute $\operatorname{Hom}_{R}\left(I, \mathbf{F}_{2}\right)$.

Note that as abelian groups I is isomorphic to \mathbb{Z}^{2}, so there are only three nonzero group-homomorphisms from I to $\mathbf{F}_{2}: \alpha(2 a+b \sqrt{-30})=a \bmod 2 ; \beta(2 a+b \sqrt{-30})=b \bmod 2 ;$ and $\gamma(2 a+b \sqrt{-30})=a+b \bmod 2$. So we need only check which of these are R-linear. Since 1 and $\sqrt{-30}$ additively generate R, we need only check that they preserve multiplication by these elements (and for 1 this is automatic).

Recalling that $\sqrt{-30}$ acts by 0 on \mathbf{F}_{2}, we just need to check whether

$$
\alpha(\sqrt{-30} \cdot(2 a+b \sqrt{-30})) \stackrel{?}{=} 0=\sqrt{-30} \cdot \alpha(2 a+b \sqrt{-30})
$$

nd so on.

$$
\begin{aligned}
& \alpha(\sqrt{-30} \cdot(2 a+b \sqrt{-30}))=\alpha(-30 b+2 a \sqrt{-30})=-15 b \bmod 2=b \bmod 2 \neq 0 \\
& \beta(\sqrt{-30} \cdot(2 a+b \sqrt{-30}))=\beta(-30 b+2 a \sqrt{-30})=2 a \bmod 2=0 \bmod 2 \xlongequal[=]{〔} \\
& \gamma(\sqrt{-30} \cdot(2 a+b \sqrt{-30}))=\gamma(-30 b+2 a \sqrt{-30})=-15 b+2 a \bmod 2=b \bmod 2 \neq 0
\end{aligned}
$$

Therefore the only two R-linear homomorphisms from I to \mathbf{F}_{2} are the zero map and β. So as an abelian group $\operatorname{Hom}_{R}\left(I, \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}$, and the fact that multiplication by $\sqrt{-30}$ annihilates β means this is the same R-module structure as always. We conclude:

$$
\operatorname{Ext}_{R}^{k}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)= \begin{cases}\mathbf{F}_{2} & k=0 \\ \operatorname{Hom}_{R}\left(I, \mathbf{F}_{2}\right) \cong \mathbf{F}_{2} & k=1 \\ 0 & k \geq 2\end{cases}
$$

Question 3. Let $R=\mathbf{R}[T]$. Let $M=\mathbf{R}^{2}$, with R-module structure where T acts by $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. Let $N=\mathbf{R}$ with R-module structure where T acts by 0 .
Compute $\operatorname{Tor}_{k}^{R}(M, N)$ and $\operatorname{Ext}_{R}^{k}(M, N)$ and $\operatorname{Ext}_{R}^{k}(N, M)$ for all $k \geq 0$.
Solution. On the last assignment, we computed a free resolution for M :

$$
\cdots \rightarrow 0 \rightarrow 0 \longrightarrow R \xrightarrow{d_{1}} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

Here, d_{1} is multiplication by $(T-1)^{2}$. If we apply the functor $(\cdot) \otimes N$ to this, after dropping the M term, we get the complex:

$$
\cdots \rightarrow 0 \rightarrow 0 \longrightarrow N \xrightarrow{(T-1)^{2}} N \rightarrow 0
$$

We used the same reasoning as in Question 1 to determine the complex: $R \otimes_{R} N \simeq N$, and the map $f_{0} \otimes \operatorname{id}_{N}$ becomes the action by $(T-1)^{2}$ under this isomorphism. Now, since T acts by 0 on N, the element $T-1$ acts by $(T-1) \cdot n=-n$. In particular $(T-1)^{2} \cdot n=(-1)^{2} \cdot n=n$, so the action of $(T-1)^{2}$ on N is the identity map.

Thus, we have $\operatorname{Tor}_{R}^{0}(M, N)=N / N=0, \operatorname{Tor}_{R}^{1}(M, N)=0 / 0=0$, and of course the higher Tor's vanish since the complex is 0 after the first two terms. So we have $\operatorname{Tor}_{R}^{k}(M, N)=0$ for all k.

If we apply $\operatorname{Hom}_{R}(\cdot, N)$ to the sequence, we get:

$$
0 \rightarrow N \xrightarrow{(T-1)^{2}} N \longrightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

Again, by the same reasoning as in Question 1, $\operatorname{Hom}_{R}(R, N) \simeq N$ and multiplication by $(T-1)^{2}$ becomes the action by $(T-1)^{2}$ under this isomorphism. Since $(T-1)^{2}$ acts by the identity map on N, we get that $\operatorname{Ext}_{k}^{R}(M, N)=0$ for all k just as above.

In order to compute $\operatorname{Ext}_{R}^{k}(N, M)$, we either need a projective resolution of N or an injective resolution of M. In general, it's much easier to compute projective resolutions, so that's what we'll do.

We have a surjective map $\pi: R \rightarrow \mathbf{R}$ sending $p(T)$ to $p(T) \cdot 1$. Since T acts by 0 , the kernel is (T). Since R is a domain, the map $R \rightarrow R$ given by multiplication by T is injective, so we have a free resolution:

$$
\cdots \rightarrow 0 \rightarrow 0 \longrightarrow R \xrightarrow{T} R \xrightarrow{\pi} N \rightarrow 0
$$

Applying the functor $\operatorname{Hom}_{R}(\cdot, M)$ (after dropping the N term) and using the same reasoning as before, we get the complex:

$$
0 \longrightarrow M \xrightarrow{T} M \longrightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

So $\operatorname{Ext}_{R}^{0}(N, M)=\operatorname{ker} T$ and $\operatorname{Ext}_{R}^{1}(N, M)=\operatorname{coker} T$, where we think of T as the linear transformation $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ acting on M. But T is an isomorphism $(\operatorname{det} T=1)$, $\operatorname{so~}^{\operatorname{Ext}}{ }_{R}^{k}(N, M)=0$ for all k.

Question 4. Let $R=\mathbf{C}[T]$. Given $\lambda \in \mathbb{C}$, let \mathbf{C}_{λ} denote \mathbf{C} regarded as an R-module by letting T act by λ. Compute $\operatorname{Ext}_{R}^{k}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\mu}\right)$ for all $k \geq 0$, for all $\lambda, \mu \in \mathbf{C}$.

Solution. We need to compute a projective resolution of \mathbf{C}_{λ}. Since \mathbf{C}_{λ} is generated by 1 as a \mathbf{C}-module and therefore as an R-module, we have a surjection $\pi: R \rightarrow \mathbf{C}_{\lambda}$ sending $p(T)$ to $p(T) \cdot 1=p(\lambda)$. So the kernel is $\{p(T) \in R \mid p(\lambda)=0\}$. This is the principal ideal $(T-\lambda)$: if $p(T) \in R$, we can write $p(T)=(T-\lambda) q(T)+r$ with $\operatorname{deg} r<\operatorname{deg}(T-\lambda)=1$, so r is a constant. Then $p(\lambda)=r$, so $p(\lambda)=0$ iff $(T-\lambda) \mid p(T)$. So we have a free resolution:

$$
\cdots \rightarrow 0 \rightarrow 0 \longrightarrow R \xrightarrow{T-\lambda} R \longrightarrow \mathbf{C}_{\lambda} \longrightarrow 0
$$

Now, dropping the \mathbf{C}_{λ} term and applying the contravariant functor $\operatorname{Hom}\left(\cdot, \mathbf{C}_{\mu}\right)$, we get:

$$
0 \rightarrow \mathbf{C}_{\mu} \xrightarrow{T-\lambda} \mathbf{C}_{\mu} \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

