
MATH 210A, FALL 2017
HW 5 SOLUTIONS

WRITTEN BY DAN DORE

(If you find any errors, please email ddore@stanford.edu)

Question 1. Let R = Z[t]/(t2 − 1). Regard Z as an R-module by letting t act by the identity. Compute
TorRk (Z,Z) and ExtkR(Z,Z) for all k ≥ 0.

Solution. We computed a free resolution for Z on the previous assignment:

· · ·
fn+1

// R
fn
// R

fn−1
// · · · f2

// R
d1 // R

d0 // Z // 0

Here, fn is multiplication by t − 1 when n is odd and multiplication by t + 1 when n > 0 is even. Since
R⊗RM 'M for any R-module M , when we apply the functor (·)⊗R Z to this resolution (dropping the
last term), we get:

· · ·
δn+1

// Z
δn // · · · //// Z

δ1 // Z

Here, δn = dn ⊗R idZ : R ⊗R Z → R ⊗R Z. Under the isomorphism Z → R ⊗R Z, which is given by
n 7→ 1⊗ n, δn : Z→ Z becomes the map n 7→ (t± 1) · n = n± n. For n odd, this is n 7→ (t− 1) · n = 0;
for n > 0 even, this is n 7→ (t+ 1) · n = 2n. So we can rewrite this complex as:

· · · // Z
0 // Z

2 // Z
0 // Z

So for k > 0 even, we have TorRk (Z,Z) = ker(δk)/ im(δk+1) = ker(δk)/0 = ker(δk). Since δk is
multiplication by 2, which is injective on Z, we have TorRk (Z,Z) = 0 in this case. For k odd, we have
im(δk+1) = 2Z and ker(δk) = Z, so TorRk (Z,Z) = Z/2Z (viewed as an R-module by having t act as the
identity). What about k = 0? Then TorR0 (Z,Z) = Z/ im(δ1) = Z. This makes sense: Z ' R/(t− 1), so
TorR0 (Z,Z) = Z⊗R Z = Z/(t− 1) · Z = Z/0 = Z.

To summarize:

TorRk (Z,Z) =


Z k = 0

0 k > 0, k is even

Z/2Z k is odd

All of these are given an R-module structure by having t act as the identity.
Now, we can apply the contravariant functor HomR(·,Z) to our free resolution of Z, using the fact that

HomR(R,M) 'M for any R-module M :

Z
δ1 // Z

δ2 // Z
δ3 // · · ·

Via the natural isomorphism HomR(R,M)
∼−→ M sending ϕ to ϕ(1), the maps δn : f 7→ f ◦ δn become

n 7→ (t± 1) ·m = m±m. Thus, δn = 0 when n is odd and δn = 2 when n is even. So the complex is:

Z
0 // Z

2 // Z
0 // · · ·

When k > 0 is even, we have ExtRk (Z,Z) = ker δk+1/ im δk = Z/2Z. When k is odd, ExtRk (Z,Z) =

ker δk+1/ im δk = 0, and when k = 0, we have ExtRk (Z,Z) = ker δ0 = Z. These have R-module structures
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via t acting by the identity, as before. To summarize:

ExtRk (Z,Z) =


Z k = 0

Z/2Z k > 0, k is even

0 k is odd

Question 2. Let R = Z[
√
−30]. Regard F2 as an R-module by letting

√
−30 act by 0.

Compute TorRk (F2,F2) and ExtkR(F2,F2) for all k ≥ 0.

Solution. Recall from last week that F2
∼= R/I where I = (2,

√
−30). Since I is projective, as we know

from class1, we have a projective resolution

· · · → 0→ 0→ 0→ I
i−→ R→ F2 → 0.

where i : I ↪→ R is the inclusion. Applying (·)⊗R R/I and dropping the last term, we get the complex:

· · · → 0→ 0→ 0→ I ⊗ (R/I)
i⊗1
// R⊗ (R/I)→ 0

which we can simplify to

· · · → 0→ 0→ 0→ I/I2
0 // R/I → 0

Note that the map is 0 since the image of i : I ↪→ R is zero in R/I), so the kernels and images are even easier
to compute, and we just get

TorRk (F2,F2) =


F2 k = 0

I/I2 k = 1

0 k ≥ 2

The last thing to do is compute what I/I2 is. Recall that I = {x+ y
√
−30 |x ∈ 2Z, y ∈ Z}. Multiplying

out
(2a+ b

√
−30)(2c+ d

√
−30) = (4ac− 30bd) + (2ad+ 2bc)

√
−30

shows that I2 ⊂ {x + y
√
−30 |x ∈ 2Z, y ∈ 2Z} = (2), and we can guess that this might be equality. To

show that this guess is correct, we just need to show that (2) ⊂ I2, i.e. that 2 ∈ I2. This is easy: 2 · 2 = 4

belongs to I2, and (
√
−30) · (

√
−30) = −30 belongs to I2, so −30 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 2

belongs to I2. In particular, I2 is an index-2 subgroup of I , and so I/I2 ' F2 (it is easy to check that this
has the same R-module structure as the F2 we started with).2 Therefore:

TorRk (F2,F2) =


F2 k = 0

F2 k = 1

0 k ≥ 2

1If you wanted to prove it (you didn’t have to) the easiest way is to show that Im is free for all maximal ideals m of R. Since
R/I ' F2 is a field, I is a maximal ideal, so Im = Rm for m 6= I . Then it’s not so hard to see directly that for m = I , Im = mRm

is principal, i.e. that Rm is a principal ideal domain (this also follows from some general theory about rings like Z[−
√
30], called

Dedekind domains). Then we wrote down a finite presentation for I , so by HW3 Q10, I is projective.
2For a maximal ideal m of a ring R, such as I above, the space m/m2 can be thought of as the “cotangent space” of R at the

“point” m. It’s a vector space over the field R/m. This turns out to be a useful construction throughout commutative algebra and
algebraic geometry. When a ring is sufficiently ’nice’, such as Z[

√
−30], this dimension is the same for all m.
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For Ext, we can apply the contravariant functor HomR(·,F2) to the projective resolution · · · → 0 →
0→ I

i−→ R→ F2 → 0 (dropping the first term) to obtain

0→ HomR(R,F2)
i∗−→ HomR(I,F2)→ 0→ 0→ 0→ · · ·

Note that HomR(R,F2) ∼= F2 has only one nonzero element, namely f : R → F2 sending x + y
√
−30

to x mod 2. Since this restricts to 0 on I ⊂ R, the map i∗ here is 0. So it remains only to compute
HomR(I,F2).

