Math 210A: Modern Algebra
Thomas Church (tfchurch@stanford.edu)
http://math.stanford.edu/~church/teaching/210A-F17

Homework 6

Due Thursday night, November 2 (technically 5am Nov. 3)

Question 1. Let A and B be two $n \times n$ matrices with entries in a field K.
Let L be a field extension of K, and suppose there exists $C \in \mathrm{GL}_{n}(L)$ such that $B=C A C^{-1}$. Prove there exists $D \in \mathrm{GL}_{n}(K)$ such that $B=D A D^{-1}$.
(that is, turn the argument sketched in class into an actual proof)
Question 2. Let k be an algebraically closed field of characteristic $\neq 2$. Fix two nonzero elements $\lambda, \mu \in k$. Let V and W be 2-dimensional k-vector spaces. Let $\alpha: V \rightarrow V$ have matrix $\left(\begin{array}{c}\lambda \\ 1 \\ 1\end{array} \lambda\right)$, and let $\beta: W \rightarrow W$ have matrix $\left(\begin{array}{c}\mu \\ 1 \\ 1\end{array}\right)$. Let $\gamma: V \otimes W \rightarrow V \otimes W$ be $\alpha \otimes \beta$ (defined on elementary tensors by $\gamma(v \otimes w)=\alpha(v) \otimes \beta(w))$.

Find the Jordan decomposition of γ (that is, give a list of blocks and their sizes, and prove your answer is correct). Give a basis for all eigenspaces of γ. What happens if char $k=2$?

Question 3. Let k be an algebraically closed field of characteristic $\neq 3$. Let V be an n-dimensional k-vector space, and suppose that $T: V \rightarrow V$ has minimal polynomial $(t-\lambda)^{n}$ for some nonzero $\lambda \in k$. Find the Jordan decomposition of T^{3}.

Question 4. Let V be a finite-dimensional nonzero vector space over a field k.
(a) For each monic irreducible $\pi \in k[t]$, define

$$
V(\pi)=\left\{v \in V \mid \exists k \in \mathbb{N} \text { s.t. }(\pi(T))^{k}(v)=0\right\} .
$$

(When k is algebraically closed, these are the generalized eigenspaces $V_{\lambda}=V(t-\lambda)$ of T.)
Prove that $V(\pi) \neq 0$ if and only if $\pi \mid m_{T}$, and that $V=\bigoplus_{\pi \mid m_{T}} V(\pi)$.
An endomorphism $T: V \rightarrow V$ is semisimple if every T-stable subspace of V admits a T-stable complementary subspace: i.e. for every $T(U) \subseteq U$ there exists a decomposition $V=U \oplus W$ with $T(W) \subseteq W$.
(Keep in mind that such a complement is not unique in general; e.g. consider scalar multiplication by 2 .)
(b) Use rational canonical form to prove that T is semisimple if and only if m_{T} has no repeated irreducible factor over k. (Hint: apply (a) to T-stable subspaces of V to reduce to the case when m_{T} has one monic irreducible factor.) Deduce that
(i) a Jordan block of rank >1 is never semisimple,
(ii) if T is semisimple then m_{T} is the "squarefree part" of χ_{T}, and
(iii) if T is semisimple and $U \subseteq V$ is a T-stable nonzero proper subspace then the induced endomorphisms $T_{U}: U \rightarrow U$ and $\bar{T}: V / U \rightarrow V / U$ are semisimple.
(c) Let V^{\prime} be another nonzero finite-dimensional k-vector space, and let $T^{\prime}: V^{\prime} \rightarrow V^{\prime}$ be another endomorphism. Prove that T and T^{\prime} are semisimple if and only if the endomorphism $T \oplus T^{\prime}$ of $V \oplus V^{\prime}$ is semisimple.

Question 5. Let V be a n-dimensional k-vector space with $0<n<\infty$, and let $T: V \rightarrow V$ be an endomorphism.
(a) Using rational canonical form and Cayley-Hamilton, prove the following are equivalent:
(a) $\exists k \geq 1$ such that $T^{k}=0$.
(b) $T^{n}=0$.
(c) There is an ordered basis of V w.r.t. which the matrix for T is upper triangular with 0 's on the diagonal.
(d) $\chi_{T}=t^{n}$.

We call such T nilpotent.
(b) We say that T is unipotent if $T-1$ is nilpotent. Formulate characterizations of unipotence analogous to the conditions in (a), and prove that a unipotent T is invertible.
(c) Assume k is algebraically closed. Using Jordan canonical form and generalized eigenspaces, prove that there is a unique expression

$$
T=T_{\mathrm{ss}}+T_{\mathrm{n}}
$$

where T_{ss} and T_{n} are a pair of commuting endomorphisms of V with T_{ss} semisimple and T_{n} nilpotent. (This is the additive Jordan decomposition of T.)
Show in general that $\chi_{T}=\chi_{T_{\mathrm{ss}}}$ (so T is invertible if and only if T_{ss} is invertible)
Show by example with $\operatorname{dim} V=2$ that uniqueness fails if we drop the "commuting" requirement. (You just need to give the matrix T and the two decompositions $T=T_{\mathrm{ss}}+T_{\mathrm{n}}$ and $T=T_{\mathrm{ss}}^{\prime}+T_{\mathrm{n}}^{\prime}$; you do not need to prove these matrices are semisimple/nilpotent, as long as they are.)
(d) Assume k is algebraically closed and $S: V \rightarrow V$ is invertible. Using the existence and uniqueness of additive Jordan decomposition, prove that there is a unique expression

$$
S=S_{\mathrm{ss}} S_{\mathrm{u}}
$$

where S_{ss} and S_{u} are commuting endomorphisms of V with S_{ss} semisimple and S_{u} unipotent (so S_{ss} is necessarily invertible too). This is the multiplicative Jordan decomposition of T.