As before, we use $\operatorname{Hom}_{R}(R, M) \simeq M$, and that multiplication by $T-\lambda$ in R corresponds under this isomorphism to the action of $T-\lambda$. Since T acts by μ on \mathbf{C}_{λ}, we know that $T-\lambda$ acts by $\mu-\lambda$. So we have two cases: if $\mu=\lambda$, then the map is 0 and we have $\operatorname{Ext}_{R}^{0}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\lambda}\right)=\mathbf{C}_{\lambda}$ and $\operatorname{Ext}_{R}^{1}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\lambda}\right)=\mathbf{C}_{\lambda}$. We also clearly have $\operatorname{Ext}_{R}^{k}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\lambda}\right)=0$ for $k \geq 2$.

$$
\operatorname{Ext}_{R}^{k}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\lambda}\right)= \begin{cases}\mathbf{C}_{\lambda} & k=0 \\ \mathbf{C}_{\lambda} & k=1 \\ 0 & k \geq 2\end{cases}
$$

If we have $\mu \neq \lambda$, the map is multiplication by $\mu-\lambda$, which is an isomorphism, so we have $\operatorname{Ext}_{R}^{0}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\mu}\right)=\operatorname{Ext}_{R}^{1}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\mu}\right)=0$, so

$$
\operatorname{Ext}_{R}^{k}\left(\mathbf{C}_{\lambda}, \mathbf{C}_{\mu}\right)=0 \quad \text { for all } k \geq 0
$$

Question 5. Let $R=\mathbf{C}[x, y]$.
(a) Regard \mathbf{C} as an R-module by letting x and y act by 0 . Compute $\operatorname{Tor}_{k}^{R}(\mathbf{C}, \mathbf{C})$ for all $k \geq 0$.
(b) Let $I \subset R$ be the ideal $I=(x, y)$. We would like to understand $I \otimes_{R} I$, so:

Give a basis for $I \otimes_{R} I$ as a complex vector space.
If you can also describe the R-module structure without too much pain, please do.
Solution. (a) We computed in the last assignment (for $R=\mathbf{R}[x, y]$ and $M=\mathbf{R}$ with R-module action by sending x, y to 0 ; but nothing changes when you replace \mathbf{R} with any other field) the following free resolution:

$$
\cdots 0 \rightarrow 0 \longrightarrow R \underset{\binom{y}{-x}}{\frac{d_{2}}{\longrightarrow}} R^{2} \frac{d_{1}}{(x y)} R \xrightarrow{d_{0}} M \longrightarrow 0
$$

Here, f_{0} and f_{1} are given by $f_{0}(p, q)=x p+y q$ and $f_{1}(r)=(y r,-x r)$. Applying the functor $\otimes_{R} \mathbf{C}$, we get:

$$
\cdots 0 \rightarrow 0 \rightarrow \mathbf{C} \xrightarrow{0} \mathbf{C}^{2} \xrightarrow{0} \mathbf{C} \rightarrow 0
$$

Here, we used the fact discussed earlier that $R^{n} \otimes_{R}(R / I) \simeq(R / I)^{n}$, and a matrix for $d \otimes \operatorname{id}_{R / I}$ is given by reducing a matrix for $d \bmod I$. But both the matrices $\binom{y}{-x}$ and $\left(\begin{array}{ll}x & y\end{array}\right)$ become zero when we tensor with \mathbf{C} (since x and y act by 0 there), which is how we know these maps are 0 . This tells us that

$$
\operatorname{Tor}_{k}^{R}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)= \begin{cases}\mathbf{C} & k=0 \\ \mathbf{C}^{2} & k=1 \\ \mathbf{C} & k=2 \\ 0 & k \geq 3\end{cases}
$$

(b) [Note from TC: I think the simpler way to do this is to first show that $\operatorname{ker}\left(I \otimes_{R} I \rightarrow I^{2}\right) \cong$ $\operatorname{Tor}_{1}(I, R / I)$, and then to show $\operatorname{Tor}_{1}(I, R / I) \cong \operatorname{Tor}_{2}(R / I, R / I)$, which we just proved is \mathbf{C}. Therefore once we find one element in this kernel (namely $x \otimes y-y \otimes x$) we just need any set that descends to a basis for I^{2}. But the approach below works as well.]
Note that I is the kernel of the map $d_{0}: R \rightarrow M$ in the previous part, so our free resolution for M gives us a free resolution for I :

$$
0 \longrightarrow R \underset{\binom{y}{-x}}{\frac{d_{1}}{2}} R^{2} \frac{d_{0}}{\left(\begin{array}{ll}
x & y
\end{array}\right)} I \longrightarrow 0
$$

Using this free resolution, we can compute $I \otimes_{R} I=\operatorname{Tor}_{0}^{R}(I, I)$, by applying the functor $(\cdot) \otimes_{R} I$, which yields the complex:

$$
I \underset{\binom{y}{-x)}}{\delta} \oplus I
$$

Here, we are identifying $R \otimes_{R} I$ with I and $R^{2} \otimes_{R} I$ with $I \oplus I$ (this should not be referred to as I^{2}, since that typically refers to the ideal $I \cdot I)$. Thus, $I \otimes_{R} I \simeq \operatorname{coker} \delta$. Note that the identification of this cokernel with $I \otimes I$ is via the map $\left(\begin{array}{ll}x & y\end{array}\right): R^{2} \rightarrow I$, so we should think of $I \oplus I$ as $(x \otimes I) \oplus(y \otimes I)$. In particular, the map $\pi: I \oplus I \rightarrow I \otimes I=\operatorname{coker} \delta$ is given by sending (p, q) to $(x \otimes p+y \otimes q)$. Similarly, we should think of δ as sending $p(x, y) \in I$ to $(x \otimes y \cdot p(x, y),-y \otimes x \cdot p(x, y))$. Certainly $x \otimes y \cdot p-y \otimes x \cdot p=0$, and we've seen that this actually generates the kernel of π.

Let $(p, q) \in I \oplus I$. Then we can write p uniquely as

$$
p(x, y)=x p_{0}(x)+y p_{1}(x)+y^{2} p_{2}(x)+\cdots+y^{n} p_{n}(x)
$$

for some polynomials $p_{i}(x) \in R$, and any choice of $p_{i} \in R$ give an element of I. Letting $p_{1}(x)=$ $a+x \cdot p_{1}^{\prime}(x)$ with $a \in \mathbf{C}$, we can then write p uniquely as
$p=x p_{0}(x)+y a+y \cdot\left(x p_{1}^{\prime}(x)+y p_{2}(x)+y^{2} p_{3}(x)+\cdots+y^{n-1} p_{n}(x)\right)=: x p_{0}(x)+y a+y q(x, y)$
Note that $q(x, y) \in I$, and that if $x p_{0}(x)+y a+y q(x, y)=x p_{0}^{\prime}(x)+y a^{\prime}+y q^{\prime}(x, y)$ with $q, q^{\prime} \in I$, then we can rearrange this to give:

$$
y\left(q(x, y)-q^{\prime}(x, y)\right)=x\left(p_{0}^{\prime}(x)-p_{0}(x)\right)+y\left(a^{\prime}-a\right)
$$

Since the left hand side is divisible by y, the right hand side must be as well, so $p_{0}=p_{0}^{\prime}$. This implies that $a^{\prime}-a=q-q^{\prime} \in I$, which means that $a^{\prime}=a$, since I is a proper ideal. Thus, any element $p \in I$ may be written uniquely as $p=x p_{0}(x)+y a+y q(x, y)$ with $q(x, y) \in I$. Therefore, we can write any element of $I \oplus I$ uniquely as $\left(x p_{0}(x)+y a, r(x, y)\right)+(y \cdot q(x, y),-x \cdot q(x, y))$ with $r(x, y), q(x, y) \in I$, so the second term is in im δ.
This means that sub-C-vector space of $I \oplus I$ given by elements of the form $\left(x p_{0}(x)+y a, r(x, y)\right)$ maps isomorphically under π to $I \otimes_{R} I$. We can take

$$
\left\{\left(x^{a}, 0\right)\right\}_{a \geq 1} \cup\left\{\left(0, x^{b} y^{c}\right)\right\}_{b+c \geq 1} \cup\{(y, 0)\}
$$

as a \mathbf{C}-basis.
This says that a \mathbf{C}-basis for $I \otimes_{R} I$ is given by the elements $x \otimes x^{a}$ with $a \geq 1$, together with the elements $y \otimes x^{b} y^{c}$ with $b+c \geq 1$, as well as the element $x \otimes y$.