Note that as abelian groups I is isomorphic to Z2, so there are only three nonzero group-homomorphisms
from I to F2: α(2a+b

√
−30) = a mod 2; β(2a+b

√
−30) = b mod 2; and γ(2a+b

√
−30) = a+b mod 2.

So we need only check which of these are R-linear. Since 1 and
√
−30 additively generate R, we need only

check that they preserve multiplication by these elements (and for 1 this is automatic).
Recalling that

√
−30 acts by 0 on F2, we just need to check whether

α
(√
−30 · (2a+ b

√
−30)

) ?
= 0 =

√
−30 · α(2a+ b

√
−30)

nd so on.

α
(√
−30 · (2a+ b

√
−30)

)
= α(−30b+ 2a

√
−30) = −15b mod 2 = b mod 2 6= 0

β
(√
−30 · (2a+ b

√
−30)

)
= β(−30b+ 2a

√
−30) = 2a mod 2 = 0 mod 2

X
= 0

γ
(√
−30 · (2a+ b

√
−30)

)
= γ(−30b+ 2a

√
−30) = −15b+ 2a mod 2 = b mod 2 6= 0

Therefore the only two R-linear homomorphisms from I to F2 are the zero map and β. So as an abelian
group HomR(I,F2) ∼= F2, and the fact that multiplication by

√
−30 annihilates β means this is the same

R-module structure as always. We conclude:

ExtkR(F2,F2) =


F2 k = 0

HomR(I,F2) ∼= F2 k = 1

0 k ≥ 2

Question 3. Let R = R[T ]. Let M = R2, with R-module structure where T acts by
(
1 2
0 1

)
. Let N = R

with R-module structure where T acts by 0.
Compute TorRk (M,N) and ExtkR(M,N) and ExtkR(N,M) for all k ≥ 0.

Solution. On the last assignment, we computed a free resolution for M :

· · · → 0→ 0 // R
d1 // R

d0 //M // 0

Here, d1 is multiplication by (T − 1)2. If we apply the functor (·)⊗N to this, after dropping the M term,
we get the complex:

· · · → 0→ 0 // N
(T−1)2

// N → 0

We used the same reasoning as in Question 1 to determine the complex: R⊗RN ' N , and the map f0⊗ idN
becomes the action by (T − 1)2 under this isomorphism. Now, since T acts by 0 on N , the element T − 1

acts by (T − 1) · n = −n. In particular (T − 1)2 · n = (−1)2 · n = n, so the action of (T − 1)2 on N is the
identity map.
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Thus, we have Tor0R(M,N) = N/N = 0, Tor1R(M,N) = 0/0 = 0, and of course the higher Tor’s
vanish since the complex is 0 after the first two terms. So we have TorkR(M,N) = 0 for all k.

If we apply HomR(·, N) to the sequence, we get:

0→ N
(T−1)2

// N // 0→ 0→ · · ·

Again, by the same reasoning as in Question 1, HomR(R,N) ' N and multiplication by (T − 1)2 becomes
the action by (T − 1)2 under this isomorphism. Since (T − 1)2 acts by the identity map on N , we get that
ExtRk (M,N) = 0 for all k just as above.

In order to compute ExtkR(N,M), we either need a projective resolution of N or an injective resolution
of M . In general, it’s much easier to compute projective resolutions, so that’s what we’ll do.

We have a surjective map π : R → R sending p(T ) to p(T ) · 1. Since T acts by 0, the kernel is (T ).
Since R is a domain, the map R→ R given by multiplication by T is injective, so we have a free resolution:

· · · → 0→ 0 // R
T // R

π // N → 0

Applying the functor HomR(·,M) (after dropping the N term) and using the same reasoning as before, we
get the complex:

0 //M
T //M // 0→ 0→ · · ·

So Ext0R(N,M) = kerT and Ext1R(N,M) = cokerT , where we think of T as the linear transformation(
1 2
0 1

)
acting on M . But T is an isomorphism (detT = 1), so ExtkR(N,M) = 0 for all k.

Question 4. Let R = C[T ]. Given λ ∈ C, let Cλ denote C regarded as an R-module by letting T act by λ.
Compute ExtkR(Cλ,Cµ) for all k ≥ 0, for all λ, µ ∈ C.

Solution. We need to compute a projective resolution of Cλ. Since Cλ is generated by 1 as a C-module
and therefore as an R-module, we have a surjection π : R → Cλ sending p(T ) to p(T ) · 1 = p(λ). So
the kernel is {p(T ) ∈ R | p(λ) = 0}. This is the principal ideal (T − λ): if p(T ) ∈ R, we can write
p(T ) = (T − λ)q(T ) + r with deg r < deg(T − λ) = 1, so r is a constant. Then p(λ) = r, so p(λ) = 0 iff
(T − λ) | p(T ). So we have a free resolution:

· · · → 0→ 0 // R
T−λ

// R // Cλ
// 0

Now, dropping the Cλ term and applying the contravariant functor Hom(·,Cµ), we get:

0→ Cµ
T−λ

// Cµ → 0→ 0→ · · ·

As before, we use HomR(R,M) ' M , and that multiplication by T − λ in R corresponds under this
isomorphism to the action of T − λ. Since T acts by µ on Cλ, we know that T − λ acts by µ− λ. So we
have two cases: if µ = λ, then the map is 0 and we have Ext0R(Cλ,Cλ) = Cλ and Ext1R(Cλ,Cλ) = Cλ.
We also clearly have ExtkR(Cλ,Cλ) = 0 for k ≥ 2.

