## Math 210A, Fall 2017

HW 7 Solutions
Written by Dan Dore, edits by Prof. Church
(If you find any errors, please email ddore@stanford.edu)
Question 1. Recall that in class we used the free resolution from HW4 Q4(g) to compute for $G=\mathbf{Z} / 2=$ $\{1, s\}$ that

$$
H^{k}(\mathbf{Z} / 2 ; M)= \begin{cases}M^{G} & k=0 \\ \frac{\{m \in M \mid s m+m=0\}}{\{s n-n \mid n \in M\}} & k=1,3,5, \ldots \\ \frac{\{m \in M| | m m=m\}}{\{s n+n \mid n \in M\}} & k=2,4,6, \ldots\end{cases}
$$

For $G=\mathbf{Z} / n=\left\{1, s, \ldots, s^{n-1}\right\}$, find a similar description of $H^{k}(\mathbf{Z} / n ; M)$ for a $\mathbf{Z} G$-module $M$. (Hint: find a free resolution of $\mathbf{Z}$ as a $\mathbf{Z} G$-module; note that $\mathbf{Z} G \cong \mathbf{Z}[s] /\left(s^{n}-1\right)$.
The resolution will again be 2-periodic just like for $\mathbf{Z}[s] /\left(s^{2}-1\right)$.
Solution. Let $R=\mathbf{Z} G \simeq \mathbf{Z}[s] /\left(s^{n}-1\right)$. We want to compute a resolution for the $R$-module $\mathbf{Z}$, where $s$ acts by the identity. This is generated by the single element 1 , so we have a surjection $d_{0}: R \longrightarrow \mathbf{Z}$ sending $1 \in \mathrm{R}$ to $1 \in \mathbf{Z}$. Then $R$-linearity forces $d_{0}$ to send $a_{0}+a_{1} s+\cdots+a_{n-1} s^{n-1}$ to $a_{0}+a_{1}+\cdots+a_{n-1}$. Thus, the kernel of $d_{0}$ is the "augmentation ideal" $I=\left\{a_{0}+a_{1} s+\cdots+a_{n-1} s^{n-1} \mid a_{0}+\cdots+a_{n-1}=0\right\}$.

We claim that $I=(s-1)$. Certainly $s-1 \in I$, so we have $(s-1) R \subseteq I$. To see the other inclusion, consider some $r=a_{0}+a_{1} s+\cdots+a_{k} s^{k} \in I$. We prove that $r \in(s-1)$ by induction on $k$. If $k=0$, since $r \in I$ we know $a_{0}=0$, and certainly $r=0$ belongs to $(s-1)$. If $k \geq 1$, consider

$$
r^{\prime}=r-(s-1) a_{k} s^{k-1}=r-a_{k} s^{k}+a_{k} s^{k-1}=a_{0}+a_{1} s+\cdots+\left(a_{k-1}+a_{k}\right) s^{k-1} .
$$

By induction $r^{\prime} \in(s-1)$, and thus $r \in(s-1)$ as well.
Thus, we have a presentation:

$$
R \underset{(s-1)}{d_{1}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

Now, we need to compute the kernel of $d_{1}$, i.e. the ideal $\{r \in R \mid(s-1) r=0\}$. Given $r=a_{0}+a_{1} s+$ $\cdots+a_{n-1} s^{n-1}$, we compute

$$
(s-1) r=\left(a_{n-1}-a_{0}\right)+\left(a_{0}-a_{1}\right) s+\cdots+\left(a_{n-2}-a_{n-1}\right) s^{n-1}
$$

Therefore $(s-1) r=0$ iff $a_{0}=a_{1}$ and $a_{1}=a_{2}$ and $\ldots$ and $a_{n-2}=a_{n-1}$ and $a_{n-1}=a_{0}$. Therefore

$$
\operatorname{ker} d_{1}=\{r \in R \mid(s-1) r=0\}=\left\{a_{0}\left(1+s+\cdots+s^{n-1}\right)\right\} .
$$

Let $N_{n}$ denote $N_{n}=1+s+\cdots+s^{n-1} \in \mathbf{Z} G$, so ker $d_{1}=\left(N_{n}\right)$. This gives us the next term of our free resolution:

$$
R \underset{N_{n}}{d_{2}} R \underset{(s-1)}{d_{1}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

To find ker $d_{2}$ we compute that given $r=a_{0}+a_{1} s+\cdots+a_{n-1} s^{n-1}$,

$$
N_{n} r=\left(\sum a_{i}\right)+\left(\sum a_{i}\right) s+\cdots+\left(\sum a_{i}\right) s^{n-1}=\left(\sum a_{i}\right) N_{n}
$$