Question 6. Prove that if M is torsion-free and finitely generated, then

$$
\operatorname{Tor}_{k}(M, X)=0 \quad \text { for all } k>0 \quad \text { and any } X .
$$

Solution. One way to prove this where the hypothesis that M is finitely generated is to show that torsion-free finitely generated modules over a PID are free. Since this is an important part of the structure theorem for finitely generated modules over a PID, I won't include the proof here.

Alternatively, there is an elementary argument using the equational criterion for flatness. This was Q11 on HW3: a finitely presented module is projective iff every linear dependence is trivial ${ }_{\square}^{3}$

[^1]We can show fairly easily that any finitely generated module over a PID is finitely presented. Indeed, let $\pi: R^{k} \rightarrow M$ be a surjection. We want to show that $\operatorname{ker} \pi \subseteq R^{k}$ is finitely generated. In fact, this is true for any submodule $K \subseteq R^{k}$ by induction on k. When $k=1$, this is the statement that any ideal of R is finitely generated. In fact, any ideal of R is generated by a single element, since R is a PID, so this settles $k=1$. Now, we can induct on k. We have a short exact sequence:

$$
0 \rightarrow\left(K \cap R^{k-1}\right) \rightarrow K \rightarrow K /\left(K \cap R^{k-1}\right) \rightarrow 0
$$

Here, we embed R^{k-1} into R^{k} by sending a basis to the first n coordinates. By induction, $K \cap R^{k-1} \subseteq R^{k-1}$ is finitely generated, and $K /\left(K \cap R^{k-1}\right) \subseteq R^{k} / R^{k-1} \simeq R$, so $K /\left(K \cap R^{k-1}\right)$ is also finitely generated. Therefore, K is finitely generated.

Now, it suffices to show the equational criterion. Let $a_{1} m_{1}+\cdots+a_{n} m_{n}$ be a linear dependence in M, and suppose without loss of generality that $a_{i} \neq 0$ for each i. Because R is a PID, the ideal $\left(a_{1}, \ldots, a_{n}\right)$ is principal, so it is of the form (r) for some $r \in R$. Since the a_{i} are nonzero, $r \neq 0$. Thus, for each $i, a_{i}=r a_{i}^{\prime}$ for some $a_{i}^{\prime} \in R$. So we can write:

$$
0=r a_{1}^{\prime} m_{1}+\cdots+r a_{n}^{\prime} m_{n}=r \cdot\left(a_{1}^{\prime} m_{1}+\cdots+a_{n}^{\prime} m_{n}\right)
$$

Since M is torsion-free and $r \neq 0$, we have

$$
a_{1}^{\prime} m_{1}+\cdots+a_{n}^{\prime} m_{n}=0
$$

Now, consider the ideal $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(r^{\prime}\right)$ for some $r^{\prime} \in R$. Then we know that $r^{\prime} \mid a_{i}^{\prime}$ for all i, so $r r^{\prime} \mid r a_{i}^{\prime}=a_{i}$ for all i. Thus, $(r)=\left(a_{1}, \ldots, a_{n}\right) \subseteq\left(r r^{\prime}\right)$, so we have $r=\left(r r^{\prime}\right) r^{\prime \prime}$ for some $r^{\prime \prime} \in R$; since R is a domain, this implies that $r^{\prime} r^{\prime \prime}=1$, so r^{\prime} is a unit, i.e. $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=R$. We can multiply a trivializing relation for the linear dependence $0=a_{1}^{\prime} m_{1}+\cdots+a_{n}^{\prime} m_{n}$ by r to get one for $0=a_{1} m_{1}+\cdots+a_{n} m_{n}$, so by renaming a_{i}^{\prime} to a_{i}, we may now assume that $\left(a_{1}, \ldots, a_{n}\right)=R$. Thus, there are $r_{i} \in R$ such that $r_{1} a_{1}+\cdots+r_{n} a_{n}=1$.

Now, for each i, we can write:

$$
\begin{aligned}
m_{i} & =\left(r_{1} a_{1}+\cdots+r_{n} a_{n}\right) \cdot m_{i} \\
& =\left(\sum_{j \neq i} r_{j} a_{j}\right) \cdot m_{i}+r_{i} a_{i} m_{i} \\
& =\left(\sum_{j \neq i} r_{j} a_{j}\right) \cdot m_{i}-r_{i} \cdot\left(a_{1} m_{1}+\cdots+a_{i-1} m_{i-1}+a_{i+1} m_{i+1}+\cdots+a_{n} m_{n}\right) \\
& =\left(\sum_{j \neq i} r_{j} a_{j}\right) \cdot m_{i}+\sum_{j \neq i}\left(-r_{i} a_{j}\right) m_{j}
\end{aligned}
$$

Define $v^{j}=m_{j}$ and b_{i}^{j} to be the coefficient of m_{j} in the last equation above: if $i \neq j, b_{i}^{j}=\left(-r_{i} a_{j}\right)$ and if $i=j$, then $b_{i}^{i}=\sum_{j \neq i} r_{j} a_{j}$. Thus, $m_{i}=\sum_{j} b_{i}^{j} v^{j}$.

Now, it suffices to show that for each $j, \sum_{i=1}^{n} a_{i} b_{i}^{j}=0$. But this is:

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} b_{i}^{j} & =\sum_{i \neq j} a_{i}\left(-r_{i} a_{j}\right)+a_{j} b_{j}^{j} \\
& =-a_{j} \cdot \sum_{i \neq j} r_{i} a_{i}+a_{j} \cdot\left(\sum_{i \neq j} r_{i} a_{i}\right) \\
& =0
\end{aligned}
$$

This concludes the proof.
Question 6'. (replaces Q6) Prove that if M is torsion-free, then

$$
\operatorname{Tor}_{k}(M, X)=0 \quad \text { for all } k>0 \quad \text { and any finitely generated } X
$$

Solution. We induct on the number of generators of X. If X is generated by a single element, then $X \simeq R / I$ for some ideal I. Since R is a PID, $I=(r)$ for some $r \in R$, so $X \simeq R /(r)$. If $r=0$, then $X \simeq R$ is free, and therefore projective, so $\operatorname{Tor}_{k}(M, X)=0$ for all k and all m. Consider the exact sequence:

$$
0 \longrightarrow R \xrightarrow{r} R \longrightarrow X \longrightarrow 0
$$

Applying the functor $M \otimes_{R}(\cdot)$ and using the long exact Tor sequence, we get an exact sequence:

$$
\operatorname{Tor}_{1}^{R}(M, R)=0 \longrightarrow \operatorname{Tor}_{1}^{R}(M, X) \longrightarrow M \otimes_{R} R \xrightarrow{r} M \otimes_{R} R \longrightarrow M \otimes_{R} R /(r) \longrightarrow 0
$$

Thus, we may identify $\operatorname{Tor}_{1}^{R}(M, X)$ with the kernel of the map $M \otimes_{R} R \rightarrow M \otimes_{R} R$ given by multiplication by r on the second factor. We may identify $M \otimes_{R} R$ with M, so this is just the map $M \rightarrow M$ given by multiplication by r. The kernel of this map is then exactly the set of $m \in M$ with $r \cdot m=0$. Since M is torsion-free and $r \neq 0$, this implies $m=0$. Thus, we know that $\operatorname{Tor}_{1}^{R}(M, R /(r))=0$ for any $r \in R$.