ExtkR(Cλ,Cλ) =


Cλ k = 0

Cλ k = 1

0 k ≥ 2
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If we have µ 6= λ, the map is multiplication by µ − λ, which is an isomorphism, so we have
Ext0R(Cλ,Cµ) = Ext1R(Cλ,Cµ) = 0, so

ExtkR(Cλ,Cµ) = 0 for all k ≥ 0.

Question 5. Let R = C[x, y].

(a) Regard C as an R-module by letting x and y act by 0. Compute TorRk (C,C) for all k ≥ 0.

(b) Let I ⊂ R be the ideal I = (x, y). We would like to understand I ⊗R I , so:

Give a basis for I ⊗R I as a complex vector space.
If you can also describe the R-module structure without too much pain, please do.

Solution. (a) We computed in the last assignment (for R = R[x, y] and M = R with R-module action
by sending x, y to 0; but nothing changes when you replace R with any other field) the following free
resolution:

· · · 0→ 0 // R
d2(
y
−x

)// R2 d1

(x y )
// R

d0 //M // 0

Here, f0 and f1 are given by f0(p, q) = xp+ yq and f1(r) = (yr,−xr). Applying the functor ⊗RC,
we get:

· · · 0→ 0→ C
0 // C2 0 // C→ 0

Here, we used the fact discussed earlier that Rn ⊗R (R/I) ' (R/I)n, and a matrix for d⊗ idR/I is
given by reducing a matrix for d mod I . But both the matrices

( y
−x
)

and ( x y ) become zero when we
tensor with C (since x and y act by 0 there), which is how we know these maps are 0. This tells us that

TorRk (F2,F2) =


C k = 0

C2 k = 1

C k = 2

0 k ≥ 3

(b) [Note from TC: I think the simpler way to do this is to first show that ker(I ⊗R I → I2) ∼=
Tor1(I,R/I), and then to show Tor1(I,R/I) ∼= Tor2(R/I,R/I), which we just proved is C. There-
fore once we find one element in this kernel (namely x⊗ y− y⊗ x) we just need any set that descends
to a basis for I2. But the approach below works as well.]

Note that I is the kernel of the map d0 : R → M in the previous part, so our free resolution for M
gives us a free resolution for I:

0 // R
d1(
y
−x

)// R2 d0

(x y )
// I // 0

Using this free resolution, we can compute I ⊗R I = TorR0 (I, I), by applying the functor (·)⊗R I ,
which yields the complex:

I (
y
−x

)δ // I ⊕ I
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Here, we are identifying R⊗R I with I and R2 ⊗R I with I ⊕ I (this should not be referred to as I2,
since that typically refers to the ideal I · I). Thus, I ⊗R I ' coker δ. Note that the identification of this
cokernel with I ⊗ I is via the map ( x y ) : R2 → I , so we should think of I ⊕ I as (x⊗ I)⊕ (y ⊗ I).
In particular, the map π : I ⊕ I → I ⊗ I = coker δ is given by sending (p, q) to (x ⊗ p + y ⊗ q).
Similarly, we should think of δ as sending p(x, y) ∈ I to (x⊗ y · p(x, y),−y ⊗ x · p(x, y)). Certainly
x⊗ y · p− y ⊗ x · p = 0, and we’ve seen that this actually generates the kernel of π.

Let (p, q) ∈ I ⊕ I . Then we can write p uniquely as

p(x, y) = xp0(x) + yp1(x) + y2p2(x) + · · ·+ ynpn(x)

for some polynomials pi(x) ∈ R, and any choice of pi ∈ R give an element of I . Letting p1(x) =
a+ x · p′1(x) with a ∈ C, we can then write p uniquely as

p = xp0(x)+ya+y ·
(
xp′1(x) + yp2(x) + y2p3(x) + · · ·+ yn−1pn(x)

)
=: xp0(x)+ya+yq(x, y)

Note that q(x, y) ∈ I , and that if xp0(x) + ya+ yq(x, y) = xp′0(x) + ya′ + yq′(x, y) with q, q′ ∈ I ,
then we can rearrange this to give:

y
(
q(x, y)− q′(x, y)

)
= x

(
p′0(x)− p0(x)

)
+ y

(
a′ − a

)
Since the left hand side is divisible by y, the right hand side must be as well, so p0 = p′0. This implies
that a′ − a = q − q′ ∈ I , which means that a′ = a, since I is a proper ideal. Thus, any element
p ∈ I may be written uniquely as p = xp0(x) + ya + yq(x, y) with q(x, y) ∈ I . Therefore, we
can write any element of I ⊕ I uniquely as (xp0(x) + ya, r(x, y)) + (y · q(x, y),−x · q(x, y)) with
r(x, y), q(x, y) ∈ I , so the second term is in im δ.

This means that sub-C-vector space of I ⊕ I given by elements of the form (xp0(x) + ya, r(x, y))

maps isomorphically under π to I ⊗R I . We can take

{(xa, 0)}a≥1 ∪ {(0, xbyc)}b+c≥1 ∪ {(y, 0)}

as a C-basis.

This says that a C-basis for I ⊗R I is given by the elements x ⊗ xa with a ≥ 1, together with the
elements y ⊗ xbyc with b+ c ≥ 1, as well as the element x⊗ y.

Question 6. Prove that if M is torsion-free and finitely generated, then

Tork(M,X) = 0 for all k > 0 and any X.

Solution. One way to prove this where the hypothesis that M is finitely generated is to show that torsion-free
finitely generated modules over a PID are free. Since this is an important part of the structure theorem for
finitely generated modules over a PID, I won’t include the proof here.

