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Question 1. Recall that in class we used the free resolution from HW4 Q4(g) to compute for G = Z/2 =

{1, s} that

Hk(Z/2; M) =


MG k = 0
{m∈M |sm+m=0}
{sn−n|n∈M} k = 1, 3, 5, . . .

{m∈M |sm=m}
{sn+n|n∈M} k = 2, 4, 6, . . .

For G = Z/n = {1, s, . . . , sn−1}, find a similar description of Hk(Z/n; M) for a ZG-module M . (Hint:
find a free resolution of Z as a ZG-module; note that ZG ∼= Z[s]/(sn − 1).
The resolution will again be 2-periodic just like for Z[s]/(s2 − 1).

Solution. Let R = ZG ' Z[s]/(sn − 1). We want to compute a resolution for the R-module Z, where s
acts by the identity. This is generated by the single element 1, so we have a surjection d0 : R −� Z sending
1 ∈ R to 1 ∈ Z. Then R-linearity forces d0 to send a0 + a1s + · · · + an−1s

n−1 to a0 + a1 + · · · + an−1.
Thus, the kernel of d0 is the “augmentation ideal” I = {a0 + a1s+ · · ·+ an−1s

n−1 | a0 + · · ·+ an−1 = 0}.
We claim that I = (s− 1). Certainly s− 1 ∈ I , so we have (s− 1)R ⊆ I . To see the other inclusion,

consider some r = a0 + a1s+ · · ·+ aks
k ∈ I . We prove that r ∈ (s− 1) by induction on k. If k = 0, since

r ∈ I we know a0 = 0, and certainly r = 0 belongs to (s− 1). If k ≥ 1, consider

r′ = r − (s− 1)aks
k−1 = r − aksk + aks

k−1 = a0 + a1s+ · · ·+ (ak−1 + ak)s
k−1.

By induction r′ ∈ (s− 1), and thus r ∈ (s− 1) as well.
Thus, we have a presentation:

R
d1

(s−1)
// R

d0 // Z // 0

Now, we need to compute the kernel of d1, i.e. the ideal {r ∈ R | (s − 1)r = 0}. Given r = a0 + a1s +

· · ·+ an−1s
n−1, we compute

(s− 1)r = (an−1 − a0) + (a0 − a1)s+ · · ·+ (an−2 − an−1)sn−1.

Therefore (s− 1)r = 0 iff a0 = a1 and a1 = a2 and . . . and an−2 = an−1 and an−1 = a0. Therefore

ker d1 = {r ∈ R | (s− 1)r = 0} = {a0(1 + s+ · · ·+ sn−1)}.

Let Nn denote Nn = 1 + s+ · · ·+ sn−1 ∈ ZG, so ker d1 = (Nn). This gives us the next term of our free
resolution:

R
d2

Nn

// R
d1

(s−1)
// R

d0 // Z // 0

To find ker d2 we compute that given r = a0 + a1s+ · · ·+ an−1s
n−1,

Nnr = (
∑

ai) + (
∑

ai)s+ · · ·+ (
∑

ai)s
n−1 = (

∑
ai)Nn.
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It follows that ker d2 is the ideal I from above where
∑
ai = 0, which we already proved is equal to

(s− 1).Thus, we have a 2-periodic resolution:

· · · // R
d2n

Nn

// R
d2n−1

(s−1)
// R // · · · // R

d2

Nn

// R
d1

(s−1)
// R

d0 // Z // 0

i.e. the even differentials are multiplication by Nn and the odd differentials are multiplication by (s− 1).
To calculateHk(Z/n;M) = ExtkZG(Z,M) we will apply the contravariant right-exact functor HomR(·,M)

to the above free resolution. We use the fact (explained in more detail in the solutions for HW5) that
HomR(R,M) ' M and that if d : R → R is a map given by multiplication by r, then the induced map
HomR(R,M)→ HomR(R,M) becomes the action of r on M under this isomorphism. Thus, Hk(Z/n;M)

is the degree-k cohomology of the following complex:

0→M
δ1

(s−1)
//M

δ2

Nn

//M // · · · //M
δ2n

Nn

//M
δ2n+1

(s−1)
//M // · · ·

Thus, we have Hk(Z/n;M) = ker(δk+1)/ im(δk). For k odd, this is ker(Nn)/ Im((s − 1)). We have
ker(Nn) = {m ∈M | sn−1 ·m+ sn−2 ·m+ · · ·+m = 0}. Defining1 N : M →M by

N(m) = Nn ·m = sn−1 ·m+ · · ·+m =
∑
g∈Z/n

g ·m.