Now, let x_{1}, \ldots, x_{n} generate X, and let X^{\prime} be the R-submodule of X generated by x_{1}, \ldots, x_{n-1}. We have a short exact sequence:

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow X / X^{\prime} \rightarrow 0
$$

Here, X / X^{\prime} is generated by a single element, so it is isomorphic to $R /(r)$ for some $r \in R$. Now, we can take the Tor long exact sequence to get:

$$
\cdots \longrightarrow \operatorname{Tor}_{k}\left(M, X^{\prime}\right) \longrightarrow \operatorname{Tor}_{k}(M, X) \longrightarrow \operatorname{Tor}_{k}\left(M, X / X^{\prime}\right) \longrightarrow
$$

But for any $k \geq 1$, since both X / X^{\prime} and X^{\prime} are generated by fewer than n elements, we may assume by induction that $\operatorname{Tor}_{k}\left(M, X^{\prime}\right)=0, \operatorname{Tor}_{k}\left(M, X / X^{\prime}\right)=0$, so this reads:

$$
\cdots \longrightarrow 0 \longrightarrow \operatorname{Tor}_{k}(M, X) \longrightarrow 0 \longrightarrow \cdots
$$

Thus, $\operatorname{Tor}_{k}(M, X)=0$ for all $k \geq 1$.
Question 7. Deduce from Q6, or from Q^{\prime}, or prove directly: for any torsion-free M,

$$
\operatorname{Tor}_{k}(M, X)=0 \quad \text { for all } k>0 \quad \text { and any } X
$$

[If you give a self-contained direct proof for Q7, you will automatically get credit for Q6.]
Solution. Both deductions from Q6, Q6' are similar. Let's show Q6 \Longrightarrow Q7 first.
Let M be an arbitrary torsion-free module. We want to show that $\operatorname{Tor}_{k}(M, X)=0$ for all R-modules X, which is equivalent to showing that M is flat. We will show directly that if $\varphi: X \rightarrow Y$ is an injective homomorphism, then $\operatorname{id}_{M} \otimes_{R} \varphi: M \otimes_{R} X \rightarrow M \otimes_{R} Y$ is injective. Now, let $\beta=\sum_{i=1}^{n} m_{i} \otimes x_{i}$ be an arbitrary element of $M \otimes_{R} X$ and suppose that $\varphi(\beta)=0$. We want to show that $\left(\mathrm{id}_{M} \otimes_{R} \varphi\right)\left(\sum_{i} m_{i} \otimes x_{i}\right)=$ $\sum_{i} m_{i} \otimes \varphi\left(x_{i}\right)$ is non-zero. Since only finitely many elements of M appear in this sum, there is a finitely generated submodule $M^{\prime} \subseteq M$ which contains m_{1}, \ldots, m_{n}. Since submodules of torsion-free modules are torsion-free, we know that M^{\prime} is torsion-free and finitely generated. By Q6, this implies that $\operatorname{Tor}_{k}\left(M^{\prime}, X\right)=$ 0 for any R-module X, i.e. that M^{\prime} is flat. We have a commutative diagram:

Applying this to $\alpha=\sum_{i} m_{i} \otimes x_{i} \in M^{\prime} \otimes_{R} X$, we get that

$$
\left(\iota \otimes \mathrm{id}_{Y}\right)\left(\left(\mathrm{id}_{M^{\prime}} \otimes \varphi\right)(\alpha)\right)=\left(\mathrm{id}_{M} \otimes \varphi\right)\left(\left(\iota \otimes \mathrm{id}_{X}\right)(\alpha)\right)=\left(\mathrm{id}_{M} \otimes \varphi\right)(\beta)=0
$$

Since we do not know if Y is flat, we cannot conclude immediately that $\gamma:=\left(\mathrm{id}_{M^{\prime}} \otimes \varphi\right)(\alpha)=0$. However, we know that any finitely generated submodule of M is flat. Let $M^{\prime \prime}$ be a finitely generated submodule of M containing M^{\prime}. Then we can extend the above commutative diagram to:

Note that we have $\iota=\iota_{2} \circ \iota_{1}$, so we know that

$$
0=\left(\iota \otimes \operatorname{id}_{Y}\right)(\gamma)=\left(\iota_{2} \otimes \operatorname{id}_{Y}\right) \circ\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)
$$

If we can find some such $M^{\prime \prime}$ such that $\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)=0$, then we have:

$$
0=\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)=\left(\mathrm{id}_{M^{\prime \prime}} \otimes \varphi\right) \circ\left(\iota_{1} \otimes \mathrm{id}_{X}\right)(\alpha)
$$

Since $M^{\prime \prime}$ is flat, $\mathrm{id}_{M^{\prime \prime}} \otimes \varphi$ is injective, so this means that $\left(\iota_{1} \otimes \mathrm{id}_{X}\right)(\alpha)=0$. But $\beta=\left(\iota \otimes \mathrm{id}_{X}\right)(\alpha)=$ $\left(\iota_{2} \otimes \mathrm{id}_{X}\right)\left(\left(\iota_{1} \otimes \mathrm{id}_{X}\right)(\alpha)\right)$, so this implies $\beta=0$, as desired.

To see that there is a finitely generated submodule $M^{\prime \prime} \subseteq M$ with $M^{\prime} \subseteq M^{\prime \prime}$ such that $\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)=0$, we recall the construction of the tensor product $M \otimes_{R} Y$. This is defined as the free abelian group \mathscr{A} on the symbols $m \otimes y$ with $m \in M, y \in Y$, modulo relations of the form $\rho_{m_{1}, m_{2},+}:=\left(m_{1}+m_{2}\right) \otimes y-m_{1} \otimes$ $y-m_{2} \otimes y$ and $\rho_{r, m, *}:=r m \otimes y=m \otimes r y$ for all $m_{1}, m_{2}, m \in M, y \in Y$, and $r \in R$.

We can write $\gamma=\sum_{i=1}^{n} m_{i} \otimes y_{i}$, and its image in $M \otimes Y$ is represented by $A=\sum_{i=1}^{n} m_{i} \otimes y_{i} \in \mathscr{A}$. Since it is 0 in $M \otimes Y$, this means that A is in the subgroup of \mathscr{A} generated by $\rho_{m_{1}, m_{2},+}, \rho_{r, m, *}$. Thus, there are finitely many $m_{1}^{i}, m_{2}^{i}, r^{j}, m^{j}$ such that $A=\sum_{i=1}^{N} \rho_{m_{1}^{i}, m_{2}^{i},+}+\sum_{j=1}^{M} \rho_{r^{j}, m^{j}, \text {. }}$. We can then take $M^{\prime \prime}$ to be the R-submodule of M generated by the $m_{1}^{i}, m_{2}^{i}, m^{j}$ and the generators of M^{\prime}. This is a finitely generated submodule of M. Then, $\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)$ is represented by $A \in \mathscr{A}^{\prime \prime} \subseteq \mathscr{A}$, where $\mathscr{A}^{\prime \prime}$ is the free abelian group corresponding to $M^{\prime \prime} \otimes Y$, which is clearly a subgroup of \mathscr{A} (it is the free abelian group on a subset of the generators). But by construction, the $\rho_{m_{1}^{i}, m_{2}^{i},+}$ and $\rho_{r^{j}, m^{j}, *}$ are in $\mathscr{A}^{\prime \prime}$. Then, since $\mathscr{A}^{\prime \prime} \rightarrow \mathscr{A}$ is injective, the equation $A=\sum_{i} \rho_{m_{1}^{i}, m_{2}^{i},+}+\sum_{j} \rho_{r^{j}, m^{j}, *}$ holds in $\mathscr{A}^{\prime \prime}$, so A is in the kernel of $\mathscr{A}^{\prime \prime} \rightarrow M^{\prime \prime} \otimes_{R} Y$. This means that $\left(\iota_{1} \otimes \operatorname{id}_{Y}\right)(\gamma)=0$ as desired.