It follows that ker $d_{2}$ is the ideal $I$ from above where $\sum a_{i}=0$, which we already proved is equal to $(s-1)$.Thus, we have a 2 -periodic resolution:

$$
\cdots \longrightarrow R \underset{N_{n}}{\stackrel{d_{2 n}}{\longrightarrow}} R \underset{(s-1)}{\frac{d_{2 n-1}}{\longrightarrow}} R \longrightarrow \cdots \longrightarrow \underset{N_{n}}{\stackrel{d_{2}}{\longrightarrow}} R \underset{(s-1)}{d_{1}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

i.e. the even differentials are multiplication by $N_{n}$ and the odd differentials are multiplication by $(s-1)$.

To calculate $H^{k}(\mathbf{Z} / n ; M)=\operatorname{Ext}_{\mathbf{Z} G}^{k}(\mathbf{Z}, M)$ we will apply the contravariant right-exact functor $\operatorname{Hom}_{R}(\cdot, M)$ to the above free resolution. We use the fact (explained in more detail in the solutions for HW5) that $\operatorname{Hom}_{R}(R, M) \simeq M$ and that if $d: R \rightarrow R$ is a map given by multiplication by $r$, then the induced map $\operatorname{Hom}_{R}(R, M) \rightarrow \operatorname{Hom}_{R}(R, M)$ becomes the action of $r$ on $M$ under this isomorphism. Thus, $H^{k}(\mathbf{Z} / n ; M)$ is the degree- $k$ cohomology of the following complex:

$$
0 \rightarrow M \underset{(s-1)}{\frac{\delta^{1}}{\longrightarrow}} M \underset{N_{n}}{\delta^{2}} M \longrightarrow \cdots \longrightarrow M \underset{N_{n}}{\delta^{2 n}} M \underset{(s-1)}{\delta^{2 n+1}} M \longrightarrow \cdots
$$

Thus, we have $H^{k}(\mathbf{Z} / n ; M)=\operatorname{ker}\left(\delta^{k+1}\right) / \operatorname{im}\left(\delta^{k}\right)$. For $k$ odd, this is $\operatorname{ker}\left(N_{n}\right) / \operatorname{Im}((s-1))$. We have $\operatorname{ker}\left(N_{n}\right)=\left\{m \in M \mid s^{n-1} \cdot m+s^{n-2} \cdot m+\cdots+m=0\right\}$. Defining $\}^{1} N: M \rightarrow M$ by

$$
N(m)=N_{n} \cdot m=s^{n-1} \cdot m+\cdots+m=\sum_{g \in \mathbf{Z} / n} g \cdot m .
$$

$\operatorname{Im}((s-1))=\{s \cdot n-n \mid n \in M\}$.
For $k$ even, we have

$$
H^{k}(\mathbf{Z} / n ; M)=\frac{\operatorname{ker}((s-1))}{\operatorname{Im}\left(N_{n}\right)}=\{m \in M \mid s m=m\} /\{N(n) \mid n \in M\}=M^{G} / N(M)
$$

Finally, for $k=0$, we have $H^{0}(\mathbf{Z} / n ; M)=\operatorname{ker} \delta^{1}=\{m \in M \mid s m=m\}=M^{G}$, as we know we must. Putting this all together, we have:

$$
H^{k}(\mathbf{Z} / n ; M)= \begin{cases}M^{G} & k=0 \\ \{m \in M \mid N(m)=0\} /\{s n-n \mid n \in M\} & k=1,3,5, \ldots \\ M^{G} / N(M) & k=2,4,6, \cdots\end{cases}
$$

## Question 2. Let $G$ be a group.

(a) Prove that $H^{0}(G ; \mathbf{Z} G) \cong \mathbf{Z}$ if $G$ is finite, and $H^{0}(G ; \mathbf{Z} G)=0$ if $G$ is infinite.
(b) Prove that $H^{1}(G ; \mathbf{Z} G) \neq 0$ if $G=\mathbf{Z}=\left\{\ldots, t^{-1}, 1, t, \ldots\right\}$.
(c) (Hard, very optional) Can you find another group for which $H^{1}(G ; \mathbf{Z} G) \neq 0$ ?