Im((s− 1)) = {s · n− n | n ∈M}.
For k even, we have

Hk(Z/n;M) =
ker((s− 1))

Im(Nn)
= {m ∈M | sm = m}/{N(n) | n ∈M} =MG/N(M)

Finally, for k = 0, we have H0(Z/n;M) = ker δ1 = {m ∈ M | sm = m} = MG, as we know we
must. Putting this all together, we have:

Hk(Z/n;M) =


MG k = 0

{m ∈M | N(m) = 0}/{sn− n | n ∈M} k = 1, 3, 5, . . .

MG/N(M) k = 2, 4, 6, · · ·

Question 2. Let G be a group.

(a) Prove that H0(G;ZG) ∼= Z if G is finite, and H0(G;ZG) = 0 if G is infinite.

(b) Prove that H1(G;ZG) 6= 0 if G = Z = {. . . , t−1, 1, t, . . .}.

(c) (Hard, very optional) Can you find another group for which H1(G;ZG) 6= 0?

1If Z/n is the Galois group of a field extension L/K and M = L×, then N is the norm map NL/K as in Question 3. (If M is
the additive group M = L, then N is the trace map TrL/K .) This is an important construction in algebraic number theory.
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Solution. (a) Since H0(G;M) =MG for any group G and G-module M , we need to compute (ZG)G.
Consider an arbitrary α =

∑
g∈G ag · g ∈ ZG, where by definition ag = 0 for all but finitely many g.

To be G-invariant (i.e. to lie in (ZG)G) means that h · α = α for all h ∈ g; in other words, for any
h ∈ G ∑

g∈G
ag · (hg) =

∑
g∈G

ag · g.

Comparing coefficients of h on each side, we have that a1 = ah for all h ∈ G. If G is infinite, this is a
contradiction unless a1 = 0 (since only finitely many coefficients can be nonzero), so H0(G;ZG) = 0

in this case. If G is finite, on the other hand, we find that (ZG)G = {a1(
∑

g∈G g)} ∼= Z.

(b) Note that ZG ' Z[s, s−1] =: R, the ring of Laurent polynomials in the variable s. We computed in
class that H1(G = Z;M) = coker(t − 1: M → M) ∼= MG (but see below for a reminder of the
proof if you forgot it). Note that coker(t − 1: M → M) = M/(t − 1)M = M ⊗R (R/(t − 1)).
Therefore when we take M = ZG = R, we find

H1(G = Z;ZG) = R⊗R (R/(t− 1)) ∼= R/(t− 1) ∼= Z 6= 0.

Refresher on H∗(G = Z;M): We need to compute at least the first two terms of a free resolution of the trivial
G-module Z. Since 1 generates Z, we have a surjection d0 : R −� Z sending a−ns−n + · · · + ams

m to
a−n + · · ·+ am. The kernel I of d0 includes the principal ideal (s− 1)R, and we want to show that this is the
entire kernel. The argument is nearly identical to the one in Question 1. We may induct on m to show that if
p(s) ∈ I , then p(s) = q(s)(s − 1) + r(s) with r(s) ∈ Z[s−1] and q(s) ∈ R (even q(s) ∈ Z[s]). Then since
q(s)(s− 1) ∈ I , we have that r(s) ∈ I as well. But (s− 1) = −s(s−1 − 1), and −s is a unit in R. So now it
suffices to show that r(s) ∈ I ∩ Z[s−1] is in (s−1 − 1)Z[s−1], which is the same argument as before. Now, we
have:

R
d1

(s−1)
// R

d0 // Z // 0

But R = (Z[s])[ 1s ] is a domain, so d1 is injective, and we have:

· · · → 0
d2 // R

d1

(s−1)
// R

d0 // Z // 0

(and for n ≥ 3, all terms are 0). Applying the contravariant functor HomR(·,M), we get the following complex
computing Hk(Z;M):

0→M
δ1

(s−1)
// M

δ2 // 0→ · · ·

Thus, we have H0(Z;M) = ker δ1 = {m ∈M | sm = m} =MG and

H1(Z;M) = ker(δ2)/ im(δ1) =M/{sm−m | m ∈M}

and Hk(Z;M) = 0 for all k ≥ 2 and all G-modules M . Now, taking M = ZG, we compute H1(Z;ZG). But
this is R/{sr − r | r ∈ R} = R/(s− 1)R ' Z, as we saw above. Thus, H1(Z;ZG) = Z.
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(c) It turns out that H1(G;ZG) = 0 whenever G is finite (though this is not easy to prove2), so we need
to look to infinite groups.