Alternatively, there is an elementary argument using the equational criterion for flatness. This was Q11
on HW3: a finitely presented module is projective iff every linear dependence is trivial.3

3In general, an R-module M is flat iff every linear dependence is trivial, without needing to worry about finite presentation
hypotheses, and this is strictly weaker than projectivity away from the finitely generated case (for example, Q is flat over Z but not
projective). The equational criterion of flatness usually refers to this more general statement. For a ’fun’ exercise, see if you can
prove the general criterion. The proof is not very hard, and uses similar ideas to ones appearing in this assignment, namely that
flatness of a module M can be checked by showing that for every ideal I , I → R remains injective after tensoring with M

6



We can show fairly easily that any finitely generated module over a PID is finitely presented. Indeed, let
π : Rk →M be a surjection. We want to show that kerπ ⊆ Rk is finitely generated. In fact, this is true for
any submodule K ⊆ Rk by induction on k. When k = 1, this is the statement that any ideal of R is finitely
generated. In fact, any ideal of R is generated by a single element, since R is a PID, so this settles k = 1.
Now, we can induct on k. We have a short exact sequence:

0→ (K ∩Rk−1)→ K → K/(K ∩Rk−1)→ 0

Here, we embed Rk−1 into Rk by sending a basis to the first n coordinates. By induction, K ∩Rk−1 ⊆ Rk−1

is finitely generated, and K/(K ∩ Rk−1) ⊆ Rk/Rk−1 ' R, so K/(K ∩ Rk−1) is also finitely generated.
Therefore, K is finitely generated.

Now, it suffices to show the equational criterion. Let a1m1 + · · ·+ anmn be a linear dependence in M ,
and suppose without loss of generality that ai 6= 0 for each i. Because R is a PID, the ideal (a1, . . . , an) is
principal, so it is of the form (r) for some r ∈ R. Since the ai are nonzero, r 6= 0. Thus, for each i, ai = ra′i
for some a′i ∈ R. So we can write:

0 = ra′1m1 + · · ·+ ra′nmn = r ·
(
a′1m1 + · · ·+ a′nmn

)
Since M is torsion-free and r 6= 0, we have

a′1m1 + · · ·+ a′nmn = 0

Now, consider the ideal (a′1, . . . , a
′
n) = (r′) for some r′ ∈ R. Then we know that r′ | a′i for all i, so

rr′ | ra′i = ai for all i. Thus, (r) = (a1, . . . , an) ⊆ (rr′), so we have r = (rr′)r′′ for some r′′ ∈ R; since R
is a domain, this implies that r′r′′ = 1, so r′ is a unit, i.e. (a′1, . . . , a

′
n) = R. We can multiply a trivializing

relation for the linear dependence 0 = a′1m1 + · · · + a′nmn by r to get one for 0 = a1m1 + · · · + anmn,
so by renaming a′i to ai, we may now assume that (a1, . . . , an) = R. Thus, there are ri ∈ R such that
r1a1 + · · ·+ rnan = 1.

Now, for each i, we can write:

mi = (r1a1 + · · ·+ rnan) ·mi

=

∑
j 6=i

rjaj

 ·mi + riaimi

=

∑
j 6=i

rjaj

 ·mi − ri · (a1m1 + · · ·+ ai−1mi−1 + ai+1mi+1 + · · ·+ anmn)

=

∑
j 6=i

rjaj

 ·mi +
∑
j 6=i

(−riaj)mj

Define vj = mj and bji to be the coefficient of mj in the last equation above: if i 6= j, bji = (−riaj) and if
i = j, then bii =

∑
j 6=i rjaj . Thus, mi =

∑
j b
j
iv
j .
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Now, it suffices to show that for each j,
∑n

i=1 aib
j
i = 0. But this is:

n∑
i=1

aib
j
i =

∑
i 6=j

ai(−riaj) + ajb
j
j

= −aj ·
∑
i 6=j

riai + aj ·

∑
i 6=j

riai


= 0

This concludes the proof.

Question 6′. (replaces Q6) Prove that if M is torsion-free, then

Tork(M,X) = 0 for all k > 0 and any finitely generated X.

Solution. We induct on the number of generators ofX . IfX is generated by a single element, thenX ' R/I
for some ideal I . Since R is a PID, I = (r) for some r ∈ R, so X ' R/(r). If r = 0, then X ' R is free,
and therefore projective, so Tork(M,X) = 0 for all k and all m. Consider the exact sequence:

0 // R
r // R // X // 0

Applying the functor M ⊗R (·) and using the long exact Tor sequence, we get an exact sequence:

TorR1 (M,R) = 0 // TorR1 (M,X) //M ⊗R R r //M ⊗R R //M ⊗R R/(r) // 0

Thus, we may identify TorR1 (M,X) with the kernel of the map M ⊗RR→M ⊗RR given by multiplication
by r on the second factor. We may identify M ⊗R R with M , so this is just the map M → M given by
multiplication by r. The kernel of this map is then exactly the set of m ∈ M with r ·m = 0. Since M is
torsion-free and r 6= 0, this implies m = 0. Thus, we know that TorR1 (M,R/(r)) = 0 for any r ∈ R.

Now, let x1, . . . , xn generate X , and let X ′ be the R-submodule of X generated by x1, . . . , xn−1. We
have a short exact sequence:

0→ X ′ → X → X/X ′ → 0

Here, X/X ′ is generated by a single element, so it is isomorphic to R/(r) for some r ∈ R. Now, we can
take the Tor long exact sequence to get:

· · · // Tork(M,X ′) // Tork(M,X) // Tork(M,X/X ′) // · · ·

But for any k ≥ 1, since both X/X ′ and X ′ are generated by fewer than n elements, we may assume by
induction that Tork(M,X ′) = 0, Tork(M,X/X ′) = 0, so this reads:

· · · // 0 // Tork(M,X) // 0 // · · ·

Thus, Tork(M,X) = 0 for all k ≥ 1.