[^0]Solution. (a) Since $H^{0}(G ; M)=M^{G}$ for any group $G$ and $G$-module $M$, we need to compute $(\mathbf{Z} G)^{G}$. Consider an arbitrary $\alpha=\sum_{g \in G} a_{g} \cdot g \in \mathbf{Z} G$, where by definition $a_{g}=0$ for all but finitely many $g$. To be $G$-invariant (i.e. to lie in $(\mathbf{Z} G)^{G}$ ) means that $h \cdot \alpha=\alpha$ for all $h \in g$; in other words, for any $h \in G$

$$
\sum_{g \in G} a_{g} \cdot(h g)=\sum_{g \in G} a_{g} \cdot g
$$

Comparing coefficients of $h$ on each side, we have that $a_{1}=a_{h}$ for all $h \in G$. If $G$ is infinite, this is a contradiction unless $a_{1}=0$ (since only finitely many coefficients can be nonzero), so $H^{0}(G ; \mathbf{Z} G)=0$ in this case. If $G$ is finite, on the other hand, we find that $(\mathbf{Z} G)^{G}=\left\{a_{1}\left(\sum_{g \in G} g\right)\right\} \cong \mathbf{Z}$.
(b) Note that $\mathbf{Z} G \simeq \mathbf{Z}\left[s, s^{-1}\right]=: R$, the ring of Laurent polynomials in the variable $s$. We computed in class that $H^{1}(G=\mathbf{Z} ; M)=\operatorname{coker}(t-1: M \rightarrow M) \cong M_{G}$ (but see below for a reminder of the proof if you forgot it). Note that coker $(t-1: M \rightarrow M)=M /(t-1) M=M \otimes_{R}(R /(t-1))$. Therefore when we take $M=\mathbf{Z} G=R$, we find

$$
H^{1}(G=\mathbf{Z} ; \mathbf{Z} G)=R \otimes_{R}(R /(t-1)) \cong R /(t-1) \cong \mathbf{Z} \neq 0
$$

Refresher on $H^{*}(G=\mathbf{Z} ; M)$ : We need to compute at least the first two terms of a free resolution of the trivial $G$-module $\mathbf{Z}$. Since 1 generates $\mathbf{Z}$, we have a surjection $d_{0}: R \longrightarrow \mathbf{Z}$ sending $a_{-n} s^{-n}+\cdots+a_{m} s^{m}$ to $a_{-n}+\cdots+a_{m}$. The kernel $I$ of $d_{0}$ includes the principal ideal $(s-1) R$, and we want to show that this is the entire kernel. The argument is nearly identical to the one in Question 1. We may induct on $m$ to show that if $p(s) \in I$, then $p(s)=q(s)(s-1)+r(s)$ with $r(s) \in \mathbf{Z}\left[s^{-1}\right]$ and $q(s) \in R$ (even $q(s) \in \mathbf{Z}[s]$ ). Then since $q(s)(s-1) \in I$, we have that $r(s) \in I$ as well. But $(s-1)=-s\left(s^{-1}-1\right)$, and $-s$ is a unit in $R$. So now it suffices to show that $r(s) \in I \cap \mathbf{Z}\left[s^{-1}\right]$ is in $\left(s^{-1}-1\right) \mathbf{Z}\left[s^{-1}\right]$, which is the same argument as before. Now, we have:

$$
R \underset{(s-1)}{\stackrel{d_{1}}{\longrightarrow}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

But $R=(\mathbf{Z}[s])\left[\frac{1}{s}\right]$ is a domain, so $d_{1}$ is injective, and we have:

$$
\cdots \rightarrow 0 \xrightarrow{d_{2}} R \underset{(s-1)}{d_{1}} R \xrightarrow{d_{0}} \mathbf{Z} \longrightarrow 0
$$

(and for $n \geq 3$, all terms are 0). Applying the contravariant functor $\operatorname{Hom}_{R}(\cdot, M)$, we get the following complex computing $H^{k}(\mathbf{Z} ; M)$ :

$$
0 \rightarrow M \underset{(s-1)}{\frac{\delta^{1}}{\longrightarrow}} M \xrightarrow{\delta^{2}} 0 \rightarrow \cdots
$$

Thus, we have $H^{0}(\mathbf{Z} ; M)=\operatorname{ker} \delta^{1}=\{m \in M \mid s m=m\}=M^{G}$ and

$$
H^{1}(\mathbf{Z} ; M)=\operatorname{ker}\left(\delta^{2}\right) / \operatorname{im}\left(\delta^{1}\right)=M /\{s m-m \mid m \in M\}
$$

and $H^{k}(\mathbf{Z} ; M)=0$ for all $k \geq 2$ and all $G$-modules $M$. Now, taking $M=\mathbf{Z} G$, we compute $H^{1}(\mathbf{Z} ; \mathbf{Z} G)$. But this is $R /\{s r-r \mid r \in R\}=R /(s-1) R \simeq \mathbf{Z}$, as we saw above. Thus, $H^{1}(\mathbf{Z} ; \mathbf{Z} G)=\mathbf{Z}$.
(c) It turns out that $H^{1}(G ; \mathbf{Z} G)=0$ whenever $G$ is finite (though this is not easy to prove ${ }^{2}$ ), so we need to look to infinite groups.