An satisfactory, but perhaps unsatisfying, example would be to takeG = Z×Z/n. ThenH1(G;ZG) '
H1(Z;ZG) ' Z, essentially by a combination of the argument for G = Z and a computation for
G = Z/n (using the answer from Q1).

Remarks from TC: To find more interesting examples that do not essentially come from Z, we must
turn to infinite non-abelian groups. For specific groups, this can be computed by hand (if the right
group is chosen).

For a general way to understand why some of these examples work, here is one way to think about it
(which obviously you were not expected to do). Suppose there is a contractible space X on which G
acts nicely by homeomorphisms, so that every point in X is fixed by at most finitely many elements,
and so that the quotient X/G is compact. Then it turns out3 that H1(G;ZG) ' H1

c (X;Z), where H1
c

is the compactly-supported cohomology of the topological space X .

Here are some examples where this setup applies and H1
c (X) 6= 0:

• G = Fn, the free group on n generators; X = an infinite 2n-regular tree

• the infinite dihedral group D∞; X = R (here the computation that H1
c (X) 6= 0 is especially

easy)

• G = SL2(Z) or any finite-index subgroup of it; X = the upper half plane H2 with balls around
Q ∪ {∞} removed (so that X/G is the modular curve, with a neighborhood of the cusp removed
to make it compact)

These are all “1-dimensional virtual duality groups” (see §VIII.10 of Brown’s book), and such a group
will always have H1(G;ZG) 6= 0, although other examples are possible.

Question 3. Let L/K be a finite Galois extension with Galois group G = Gal(L/K). The unit group L× is
an abelian group with an action of G, so we may consider the group cohomology Hk(G;L×). A theorem of
Noether states that H1(G;L×) = 0; you may assume this without proof.

(a) Use Noether’s theorem to prove that if Gal(L/K) is generated by a single element s, then every
element ` ∈ L with norm 1 has4 the form s(z)/z for some z ∈ L.

(b) Use part (a) to give a parametrization in two rational parameters of the rational points on the unit circle:

S1(Q) = {(x ∈ Q, y ∈ Q) |x2 + y2 = 1}.

That is, give two rational functions x(a, b) ∈ Q(a, b) and y(a, b) ∈ Q(a, b) such that the resulting
function f : Q2 → Q2 given by (a, b) 7→

(
x(a, b), y(a, b)

)
has image S1(Q).

2for those who want a reference, it follows from the fact that ZG is “co-induced” from the trivial group when G is finite, together
with Shapiro’s lemma

3This is proved as Prop. VIII.7.5, pp. 209, in the book Cohomology of Groups by Brown (available for free download via the
Stanford library by clicking here); plus Exercise VIII.7.4 for the finite stabilizers.

4Recall that for a Galois extension L/K the norm NL
K : L→ K is given by NL

K(`) =
∏

g∈Gal(L/K) g · `.
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Solution. (a) If G = Gal(L/K) is generated by a single element s, then Gal(L/K) ' Z/n, where n is
the order of s. Then we can use Question 1 to compute the group cohomology

H1(G;L×) = H1(Z/n;L×) = {` ∈ L× | N(`) = 1}/{sz − z | z ∈ L×}

Here, N(`) = (`) ∗ (s · `) ∗ (s2 · `) ∗ · · · ∗ (sn−1 · `) is as defined in Question 1. We can see that
N(`) = NL

K(`). (Note that in Question 1, we write the group operation on the abelian group M as
+ and the identity as 0, but for L×, the group operation is multiplication and the identity is 1). Thus,
Noether’s theorem tells us that since H1(G;L×) = 0, any ` ∈ L× with NL

K(`) = 1 is of the form
s(z)/z for some z ∈ L×.

(b) Let K = Q(i) = {a + bi | a, b ∈ Q, i2 = −1}. This is a degree two field extension of Q, which
is therefore Galois with Galois group Z/2. The nontrivial element of the group is s : i 7→ −i (i.e.
because the minimal polynomial of i is x2 + 1, and the roots of this are exactly ±i). Therefore, we
have NK

Q (x + yi) = (x + yi)s(x + yi) = x2 + y2. Thus, the previous part of the problem implies
that if x2 + y2 = 1 for (x, y) ∈ Q2, then there is some a+ ib ∈ K× with

x+ iy =
s(a+ bi)

(a+ bi)
=

(a− bi)
(a+ bi)

=
(a− bi)2

a2 + b2
=
a2 − b2

a2 + b2
+
−2ab
a2 + b2

i (1)

Thus, x = x(a, b) := a2−b2
a2+b2

and y = y(a, b) := −2ab
a2+b2

. Thus, the map (a, b) 7→ (x(a, b), y(a, b)) from
Q2 to Q2 contains S1(Q) in its image. Note that this map is defined everywhere on Q2 \ {(0, 0)},
since a2 + b2 6= 0 unless (a, b) = (0, 0).