Question 7. Deduce from Q6, or from Q6′, or prove directly: for any torsion-free M ,

Tork(M,X) = 0 for all k > 0 and any X.
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[If you give a self-contained direct proof for Q7, you will automatically get credit for Q6.]

Solution. Both deductions from Q6, Q6’ are similar. Let’s show Q6 =⇒ Q7 first.
Let M be an arbitrary torsion-free module. We want to show that Tork(M,X) = 0 for all R-modules

X , which is equivalent to showing that M is flat. We will show directly that if ϕ : X → Y is an injective
homomorphism, then idM ⊗R ϕ : M ⊗R X → M ⊗R Y is injective. Now, let β =

∑n
i=1mi ⊗ xi be an

arbitrary element ofM⊗RX and suppose that ϕ(β) = 0. We want to show that (idM ⊗R ϕ)
(∑

imi ⊗ xi
)
=∑

imi ⊗ ϕ(xi) is non-zero. Since only finitely many elements of M appear in this sum, there is a finitely
generated submodule M ′ ⊆M which contains m1, . . . ,mn. Since submodules of torsion-free modules are
torsion-free, we know that M ′ is torsion-free and finitely generated. By Q6, this implies that Tork(M ′, X) =

0 for any R-module X , i.e. that M ′ is flat. We have a commutative diagram:

M ′ ⊗R X
idM′ ⊗ ϕ

//

ι⊗idX
��

M ′ ⊗R Y

ι⊗idY
��

M ⊗R X
idM ⊗ ϕ

//M ⊗R Y

Applying this to α =
∑

imi ⊗ xi ∈M ′ ⊗R X , we get that

(ι⊗ idY )
(
(idM ′ ⊗ ϕ)(α)

)
= (idM ⊗ϕ)

(
(ι⊗ idX)(α)

)
= (idM ⊗ϕ)(β) = 0

Since we do not know if Y is flat, we cannot conclude immediately that γ := (idM ′ ⊗ ϕ)(α) = 0. However,
we know that any finitely generated submodule of M is flat. Let M ′′ be a finitely generated submodule of M
containing M ′. Then we can extend the above commutative diagram to:

M ′ ⊗R X
idM′ ⊗ ϕ

//

ι1⊗idX
��

M ′ ⊗R Y

ι1⊗idY
��

M ′′ ⊗R X
idM′′ ⊗ ϕ

//

ι2⊗idX
��

M ′′ ⊗R Y

ι2⊗idY
��

M ⊗R X
idM ⊗ ϕ

//M ⊗R Y

Note that we have ι = ι2 ◦ ι1, so we know that

0 = (ι⊗ idY )(γ) = (ι2 ⊗ idY ) ◦ (ι1 ⊗ idY )(γ)

If we can find some such M ′′ such that (ι1 ⊗ idY )(γ) = 0, then we have:

0 = (ι1 ⊗ idY )(γ) = (idM ′′ ⊗ ϕ) ◦ (ι1 ⊗ idX)(α)

Since M ′′ is flat, idM ′′ ⊗ ϕ is injective, so this means that (ι1 ⊗ idX)(α) = 0. But β = (ι ⊗ idX)(α) =

(ι2 ⊗ idX)
(
(ι1 ⊗ idX)(α)

)
, so this implies β = 0, as desired.

To see that there is a finitely generated submoduleM ′′ ⊆M withM ′ ⊆M ′′ such that (ι1⊗ idY )(γ) = 0,
we recall the construction of the tensor product M ⊗R Y . This is defined as the free abelian group A on the
symbols m ⊗ y with m ∈ M,y ∈ Y , modulo relations of the form ρm1,m2,+ := (m1 +m2) ⊗ y −m1 ⊗
y −m2 ⊗ y and ρr,m,∗ := rm⊗ y = m⊗ ry for all m1,m2,m ∈M , y ∈ Y , and r ∈ R.
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We can write γ =
∑n

i=1mi ⊗ yi, and its image in M ⊗ Y is represented by A =
∑n

i=1mi ⊗ yi ∈ A .
Since it is 0 in M ⊗ Y , this means that A is in the subgroup of A generated by ρm1,m2,+, ρr,m,∗. Thus, there
are finitely many mi

1,m
i
2, r

j ,mj such that A =
∑N

i=1 ρmi
1,m

i
2,+

+
∑M

j=1 ρrj ,mj ,∗. We can then take M ′′ to
be the R-submodule of M generated by the mi

1,m
i
2,m

j and the generators of M ′. This is a finitely generated
submodule of M . Then, (ι1 ⊗ idY )(γ) is represented by A ∈ A ′′ ⊆ A , where A ′′ is the free abelian group
corresponding to M ′′ ⊗ Y , which is clearly a subgroup of A (it is the free abelian group on a subset of the
generators). But by construction, the ρmi

1,m
i
2,+

and ρrj ,mj ,∗ are in A ′′. Then, since A ′′ → A is injective,
the equation A =

∑
i ρmi

1,m
i
2,+

+
∑

j ρrj ,mj ,∗ holds in A ′′, so A is in the kernel of A ′′ →M ′′ ⊗R Y . This
means that (ι1 ⊗ idY )(γ) = 0 as desired.