The deduction that $\mathrm{Q} 6^{\prime} \Longrightarrow \mathrm{Q} 7$ is very similar. We need to show that for any $\varphi: X \rightarrow Y$, the map $\left(\operatorname{id}_{M} \otimes \varphi\right): M \otimes X \rightarrow M \otimes Y$ is injective. Let $\beta=\sum_{i} m_{i} \otimes x_{i}$ be in the kernel. Taking X^{\prime} to be any finitely generated submodule of X containing the x_{i}, we can define $\alpha:=\sum_{i} m_{i} \otimes x_{i}$, thought of as an element of X^{\prime}. Since the homomorphic image of a finitely generated module is finitely generated, we get a map $\varphi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ with $Y^{\prime} \subseteq Y$ finitely generated. This gives us a commutative diagram:

Thus, $\gamma:=\left(\operatorname{id}_{M} \otimes \varphi^{\prime}\right)(\alpha)$ is in the kernel of $\mathrm{id}_{M} \otimes \iota_{Y^{\prime}}$. Exactly as in the proof that $\mathrm{Q} 6 \Longrightarrow \mathrm{Q} 7$ (note that we did not use torsion-freeness for this part of the proof), we can see that there is a finitely generated submodule $Y^{\prime \prime} \subseteq Y$ with $Y^{\prime} \subseteq Y^{\prime \prime}$ such that if $\iota_{1}: Y^{\prime} \hookrightarrow Y^{\prime \prime}$ is the inclusion, $\left(\operatorname{id}_{M} \otimes \iota_{1}\right)(\gamma)=0$. We get a map $\varphi^{\prime \prime}: X^{\prime} \rightarrow Y^{\prime \prime}$ defined by $\iota_{1} \circ \varphi^{\prime}$, and this gives a commutative diagram:

Thus, we see that $0=\left(\mathrm{id}_{M} \otimes \iota_{1}\right)(\gamma)=\left(\mathrm{id}_{M} \otimes \varphi^{\prime \prime}\right)(\alpha)=0$. But since $\varphi^{\prime \prime}: X^{\prime} \rightarrow Y^{\prime \prime}$ is the composition of the injective maps $\varphi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and $\iota_{1}: Y^{\prime} \rightarrow Y^{\prime \prime}$, it is injective.

Now, consider the exact sequence:

$$
0 \rightarrow X^{\prime} \rightarrow Y^{\prime \prime} \rightarrow \operatorname{coker} \varphi^{\prime \prime} \rightarrow 0
$$

Since coker $\varphi^{\prime \prime}$ is a quotient of the finitely generated module $Y^{\prime \prime}$, it is finitely generated, so $\operatorname{Tor}_{1}\left(M, \operatorname{coker} \varphi^{\prime \prime}\right)=$ 0 . Thus, taking the Tor long exact sequence, we get:

$$
0=\operatorname{Tor}_{1}\left(M, \operatorname{coker} \varphi^{\prime \prime}\right) \longrightarrow M \otimes_{R} X^{\prime} \xrightarrow{\operatorname{id}_{M} \otimes \varphi^{\prime \prime}} M \otimes Y^{\prime \prime} \longrightarrow M \otimes\left(\operatorname{coker} \varphi^{\prime \prime}\right) \longrightarrow 0
$$

Thus, $\mathrm{id}_{M} \otimes \varphi^{\prime \prime}$ is injective, so the fact that $\left(\mathrm{id}_{M} \otimes \varphi^{\prime \prime}\right)(\alpha)=0$ implies $\alpha=0$, and thus $\beta=\left(\mathrm{id}_{M} \otimes \iota_{X^{\prime}}\right)(\alpha)=$ 0 .

Question 8. Deduce from the previous question that for any M,

$$
\operatorname{Tor}_{k}(M, X)=0 \quad \text { for all } k>1 \quad \text { and any } X
$$

Solution. For any R-module M, there is a short exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with F free and $K \subseteq F$. Since submodules of torsion-free modules are torsion-free, we know that K is torsion-free. Now, for any X, we can take the long exact Tor sequence. For any $k \geq 2$, we have the following piece:

$$
0=\operatorname{Tor}_{k}(F, X) \rightarrow \operatorname{Tor}_{k}(M, X) \rightarrow \operatorname{Tor}_{k-1}(K, X)=0
$$

Here, we used Q7 and the fact that $k-1 \geq 1$ to show that $\operatorname{Tor}_{k-1}(K, X)=0$. Certainly we know that for a free module F, $\operatorname{Tor}_{k}(F, X)=0$ as soon as $k>0$. $\operatorname{Thus,~}_{\operatorname{Tor}}^{k}(M, X)=0$ for $k>1$.

Do at least one of the following questions. If you've seen one of these questions before, please at least try to do one of the others.

Question 9A. Compute $\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Q}, \mathbf{Z})$.
Solution. Consider the short exact sequence:

$$
0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Q} \rightarrow \mathbf{Q} / \mathbf{Z} \rightarrow 0
$$

We can take the long exact $\operatorname{Ext}(\mathbf{Q}, \cdot)$ sequence:

$$
0 \rightarrow \operatorname{Hom}(\mathbf{Q}, \mathbf{Z}) \rightarrow \operatorname{Hom}(\mathbf{Q}, \mathbf{Q}) \rightarrow \operatorname{Hom}(\mathbf{Q}, \mathbf{Q} / \mathbf{Z}) \rightarrow \operatorname{Ext}^{1}(\mathbf{Q}, \mathbf{Z}) \rightarrow \operatorname{Ext}^{1}(\mathbf{Q}, \mathbf{Q})=0
$$

We know that $\operatorname{Ext}^{1}(\mathbf{Q}, \mathbf{Q})=0$, since \mathbf{Q} is an injective \mathbf{Z}-module. Now, $\operatorname{Hom}(\mathbf{Q}, \mathbf{Z})=0$: if $q \in \mathbf{Q}$, we can write $q=n q^{\prime}$ for any n, so if $f \in \operatorname{Hom}(\mathbf{Q}, \mathbf{Z})$ then $f(q)=n f\left(q^{\prime}\right)$, i.e. $f(q)$ is divisible by n for all n, which is clearly impossible unless $f(q)=0$. We also know that $\operatorname{Hom}(\mathbf{Q}, \mathbf{Q}) \simeq \mathbf{Q}$, since any \mathbf{Z}-linear map f from \mathbf{Q} to \mathbf{Q} is just multiplication by an element of \mathbf{Q}. So we have:

$$
\operatorname{Ext}^{1}(\mathbf{Q}, \mathbf{Z}) \simeq \operatorname{Hom}(\mathbf{Q}, \mathbf{Q} / \mathbf{Z}) / \mathbf{Q}
$$

Thus, it suffices to describe the group $\operatorname{Hom}(\mathbf{Q}, \mathbf{Q} / \mathbf{Z})$.
Let's start by describing the structure of \mathbf{Q} / \mathbf{Z}. For any prime p, there is the subgroup $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$, consisting of elements of the form $\frac{a}{p^{k}}$ with $p \nmid a$ and $0 \leq a<p^{k}$. Putting all of these subgroups together, we get a map from $\bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}=\bigoplus_{p}\left(\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ to \mathbf{Q} / \mathbf{Z}. This map is injective: if $\frac{a}{m}+\frac{b}{n}=\frac{a n+b m}{n m}=0$ in \mathbf{Q} / \mathbf{Z} with n, m coprime, then $\frac{a n+b m}{n m} \in \mathbf{Z}$, i.e. $n m \mid a n+b m$, so $n \mid b m$ and $m \mid a n$. But since n, m are coprime, this means that $m \mid a$ and $n \mid b$. Thus, $\frac{a}{m}$ and $\frac{b}{n}$ are in \mathbf{Z}, so they are 0 in \mathbf{Q} / \mathbf{Z}. Now, we can write an element of $\bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ as:

$$
\frac{a_{1}}{p_{1}^{k_{1}}}+\cdots+\frac{a_{n}}{p_{n}^{k_{n}}}=\frac{N}{p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}}+\frac{a_{n}}{p_{n}^{k_{n}}}
$$

Thus, the above argument shows that $\frac{a_{n}}{p_{n}^{k_{n}}} \in \mathbf{Z}$, so we may induct on n to show that the whole sum is in \mathbf{Z}, and therefore 0 in $\bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$.