An satisfactory, but perhaps unsatisfying, example would be to take $G=\mathbf{Z} \times \mathbf{Z} / n$. Then $H^{1}(G ; \mathbf{Z} G) \simeq$ $H^{1}(\mathbf{Z} ; \mathbf{Z} G) \simeq \mathbf{Z}$, essentially by a combination of the argument for $G=\mathbf{Z}$ and a computation for $G=\mathbf{Z} / n$ (using the answer from Q 1 ).

Remarks from TC: To find more interesting examples that do not essentially come from $\mathbf{Z}$, we must turn to infinite non-abelian groups. For specific groups, this can be computed by hand (if the right group is chosen).

For a general way to understand why some of these examples work, here is one way to think about it (which obviously you were not expected to do). Suppose there is a contractible space $X$ on which $G$ acts nicely by homeomorphisms, so that every point in $X$ is fixed by at most finitely many elements, and so that the quotient $X / G$ is compact. Then it turns ou ${ }^{3}$ that $H^{1}(G ; \mathbf{Z} G) \simeq H_{c}^{1}(X ; \mathbf{Z})$, where $H_{c}^{1}$ is the compactly-supported cohomology of the topological space $X$.
Here are some examples where this setup applies and $H_{c}^{1}(X) \neq 0$ :

- $G=F_{n}$, the free group on $n$ generators; $X=$ an infinite $2 n$-regular tree
- the infinite dihedral group $D_{\infty} ; X=\mathrm{R}$ (here the computation that $H_{c}^{1}(X) \neq 0$ is especially easy)
- $G=\mathrm{SL}_{2}(\mathbf{Z})$ or any finite-index subgroup of it; $X=$ the upper half plane $\mathbb{H}^{2}$ with balls around $\mathbf{Q} \cup\{\infty\}$ removed (so that $X / G$ is the modular curve, with a neighborhood of the cusp removed to make it compact)

These are all "1-dimensional virtual duality groups" (see $\S$ VIII. 10 of Brown's book), and such a group will always have $H^{1}(G ; \mathbf{Z} G) \neq 0$, although other examples are possible.

Question 3. Let $L / K$ be a finite Galois extension with Galois group $G=\operatorname{Gal}(L / K)$. The unit group $L^{\times}$is an abelian group with an action of $G$, so we may consider the group cohomology $H^{k}\left(G ; L^{\times}\right)$. A theorem of Noether states that $H^{1}\left(G ; L^{\times}\right)=0$; you may assume this without proof.
(a) Use Noether's theorem to prove that if $\operatorname{Gal}(L / K)$ is generated by a single element $s$, then every element $\ell \in L$ with norm 1 has $⿶^{4}$ the form $s(z) / z$ for some $z \in L$.
(b) Use part (a) to give a parametrization in two rational parameters of the rational points on the unit circle:

$$
S^{1}(\mathbf{Q})=\left\{(x \in \mathbf{Q}, y \in \mathbf{Q}) \mid x^{2}+y^{2}=1\right\}
$$

That is, give two rational functions $x(a, b) \in \mathbf{Q}(a, b)$ and $y(a, b) \in \mathbf{Q}(a, b)$ such that the resulting function $f: \mathbf{Q}^{2} \rightarrow \mathbf{Q}^{2}$ given by $(a, b) \mapsto(x(a, b), y(a, b))$ has image $S^{1}(\mathbf{Q})$.

[^1]Solution. (a) If $G=\operatorname{Gal}(L / K)$ is generated by a single element $s$, then $\operatorname{Gal}(L / K) \simeq \mathbf{Z} / n$, where $n$ is the order of $s$. Then we can use Question 1 to compute the group cohomology

$$
H^{1}\left(G ; L^{\times}\right)=H^{1}\left(\mathbf{Z} / n ; L^{\times}\right)=\left\{\ell \in L^{\times} \mid N(\ell)=1\right\} /\left\{s z-z \mid z \in L^{\times}\right\}
$$