We should also check that the image is contained in S1(Q). This can be checked simply by summing
the squares of the right hand side; alternately, our computation in (a) [or in Q1] shows that any element
of the form w = s(z)/z automatically has N(w) = N(s(z))/N(z) = 1.
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Given a chain complex C• =→ · · ·C2 → C1 → C0 → 0 and a chain map f : C• → C•:
We call f an involution if f ◦ f = id.
We call f a weak involution if there is a homotopy f ◦ f ∼ id.

Question 4. Give an example of a chain complex C• and a weak involution f : C• → C• that is not an
involution.

Solution. If all maps d of the complex C• are 0, then a chain homotopy between two maps from C• to C•
must vanish, so f is an involution iff it is a weak involution. Therefore, we need a sequence with at least one
non-zero map. Let’s pick the easiest possible sequence:

C• = · · · → 0→ Z
d

id
// Z→ 0

We consider the left-hand term to be in degree 1 and the right-hand term to be in degree 0 (although this
doesn’t affect anything).

Our first claim is that a chain map g : C• → C• must have g0 and g1 being the same map (i.e. multiplica-
tion by the same n). Since all homomorphisms from Z to Z are given by multiplication by some element of
Z, a chain map from C• to C• is a diagram of the following form:

Z
d //

m
��

Z

n
��

Z
d // Z

The fact that it is a chain map implies that n ◦ d = d ◦m, so n = m (since d = id).
Our second claim is that any chain map C• → C• is homotopic to any other; equivalently, that any chain

map g : C• → C• is homotopic to 0. Indeed, a homotopy from g to 0 is a choice of map h0 : C0 → C1 such
that g0 = d ◦ h0 and g1 = h0 ◦ d (since all other terms in the definition vanish). But we have already seen
that g0 = g1 and d = id, so we can simply take h0 = g0.

Z
id //

n
��

Z

n
��

n

��

Z
id // Z

In particular, this means that every f : C• → C• is a weak involution (since f ◦ f will be homotopic to id no
matter what it is). Therefore we can take any f which is not actually an involution; this is accomplished by
taking any n ∈ Z \ {−1, 1}.

Question 5. (Optional, replaces Q4) Give an example of a chain complex C• and a weak involution
f : C• → C• that is not homotopic to an involution.
(That is, there does not exist any involution g : C• → C• with g ◦ g = id and f ∼ g.)

Solution. Let us return to our example with C0 = C1 = Z and d : C1 → C0 is multiplication by some
d ∈ Z \ {0}, but this time we will take some other d than 1:

C• = Z
d // Z
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The same argument as before shows that any chain map g : C• → C• has to have both g0 and g1 be
multiplication by the same m ∈ Z (using just that Z is a domain and d 6= 0). Therefore we can speak simply
about the chain map m : C• → C• for m ∈ Z.

First, let us understand when two such maps are homotopic. A homotopy n ∼ m means exactly that
there is some map h0 : C0 → C1 with n−m = d ◦ h0 and n−m = h0 ◦ d. This is possible if and only if d
divides n−m (in which case we take h0 : C0 → C1 to be multiplication by n−m

d ). To sum up, two chain
maps n and m are homotopic if and only if n ≡ m mod d.

Therefore if f : C• → C• is multiplication by n, we see that f is a weak involution iff n2 ≡ 1 mod d.
As for actual involutions, the only involutions are multiplication by 1 or −1. Therefore f is homotopic to an
actual involution iff n ≡ ±1 mod d.

So to find a weak involution that is not homotopic to an involution, we must find some n such that
n2 ≡ 1 mod d but n 6≡ ±1 mod d. This is impossible if d is prime, but as long as d has more than 1 odd
prime factor (or d is divisible by 8, or d is divisible by both 4 and an odd prime) we can do it (thanks to the
Chinese Remainder Theorem, plus knowledge of the structure of (Z/pk)×). For example, we could take
d = 15 and n = 4; or d = 8 and n = 3; or d = 12 and n = 5.
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