The deduction that Q6’ =⇒ Q7 is very similar. We need to show that for any ϕ : X → Y , the map
(idM ⊗ ϕ) : M ⊗ X → M ⊗ Y is injective. Let β =

∑
imi ⊗ xi be in the kernel. Taking X ′ to be any

finitely generated submodule of X containing the xi, we can define α :=
∑

imi ⊗ xi, thought of as an
element of X ′. Since the homomorphic image of a finitely generated module is finitely generated, we get a
map ϕ′ : X ′ → Y ′ with Y ′ ⊆ Y finitely generated. This gives us a commutative diagram:

M ⊗R X ′
idM ⊗ ϕ′

//

idM ⊗ ιX′
��

M ⊗R Y ′

idM ⊗ ιY ′
��

M ⊗R X
idM ⊗ ϕ

//M ⊗R Y

Thus, γ := (idM ⊗ ϕ′)(α) is in the kernel of idM ⊗ιY ′ . Exactly as in the proof that Q6 =⇒ Q7 (note that we
did not use torsion-freeness for this part of the proof), we can see that there is a finitely generated submodule
Y ′′ ⊆ Y with Y ′ ⊆ Y ′′ such that if ι1 : Y ′ ↪−→ Y ′′ is the inclusion, (idM ⊗ ι1)(γ) = 0. We get a map
ϕ′′ : X ′ → Y ′′ defined by ι1 ◦ ϕ′, and this gives a commutative diagram:

M ⊗R Y ′

idM ⊗ ι1
��

M ⊗R X ′

idM ⊗ ϕ′
55

idM ⊗ ϕ′′
//

idM ⊗ ιX′
��

M ⊗R Y ′′

idM ⊗ ιY ′′
��

M ⊗R X
idM ⊗ ϕ

//M ⊗R Y

Thus, we see that 0 = (idM ⊗ ι1)(γ) = (idM ⊗ ϕ′′)(α) = 0. But since ϕ′′ : X ′ → Y ′′ is the composition of
the injective maps ϕ′ : X ′ → Y ′ and ι1 : Y ′ → Y ′′, it is injective.

Now, consider the exact sequence:

0→ X ′ → Y ′′ → cokerϕ′′ → 0

Since cokerϕ′′ is a quotient of the finitely generated module Y ′′, it is finitely generated, so Tor1(M, cokerϕ′′) =

0. Thus, taking the Tor long exact sequence, we get:

0 = Tor1(M, cokerϕ′′) //M ⊗R X ′
idM ⊗ ϕ′′

//M ⊗ Y ′′ //M ⊗ (cokerϕ′′) // 0

Thus, idM ⊗ϕ′′ is injective, so the fact that (idM ⊗ϕ′′)(α) = 0 impliesα = 0, and thus β = (idM ⊗ ιX′)(α) =
0.
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Question 8. Deduce from the previous question that for any M ,

Tork(M,X) = 0 for all k > 1 and any X.

Solution. For any R-module M , there is a short exact sequence 0→ K → F →M → 0 with F free and
K ⊆ F . Since submodules of torsion-free modules are torsion-free, we know that K is torsion-free. Now,
for any X , we can take the long exact Tor sequence. For any k ≥ 2, we have the following piece:

0 = Tork(F,X)→ Tork(M,X)→ Tork−1(K,X) = 0

Here, we used Q7 and the fact that k − 1 ≥ 1 to show that Tork−1(K,X) = 0. Certainly we know that for a
free module F , Tork(F,X) = 0 as soon as k > 0. Thus, Tork(M,X) = 0 for k > 1.

Do at least one of the following questions. If you’ve seen one of these questions before, please at least try
to do one of the others.

Question 9A. Compute Ext1Z(Q,Z).

Solution. Consider the short exact sequence:

0→ Z→ Q→ Q/Z→ 0

We can take the long exact Ext(Q, ·) sequence:

0→ Hom(Q,Z)→ Hom(Q,Q)→ Hom(Q,Q/Z)→ Ext1(Q,Z)→ Ext1(Q,Q) = 0

We know that Ext1(Q,Q) = 0, since Q is an injective Z-module. Now, Hom(Q,Z) = 0: if q ∈ Q, we
can write q = nq′ for any n, so if f ∈ Hom(Q,Z) then f(q) = nf(q′), i.e. f(q) is divisible by n for all n,
which is clearly impossible unless f(q) = 0. We also know that Hom(Q,Q) ' Q, since any Z-linear map f
from Q to Q is just multiplication by an element of Q. So we have:

Ext1(Q,Z) ' Hom(Q,Q/Z)/Q

Thus, it suffices to describe the group Hom(Q,Q/Z).
Let’s start by describing the structure of Q/Z. For any prime p, there is the subgroup Z[1p ]/Z, consisting

of elements of the form a
pk

with p - a and 0 ≤ a < pk. Putting all of these subgroups together, we get a

map from
⊕

p Z[
1
p ]/Z =

⊕
p(Z[

1
p ]/Z) to Q/Z. This map is injective: if a

m + b
n = an+bm

nm = 0 in Q/Z with
n,m coprime, then an+bm

nm ∈ Z, i.e. nm | an+ bm, so n | bm and m | an. But since n,m are coprime, this
means that m | a and n | b. Thus, a

m and b
n are in Z, so they are 0 in Q/Z. Now, we can write an element of⊕

p Z[
1
p ]/Z as:

a1

pk11
+ · · ·+ an

pknn
=

N

pk11 · · · p
kn−1

n−1
+
an

pknn

Thus, the above argument shows that an
pknn
∈ Z, so we may induct on n to show that the whole sum is in Z,

and therefore 0 in
⊕

p Z[
1
p ]/Z.

Now, we will show that
⊕

p Z[
1
p ]/Z → Q/Z is actually an isomorphism. To do this, let aq ∈ Q with

q = q1q2 coprime. Then we may write 1 = aq1 + bq2 for some a, b ∈ Z (e.g. by the Chinese Remainder

11



Theorem, or by the fact that Z is a PID, so the ideal (q1, q2) is (gcd(q1, q2)) = (1)). Then we can take the
“partial fraction” decomposition:

1

q1q2
=
aq1 + bq2
q1q2

=
a

q2
+

b

q1

By breaking q into its prime factorization and repeatedly using this identity, we may write q as an element in
the image of

⊕
p Z[

1
p ]/Z.