Now, we will show that $\bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z} \rightarrow \mathbf{Q} / \mathbf{Z}$ is actually an isomorphism. To do this, let $\frac{a}{q} \in \mathbf{Q}$ with $q=q_{1} q_{2}$ coprime. Then we may write $1=a q_{1}+b q_{2}$ for some $a, b \in \mathbf{Z}$ (e.g. by the Chinese Remainder

Theorem, or by the fact that \mathbf{Z} is a PID, so the ideal $\left(q_{1}, q_{2}\right)$ is $\left.\left(\operatorname{gcd}\left(q_{1}, q_{2}\right)\right)=(1)\right)$. Then we can take the "partial fraction" decomposition:

$$
\frac{1}{q_{1} q_{2}}=\frac{a q_{1}+b q_{2}}{q_{1} q_{2}}=\frac{a}{q_{2}}+\frac{b}{q_{1}}
$$

By breaking q into its prime factorization and repeatedly using this identity, we may write q as an element in the image of $\bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$.

Remember that for any modules $M_{i}, i \in I$ for some set I, the direct sum $\bigoplus_{i} M_{i}$ embeds into the direct product $\prod_{i} M_{i}$ as the set of elements such that all but finitely many factors are 0 . So we will start by describing $\operatorname{Hom}\left(\mathbf{Q}, \prod_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$. By the universal property of products, a map to the product is the same as a tuple of maps to each factor, i.e. we have:

$$
\operatorname{Hom}\left(\mathbf{Q}, \prod_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right) \simeq \prod_{p} \operatorname{Hom}\left(\mathbf{Q}, \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)
$$

Now, we've broken the problem up one problem for each prime p. Now, we want to characterize homomorphisms from \mathbf{Q} to $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$. Such homomorphisms of course restrict to homomorphisms from $\mathbf{Z}\left[\frac{1}{p}\right]$ to $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$, and in fact any such homomorphism f extends uniquely to \mathbf{Q}. To see this, we will use the following:

Claim 1. The group $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ is uniquely divisible by numbers coprime to p : for any $\alpha \in \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ and $n \in \mathbf{N}$ with $p \nmid n$, there is a unique $\alpha^{\prime} \in \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ such that $n \cdot \alpha^{\prime}=\alpha$.
Proof. We can write $\alpha=\frac{a}{p^{k}}+\mathbf{Z}$ with $p \nmid a, 0 \leq a<p^{k}$. Since, $p \nmid n, n$ and p^{k} are coprime, so there are $b, c \in \mathbf{Z}$ with $b p^{k}+c n=1$, so $a b p^{k}+a c n=a$. Thus, we can write α as:

$$
\alpha=\frac{a}{p^{k}}+\mathbf{Z}=\frac{a b p^{k}}{p^{k}}+\frac{a c n}{p^{k}}+\mathbf{Z}=n \cdot \frac{a c}{p^{k}}+\mathbf{Z}
$$

Thus, we may take $\alpha^{\prime}=\frac{a c}{p^{k}}+\mathbf{Z}$. We want to show that α^{\prime} is unique, so let β^{\prime} be an element of $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ with $n \beta^{\prime}=\alpha$. Then $n\left(\beta^{\prime}-\alpha^{\prime}\right)=0$, so it suffices to show multiplication by n is injective. Now, let $\gamma=\frac{m}{p^{\ell}}+\mathbf{Z} \in \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$. If $n \gamma=0$, then $\frac{n m}{p^{\ell}} \in \mathbf{Z}$, so $p^{\ell} \mid n m$. Since $p \nmid n$, this means that $p^{\ell} \mid m$, so $\gamma=0$.

Now, let $f \in \operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$. We want to show it extends uniquely to $\widetilde{f} \in \operatorname{Hom}\left(\mathbf{Q}, \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$. Write any element of \mathbf{Q} uniquely as $\frac{a}{p^{k} m}$ with $p \nmid m,\left(p^{k} m, a\right)=1$, and $m>0$. Let $\alpha=f\left(\frac{a}{p^{k}}\right)$, which is defined since $a \in \mathbf{Z}\left[\frac{1}{p}\right]$. We can define $\widetilde{f}\left(\frac{a}{p^{k} m}\right)$ as the unique element α^{\prime} such that $m \cdot \alpha^{\prime}=\alpha$. This gives a well-defined function from \mathbf{Q} to $\mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$, and it is easy to see that it is additive and extends f. Moreover, it is unique since we need $m \cdot \tilde{f}\left(\frac{a}{p^{k} m}\right)=f\left(\frac{a}{p^{k}}\right)$.

Thus, we need to determine $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$. Let f_{0} be such a homomorphism and consider $\alpha=$ $f_{0}(1) \in \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$. We have $\alpha=\frac{a}{p^{n}}$ for some $n \geq 0$ with $p \nmid a$, so $p^{n} \cdot \alpha=a=0$ and $p^{m} a \neq 0$ for $m<n$. Define $f=p^{n} f_{0}$, so $f(1)=0$. Then, we define a sequence $\left(m_{n}\right):=\left(f\left(\frac{1}{p^{n}}\right)\right)_{n}$ for $n \geq 1$. We have $p \cdot m_{n}=m_{n-1}$, and $p^{n} m_{n}=f(1)=0$ for all n. On the other hand, given such a sequence $\left(m_{n}\right)$ with $m_{n} \in \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ such that $p \cdot m_{n}=m_{n-1}$ and $p^{n} m_{n}=0$ for all n, we can define a homomorphism $f: \mathbf{Z}\left[\frac{1}{p}\right] \rightarrow \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ with $m_{n}=f\left(\frac{1}{p^{n}}\right)$ and $f(1)=0$. To do this, we define $f\left(\frac{a}{p^{n}}\right)=a m_{n}$ with $a \in \mathbf{Z}$. If
we rewrite $\frac{a}{p^{n}}$ as $\frac{a p}{p^{n+1}}$, then since $a p m_{n+1}=a m_{n}$, these definitions agree. This allows us to check that f is additive: if we have $x=\frac{a}{p^{n}}$ and $y=\frac{b}{p^{k}}$, then

$$
f(x+y)=f\left(\frac{a p^{k}+b p^{n}}{p^{n+k}}\right)=a p^{k} m_{k+n}+b p^{n} m_{k+n}=a m_{n}+b m_{k}=f(x)+f(y)
$$

Now, we can describe the set of sequences $\left(m_{n}\right)_{n}$ with $p \cdot m_{n}=m_{n-1}$ and $p^{n} m_{n}=0$ for all n a bit differently. The second condition says exactly that $m_{n}=\frac{a}{p^{n}}$ for some a (perhaps not coprime to p). Since a is only defined $\bmod p^{n}$, we can think of m_{n} as living in $\mathbf{Z} / p^{n} \mathbf{Z}$ instead. Then $p m_{n}=\frac{p a}{p^{n}}=\frac{a}{p^{n-1}}$, so the condition that $p m_{n}=m_{n-1}$ can be rephrased as saying that $m_{n} \in \mathbf{Z} / p^{n}$ is equal to $m_{n-1} \bmod p^{n-1}$. Thus, the subgroup of $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ with $f(1)=0$ is isomorphic to the group of sequences (m_{n}) with $m_{n} \in \mathbf{Z} / p^{n} \mathbf{Z}$ such that $\pi_{n, n-1}\left(m_{n}\right)=m_{n-1}$, where $\pi_{n, n-1}$ is the map from $\mathbf{Z} / p^{n} \mathbf{Z}$ to $\mathbf{Z} / p^{n-1} \mathbf{Z}$ given by reducing mod p^{n-1}. Another name for this group is \mathbf{Z}_{p}, the p-adic integers. Note that this is consist $\left(\mathbf{Z}\left[\frac{1}{p}\right]\right)$, since $p^{k} m \cdot \mathbf{Z}\left[\frac{1}{p}\right]=p^{k} \mathbf{Z}\left[\frac{1}{p}\right]$ for $p \nmid m$.