Remember that for any modules Mi, i ∈ I for some set I , the direct sum
⊕

iMi embeds into the
direct product

∏
iMi as the set of elements such that all but finitely many factors are 0. So we will start by

describing Hom
(
Q,
∏
p Z[

1
p ]/Z

)
. By the universal property of products, a map to the product is the same

as a tuple of maps to each factor, i.e. we have:

Hom

Q,
∏
p

Z
[
1
p

]
/Z

 '∏
p

Hom
(
Q, Z

[
1
p

]
/Z
)

Now, we’ve broken the problem up one problem for each prime p. Now, we want to characterize homomor-
phisms from Q to Z[1p ]/Z. Such homomorphisms of course restrict to homomorphisms from Z[1p ] to Z[1p ]/Z,
and in fact any such homomorphism f extends uniquely to Q. To see this, we will use the following:

Claim 1. The group Z[1p ]/Z is uniquely divisible by numbers coprime to p: for any α ∈ Z[1p ]/Z and n ∈ N

with p - n, there is a unique α′ ∈ Z[1p ]/Z such that n · α′ = α.

Proof. We can write α = a
pk

+ Z with p - a, 0 ≤ a < pk. Since, p - n, n and pk are coprime, so there are
b, c ∈ Z with bpk + cn = 1, so abpk + acn = a. Thus, we can write α as:

α =
a

pk
+ Z =

abpk

pk
+
acn

pk
+ Z = n · ac

pk
+ Z

Thus, we may take α′ = ac
pk

+ Z. We want to show that α′ is unique, so let β′ be an element of Z[1p ]/Z
with nβ′ = α. Then n(β′ − α′) = 0, so it suffices to show multiplication by n is injective. Now, let
γ = m

p`
+ Z ∈ Z[1p ]/Z. If nγ = 0, then nm

p`
∈ Z, so p` | nm. Since p - n, this means that p` | m, so

γ = 0.

Now, let f ∈ Hom(Z[1p ],Z[
1
p ]/Z). We want to show it extends uniquely to f̃ ∈ Hom(Q,Z[1p ]/Z).

Write any element of Q uniquely as a
pkm

with p - m, (pkm, a) = 1, and m > 0. Let α = f( a
pk
), which is

defined since a ∈ Z[1p ]. We can define f̃( a
pkm

) as the unique element α′ such that m · α′ = α. This gives a
well-defined function from Q to Z[1p ]/Z, and it is easy to see that it is additive and extends f . Moreover, it is

unique since we need m · f̃
(

a
pkm

)
= f

(
a
pk

)
.

Thus, we need to determine Hom(Z[1p ],Z[
1
p ]/Z). Let f0 be such a homomorphism and consider α =

f0(1) ∈ Z[1p ]/Z. We have α = a
pn for some n ≥ 0 with p - a, so pn · α = a = 0 and pma 6= 0 for

m < n. Define f = pnf0, so f(1) = 0. Then, we define a sequence (mn) := (f
(

1
pn

)
)n for n ≥ 1. We

have p ·mn = mn−1, and pnmn = f(1) = 0 for all n. On the other hand, given such a sequence (mn)

with mn ∈ Z[1p ]/Z such that p ·mn = mn−1 and pnmn = 0 for all n, we can define a homomorphism

f : Z[1p ]→ Z[1p ]/Z with mn = f
(

1
pn

)
and f(1) = 0. To do this, we define f

(
a
pn

)
= amn with a ∈ Z. If
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we rewrite a
pn as ap

pn+1 , then since apmn+1 = amn, these definitions agree. This allows us to check that f is
additive: if we have x = a

pn and y = b
pk

, then

f(x+ y) = f

(
apk + bpn

pn+k

)
= apkmk+n + bpnmk+n = amn + bmk = f(x) + f(y)

Now, we can describe the set of sequences (mn)n with p · mn = mn−1 and pnmn = 0 for all n a bit
differently. The second condition says exactly that mn = a

pn for some a (perhaps not coprime to p). Since a
is only defined mod pn, we can think of mn as living in Z/pnZ instead. Then pmn = pa

pn = a
pn−1 , so the

condition that pmn = mn−1 can be rephrased as saying that mn ∈ Z/pn is equal to mn−1 mod pn−1. Thus,
the subgroup of Hom(Z[1p ],Z[

1
p ]/Z) with f(1) = 0 is isomorphic to the group of sequences (mn) with

mn ∈ Z/pnZ such that πn,n−1(mn) = mn−1, where πn,n−1 is the map from Z/pnZ to Z/pn−1Z given by
reducing mod pn−1. Another name for this group is Zp, the p-adic integers. Note that this is consist(Z[1p ]),
since pkm · Z[1p ] = pkZ[1p ] for p - m.

Now, for any element f ∈ Hom(Z[1p ],Z[
1
p ]/Z) and any n, there is a unique f0 ∈ Hom(Z[1p ],Z[

1
p ]/Z)

with pnf0 = f : we can take f0(x) = f( xpn ), and this is unique since multiplication by pn on Z[1p ]

is injective. Thus, Hom(Z[1p ],Z[
1
p ]/Z) has a unique structure of a Z[1p ]-module. Since for any f ∈

Hom(Z[1p ],Z[
1
p ]/Z), there is some n such that pnf(1) = 0, we can write f as f1

pn with f1(1) = 0. This
shows that Hom(Z[1p ],Z[

1
p ]/Z) ' Zp[

1
p ] = Qp, the p-adic numbers as an abelian group.