Now, for any element $f \in \operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ and any n, there is a unique $f_{0} \in \operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ with $p^{n} f_{0}=f$: we can take $f_{0}(x)=f\left(\frac{x}{p^{n}}\right)$, and this is unique since multiplication by p^{n} on $\mathbf{Z}\left[\frac{1}{p}\right]$ is injective. Thus, $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ has a unique structure of a $\mathbf{Z}\left[\frac{1}{p}\right]$-module. Since for any $f \in$ $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$, there is some n such that $p^{n} f(1)=0$, we can write f as $\frac{f_{1}}{p^{n}}$ with $f_{1}(1)=0$. This shows that $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right) \simeq \mathbf{Z}_{p}\left[\frac{1}{p}\right]=\mathbf{Q}_{p}$, the p-adic numbers as an abelian group.

Thus, we see that $\operatorname{Hom}\left(\mathbf{Q}, \prod_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right) \simeq \prod_{p} \mathbf{Q}_{p}$. The submodule $\operatorname{Hom}(\mathbf{Q}, \mathbf{Q} / \mathbf{Z}) \simeq \operatorname{Hom}\left(\mathbf{Q}, \bigoplus_{p} \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ is given by elements $\left(f_{p}\right)$ such that for each $x \in \mathbf{Q}, f_{p}(x)=0$ for all but finitely many p. This is the subgroup of $\left(a_{p}\right) \in \prod_{p} \mathbf{Q}_{p}$ such that for all but finitely many $p, a_{p} \in \mathbf{Z}_{p}$. To see this, let $x=\frac{m}{n}$. For all $p \nmid n m, f_{p}(x)=a \cdot f_{p}(1)$ for some $a \in \mathbf{Z}$ with $(a, p)=1$, by the definition of the isomorphism from $\operatorname{Hom}\left(\mathbf{Z}\left[\frac{1}{p}\right], \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right) \xrightarrow{\sim} \operatorname{Hom}\left(\mathbf{Q}, \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}\right)$ and the proof of Claim 1. Thus, $f_{p}(x)=0$ iff $f_{p}(1)=0$. Thus, we see that a sequence $\left(f_{p}\right)$ satisfies the condition that for all $x,\left(f_{p}\right)(x)=0$ for all but finitely many x iff $f_{p}(1)=0$ for all but finitely many x, iff the corresponding element $\left(a_{p}\right) \in \prod_{p} \mathbf{Q}_{p}$ is in \mathbf{Z}_{p} for all but finitely many p.

We call the resulting group $\mathbf{A}_{\mathbf{Q}}^{f}:=\prod_{\mathbf{z}_{p}}^{\prime} \mathbf{Q}_{p}$, where the $\prod_{\mathbf{Z}_{p}}^{\prime}$ stands for "restricted product" and it means the subset of the product where all but finitely many entries are in \mathbf{Z}_{p}. This group has a natural ring structure given by component-wise multiplication, and is called the finite adele ring of \mathbf{Q}, and is studied widely in number theory ${ }^{4}$

Finally, we see that $\operatorname{Ext}^{1}(\mathbf{Q}, \mathbf{Z}) \simeq \mathbf{A}_{\mathbf{Q}}^{f} / \mathbf{Q}$, where the map $\mathbf{Q} \rightarrow \mathbf{F}$ is given by sending $q \in \mathbf{Q}$ to the map $\left(f_{p}\right): \mathbf{Q} \rightarrow \mathbf{Z}\left[\frac{1}{p}\right] / \mathbf{Z}$ with f_{p} multiplication by q for each p. This corresponds to the element $\left(\iota_{p}(q)\right) \in \mathbf{A}_{\mathbf{Q}}^{f}$, with $\iota_{p} \mid \mathbf{Q} \rightarrow \mathbf{Q}_{p}$ defined by sending $\frac{a}{p^{k} m}$ with $p \nmid a, m$ to $\frac{1}{p^{k}}\left(m^{-1} \cdot a(\bmod p)^{n}\right)_{n}\left(\right.$ where m^{-1} is an inverse to $a \bmod p^{n}$, which exists for each n but depends on n). Since the denominator of q is only divisible by finitely many primes, we see that $\iota_{p}(q) \in \mathbf{Z}_{p}$ for all but finitely many p, so this in fact lands in $\mathbf{A}_{\mathbf{Q}}^{f}$.

If M is a \mathbb{Z}-module, note that $d \mid n$ implies $n M \subset d M$, so there is a quotient map $\pi_{n}^{d}: M / n M \rightarrow M / d M$ (it descends from the identity $M \rightarrow M$, so in symbols it's just $\bar{m} \mapsto \bar{m}$).

Define consist (M) to be the submodule of $\prod_{n \in \mathbb{N}} M / n M$ defined by

$$
\operatorname{consist}(M):-\left\{\left(m_{n} \in M / n M\right)_{n \in \mathbb{N}}|d| n \Longrightarrow \pi_{n}^{d}\left(m_{n}\right)=m_{d}\right\}
$$

[^2]This makes consist an additive functor from \mathbb{Z}-modules to \mathbb{Z}-modules (you do not have to prove this).
Question 9B. Is consist an exact functor? Prove your answer is correct.
Solution. Since $\mathbf{Q} / n \mathbf{Q}=0$ for all $n \in \mathbb{N}$, $\operatorname{consist}(\mathbf{Q}) \subseteq \prod_{n \in \mathbf{N}} \mathbf{Q} / n \mathbf{Q}=0$, so consistent $(\mathbf{Q})=0$. Since $\mathbf{Z} \rightarrow \mathbf{Q}$ is injective, in order to show that consist is not an exact functor, it suffices to show that $\operatorname{consist}(\mathbf{Z}) \neq 0$. This will be clear from the description in Question 9C, but for now note that there is an injective map $\mathbf{Z} \rightarrow \operatorname{consist}(\mathbf{Z})$ defined by sending $m \in \mathbf{Z}$ to $(m(\bmod n))_{n \in \mathbf{N}}$. Certainly, if $d \mid n$, then $\pi_{n}^{d}(m(\bmod n))=m(\bmod d)$, so the image of this map is contained in consist (\mathbf{Z}). The map is injective since if $m(\bmod n)=0$ for all $n \in \mathbf{N}$, then $n=0$.

Question 9C. consist (\mathbf{Z}) has a natural ring structure (for example, it is a subring of $\prod_{n \in \mathbf{N}} \mathbf{Z} / n \mathbf{Z}$); you do not have to prove this.