Thus, we see that Hom(Q,
∏
p Z[

1
p ]/Z) '

∏
pQp. The submodule Hom(Q,Q/Z) ' Hom(Q,

⊕
p Z[

1
p ]/Z)

is given by elements (fp) such that for each x ∈ Q, fp(x) = 0 for all but finitely many p. This is the sub-
group of (ap) ∈

∏
pQp such that for all but finitely many p, ap ∈ Zp. To see this, let x = m

n . For all
p - nm, fp(x) = a · fp(1) for some a ∈ Z with (a, p) = 1, by the definition of the isomorphism from
Hom(Z[1p ],Z[

1
p ]/Z)

∼−→ Hom(Q,Z[1p ]/Z) and the proof of Claim 1. Thus, fp(x) = 0 iff fp(1) = 0. Thus,
we see that a sequence (fp) satisfies the condition that for all x, (fp)(x) = 0 for all but finitely many x iff
fp(1) = 0 for all but finitely many x, iff the corresponding element (ap) ∈

∏
pQp is in Zp for all but finitely

many p.
We call the resulting group Af

Q :=
∏′

Zp
Qp, where the

∏′
Zp

stands for “restricted product” and it means
the subset of the product where all but finitely many entries are in Zp. This group has a natural ring structure
given by component-wise multiplication, and is called the finite adele ring of Q, and is studied widely in
number theory.4

Finally, we see that Ext1(Q,Z) ' Af
Q/Q, where the map Q→ F is given by sending q ∈ Q to the map

(fp) : Q→ Z[1p ]/Z with fp multiplication by q for each p. This corresponds to the element (ιp(q)) ∈ Af
Q,

with ιp | Q → Qp defined by sending a
pkm

with p - a,m to 1
pk

(
m−1 · a (mod p)n

)
n

(where m−1 is an
inverse to a mod pn, which exists for each n but depends on n). Since the denominator of q is only divisible
by finitely many primes, we see that ιp(q) ∈ Zp for all but finitely many p, so this in fact lands in Af

Q.

If M is a Z-module, note that d|n implies nM ⊂ dM , so there is a quotient map
πdn : M/nM →M/dM (it descends from the identity M →M , so in symbols it’s just m 7→ m).

Define consist(M) to be the submodule of
∏
n∈NM/nM defined by

consist(M) :−
{
(mn ∈M/nM)n∈N

∣∣ d|n =⇒ πdn(mn) = md

}
4The full adele ring AQ is Af

Q ×R: sometimes it is useful to think of R as being “the prime at infinity”. This ring has a locally
compact topology coming from the locally compact topologies on R and Qp, and many important results in number theory can be
reformulated in terms of this topological ring.
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This makes consist an additive functor from Z-modules to Z-modules (you do not have to prove this).

Question 9B. Is consist an exact functor? Prove your answer is correct.

Solution. Since Q/nQ = 0 for all n ∈ N, consist(Q) ⊆
∏
n∈NQ/nQ = 0, so consistent(Q) = 0.

Since Z → Q is injective, in order to show that consist is not an exact functor, it suffices to show that
consist(Z) 6= 0. This will be clear from the description in Question 9C, but for now note that there is an
injective map Z → consist(Z) defined by sending m ∈ Z to (m (mod n))n∈N. Certainly, if d | n, then
πdn(m (mod n)) = m (mod d), so the image of this map is contained in consist(Z). The map is injective
since if m (mod n) = 0 for all n ∈ N, then n = 0.

Question 9C. consist(Z) has a natural ring structure (for example, it is a subring of
∏
n∈N Z/nZ); you do

not have to prove this.
Describe the commutative ring Q⊗Z consist(Z).

(You have some flexibility here in what your “description” should be, but don’t just rephrase the definition.)

Solution. First, we will use the Chinese remainder theorem: Z/nZ ' Z/pk11 Z × · · · × Z/pkmm Z for
n = pk11 · · · pkmm its prime factorization. Let di = pkii . Then the maps πdin : Z/nZ→ Z/pkii Z correspond to
the i-th projection maps in the product decomposition Z/pk11 Z× · · · × Z/pkmm Z. So if (mn) ∈ consist(Z),
then mn = (m

p
k1
1

, . . . ,m
pkmm

) in this product description, so the collection of mp` for p a prime and ` > 0

completely determine (mn), and conversely, any collection of the mp` which are consistent with respect to
the πdn where n, d are both powers of the same prime define an element of consist(Z).

In other words, consist(Z) '
∏
p consistp(Z), where we define consistp(Z) to be the set of sequences

(mpn) with mpn ∈ Z/pnZ such that πp
k

pn(mpn) = pk for all k ≤ n. This is even an isomorphism of rings,
since the ring structure on consist(Z) is defined by component-wise multiplication (i.e. (mn) · (m′n) =
(mnm

′
n), and it’s easy to check this preserves consistency, since the πdn are ring homomorphisms), and the

Chinese remainder theorem gives an isomorphism of rings. Note that it is equivalent in the definition of
consistp(Z) to require that πp

n−1

pn (mpn) = mpn−1 for all n, since the pn are linearly ordered by divisibility.
Now, consistp(Z) is usually referred to as Zp, the p-adic integers.

Thus, we see that consist(Z) '
∏
p Zp as rings. Let’s see that consist(Z) ⊗Z Q ' Af

Q, the finite
adele ring defined in the solution to Question 9A. Essentially, this is true because tensoring with Q is the
same thing as adjoining 1

n for all n ∈ N, and n has only finitely many prime divisors. More precisely, we
define a homomorphism consist(Z)⊗Z Q→ Af

Q by sending (ap)⊗ q to (ιp(q)ap), with ιp : Q→ Qp the
embedding defined in Question 9A. Since (ap) ∈

∏
p Zp and for all but finitely many p, ιp(q) ∈ Zp, we see

that the image of this map lands in Af
Q.

To see that it is an isomorphism, note that if we have a tensor of the form (ap)⊗ m
n + (bp)⊗ m′

n′ , we can
rewrite this as

(mn′ap)⊗
1

nn′
+ (nm′bp)⊗

1

nn′
= (mn′ap + nm′bp)⊗

1

nn′

Thus, any element of
∏
p Zp ⊗Q may be written as (ap)⊗ 1

n . Then the map is certainly injective, since

ιp(
1
n)ap is only 0 when ap is 0. It is also surjective: given a finite adele (ap) ∈ Af

Q, let p1, . . . , pm be the

finitely many primes p with ap 6∈ Zp, and assume pkii api ∈ Zp for each i. Then let n :=
∏
i p
ki
i , and let

(bp) := n · (ap) ∈
∏
p Zp. Thus, we map (bp)⊗ 1

n to (ap).
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