Describe the commutative ring $\mathbf{Q} \otimes_{\mathbf{z}}$ consist (\mathbf{Z}).
(You have some flexibility here in what your "description" should be, but don't just rephrase the definition.)
Solution. First, we will use the Chinese remainder theorem: $\mathbf{Z} / n \mathbf{Z} \simeq \mathbf{Z} / p_{1}^{k_{1}} \mathbf{Z} \times \cdots \times \mathbf{Z} / p_{m}^{k_{m}} \mathbf{Z}$ for $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$ its prime factorization. Let $d_{i}=p_{i}^{k_{i}}$. Then the maps $\pi_{n}^{d_{i}}: \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / p_{i}^{k_{i}} \mathbf{Z}$ correspond to the i-th projection maps in the product decomposition $\mathbf{Z} / p_{1}^{k_{1}} \mathbf{Z} \times \cdots \times \mathbf{Z} / p_{m}^{k_{m}} \mathbf{Z}$. So if $\left(m_{n}\right) \in \operatorname{consist}(\mathbf{Z})$, then $m_{n}=\left(m_{p_{1}^{k_{1}}}, \ldots, m_{p_{m}^{k_{m}}}\right)$ in this product description, so the collection of $m_{p^{\ell}}$ for p a prime and $\ell>0$ completely determine $\left(m_{n}\right)$, and conversely, any collection of the $m_{p^{\ell}}$ which are consistent with respect to the π_{n}^{d} where n, d are both powers of the same prime define an element of $\operatorname{consist}(\mathbf{Z})$.

In other words, $\operatorname{consist}(\mathbf{Z}) \simeq \prod_{p} \operatorname{consist}_{p}(\mathbf{Z})$, where we define $\operatorname{consist}_{p}(\mathbf{Z})$ to be the set of sequences $\left(m_{p^{n}}\right)$ with $m_{p^{n}} \in \mathbf{Z} / p^{n} \mathbf{Z}$ such that $\pi_{p^{n}}^{p^{k}}\left(m_{p^{n}}\right)=p^{k}$ for all $k \leq n$. This is even an isomorphism of rings, since the ring structure on $\operatorname{consist}(\mathbf{Z})$ is defined by component-wise multiplication (i.e. $\left(m_{n}\right) \cdot\left(m_{n}^{\prime}\right)=$ $\left(m_{n} m_{n}^{\prime}\right)$, and it's easy to check this preserves consistency, since the π_{n}^{d} are ring homomorphisms), and the Chinese remainder theorem gives an isomorphism of rings. Note that it is equivalent in the definition of $\operatorname{consist}_{p}(\mathbf{Z})$ to require that $\pi_{p^{n}}^{p^{n-1}}\left(m_{p^{n}}\right)=m_{p^{n-1}}$ for all n, since the p^{n} are linearly ordered by divisibility. Now, consist $_{p}(\mathbf{Z})$ is usually referred to as \mathbf{Z}_{p}, the p-adic integers.

Thus, we see that consist $(\mathbf{Z}) \simeq \prod_{p} \mathbf{Z}_{p}$ as rings. Let's see that $\operatorname{consist}(\mathbf{Z}) \otimes \mathbf{Z} \mathbf{Q} \simeq \mathbf{A}_{\mathbf{Q}}^{f}$, the finite adele ring defined in the solution to Question 9A. Essentially, this is true because tensoring with \mathbf{Q} is the same thing as adjoining $\frac{1}{n}$ for all $n \in \mathbf{N}$, and n has only finitely many prime divisors. More precisely, we define a homomorphism consist $(\mathbf{Z}) \otimes \mathbf{Z} \mathbf{Q} \rightarrow \mathbf{A}_{\mathbf{Q}}^{f}$ by sending $\left(a_{p}\right) \otimes q$ to $\left(\iota_{p}(q) a_{p}\right)$, with $\iota_{p}: \mathbf{Q} \rightarrow \mathbf{Q}_{p}$ the embedding defined in Question 9A. Since $\left(a_{p}\right) \in \prod_{p} \mathbf{Z}_{p}$ and for all but finitely many $p, \iota_{p}(q) \in \mathbf{Z}_{p}$, we see that the image of this map lands in $\mathbf{A}_{\mathbf{Q}}^{f}$.

To see that it is an isomorphism, note that if we have a tensor of the form $\left(a_{p}\right) \otimes \frac{m}{n}+\left(b_{p}\right) \otimes \frac{m^{\prime}}{n^{\prime}}$, we can rewrite this as

$$
\left(m n^{\prime} a_{p}\right) \otimes \frac{1}{n n^{\prime}}+\left(n m^{\prime} b_{p}\right) \otimes \frac{1}{n n^{\prime}}=\left(m n^{\prime} a_{p}+n m^{\prime} b_{p}\right) \otimes \frac{1}{n n^{\prime}}
$$

Thus, any element of $\prod_{p} \mathbf{Z}_{p} \otimes \mathbf{Q}$ may be written as $\left(a_{p}\right) \otimes \frac{1}{n}$. Then the map is certainly injective, since $\iota_{p}\left(\frac{1}{n}\right) a_{p}$ is only 0 when a_{p} is 0 . It is also surjective: given a finite adele $\left(a_{p}\right) \in \mathbf{A}_{\mathbf{Q}}^{f}$, let p_{1}, \ldots, p_{m} be the finitely many primes p with $a_{p} \notin \mathbf{Z}_{p}$, and assume $p_{i}^{k_{i}} a_{p_{i}} \in \mathbf{Z}_{p}$ for each i. Then let $n:=\prod_{i} p_{i}^{k_{i}}$, and let $\left(b_{p}\right):=n \cdot\left(a_{p}\right) \in \prod_{p} \mathbf{Z}_{p}$. Thus, we map $\left(b_{p}\right) \otimes \frac{1}{n}$ to $\left(a_{p}\right)$.

[^0]: ${ }^{1}$ If you wanted to prove it (you didn't have to) the easiest way is to show that $I_{\mathfrak{m}}$ is free for all maximal ideals \mathfrak{m} of R. Since $R / I \simeq \mathbf{F}_{2}$ is a field, I is a maximal ideal, so $I_{\mathfrak{m}}=R_{\mathfrak{m}}$ for $\mathfrak{m} \neq I$. Then it's not so hard to see directly that for $\mathfrak{m}=I, I_{\mathfrak{m}}=\mathfrak{m} R_{\mathfrak{m}}$ is principal, i.e. that $R_{\mathfrak{m}}$ is a principal ideal domain (this also follows from some general theory about rings like $\mathbf{Z}[-\sqrt{30}]$, called Dedekind domains). Then we wrote down a finite presentation for I, so by HW3 Q10, I is projective.
 ${ }^{2}$ For a maximal ideal \mathfrak{m} of a ring R, such as I above, the space $\mathfrak{m} / \mathfrak{m}^{2}$ can be thought of as the "cotangent space" of R at the "point" \mathfrak{m}. It's a vector space over the field R / \mathfrak{m}. This turns out to be a useful construction throughout commutative algebra and algebraic geometry. When a ring is sufficiently 'nice', such as $\mathbf{Z}[\sqrt{-30}]$, this dimension is the same for all \mathfrak{m}.

[^1]: ${ }^{3}$ In general, an R-module M is flat iff every linear dependence is trivial, without needing to worry about finite presentation hypotheses, and this is strictly weaker than projectivity away from the finitely generated case (for example, \mathbf{Q} is flat over \mathbf{Z} but not projective). The equational criterion of flatness usually refers to this more general statement. For a 'fun' exercise, see if you can prove the general criterion. The proof is not very hard, and uses similar ideas to ones appearing in this assignment, namely that flatness of a module M can be checked by showing that for every ideal $I, I \rightarrow R$ remains injective after tensoring with M

[^2]: ${ }^{4}$ The full adele ring $\mathbf{A}_{\mathbf{Q}}$ is $\mathbf{A}_{\mathbf{Q}}^{f} \times \mathbf{R}$: sometimes it is useful to think of \mathbf{R} as being "the prime at infinity". This ring has a locally compact topology coming from the locally compact topologies on \mathbf{R} and \mathbf{Q}_{p}, and many important results in number theory can be reformulated in terms of this topological ring.