Here, $N(\ell)=(\ell) *(s \cdot \ell) *\left(s^{2} \cdot \ell\right) * \cdots *\left(s^{n-1} \cdot \ell\right)$ is as defined in Question 1. We can see that $N(\ell)=N_{K}^{L}(\ell)$. (Note that in Question 1, we write the group operation on the abelian group $M$ as + and the identity as 0 , but for $L^{\times}$, the group operation is multiplication and the identity is 1 ). Thus, Noether's theorem tells us that since $H^{1}\left(G ; L^{\times}\right)=0$, any $\ell \in L^{\times}$with $N_{K}^{L}(\ell)=1$ is of the form $s(z) / z$ for some $z \in L^{\times}$.
(b) Let $K=\mathbf{Q}(i)=\left\{a+b i \mid a, b \in \mathbf{Q}, i^{2}=-1\right\}$. This is a degree two field extension of $\mathbf{Q}$, which is therefore Galois with Galois group $\mathbf{Z} / 2$. The nontrivial element of the group is $s: i \mapsto-i$ (i.e. because the minimal polynomial of $i$ is $x^{2}+1$, and the roots of this are exactly $\pm i$ ). Therefore, we have $N_{\mathbf{Q}}^{K}(x+y i)=(x+y i) s(x+y i)=x^{2}+y^{2}$. Thus, the previous part of the problem implies that if $x^{2}+y^{2}=1$ for $(x, y) \in \mathbf{Q}^{2}$, then there is some $a+i b \in K^{\times}$with

$$
\begin{equation*}
x+i y=\frac{s(a+b i)}{(a+b i)}=\frac{(a-b i)}{(a+b i)}=\frac{(a-b i)^{2}}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{-2 a b}{a^{2}+b^{2}} i \tag{1}
\end{equation*}
$$

Thus, $x=x(a, b):=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$ and $y=y(a, b):=\frac{-2 a b}{a^{2}+b^{2}}$. Thus, the map $(a, b) \mapsto(x(a, b), y(a, b))$ from $\mathbf{Q}^{2}$ to $\mathbf{Q}^{2}$ contains $S^{1}(\mathbf{Q})$ in its image. Note that this map is defined everywhere on $\mathbf{Q}^{2} \backslash\{(0,0)\}$, since $a^{2}+b^{2} \neq 0$ unless $(a, b)=(0,0)$.

We should also check that the image is contained in $S^{1}(\mathbf{Q})$. This can be checked simply by summing the squares of the right hand side; alternately, our computation in (a) [or in Q1] shows that any element of the form $w=s(z) / z$ automatically has $N(w)=N(s(z)) / N(z)=1$.

Given a chain complex $C_{\bullet}=\rightarrow \cdots C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0$ and a chain map $f: C_{\bullet} \rightarrow C_{\bullet}$ :
We call $f$ an involution if $f \circ f=\mathrm{id}$.
We call $f$ a weak involution if there is a homotopy $f \circ f \sim \mathrm{id}$.
Question 4. Give an example of a chain complex $C_{\bullet}$ and a weak involution $f: C_{\bullet} \rightarrow C_{\bullet}$ that is not an involution.

Solution. If all maps $d$ of the complex $C_{\bullet}$ are 0 , then a chain homotopy between two maps from $C_{\bullet}$ to $C_{\bullet}$ must vanish, so $f$ is an involution iff it is a weak involution. Therefore, we need a sequence with at least one non-zero map. Let's pick the easiest possible sequence:

$$
C_{\bullet}=\cdots \rightarrow 0 \rightarrow \mathbf{Z} \underset{\mathrm{id}}{ } \xrightarrow{d} \mathbf{Z} \rightarrow 0
$$

We consider the left-hand term to be in degree 1 and the right-hand term to be in degree 0 (although this doesn't affect anything).

Our first claim is that a chain map $g: C_{\bullet} \rightarrow C_{\bullet}$ must have $g_{0}$ and $g_{1}$ being the same map (i.e. multiplication by the same $n$ ). Since all homomorphisms from $\mathbf{Z}$ to $\mathbf{Z}$ are given by multiplication by some element of $\mathbf{Z}$, a chain map from $C_{\bullet}$ to $C_{\bullet}$ is a diagram of the following form:


The fact that it is a chain map implies that $n \circ d=d \circ m$, so $n=m$ (since $d=\mathrm{id}$ ).
Our second claim is that any chain map $C_{\bullet} \rightarrow C_{\bullet}$ is homotopic to any other; equivalently, that any chain map $g: C_{\bullet} \rightarrow C_{\bullet}$ is homotopic to 0 . Indeed, a homotopy from $g$ to 0 is a choice of map $h_{0}: C_{0} \rightarrow C_{1}$ such that $g_{0}=d \circ h_{0}$ and $g_{1}=h_{0} \circ d$ (since all other terms in the definition vanish). But we have already seen that $g_{0}=g_{1}$ and $d=\mathrm{id}$, so we can simply take $h_{0}=g_{0}$.


In particular, this means that every $f: C_{\bullet} \rightarrow C_{\bullet}$ is a weak involution (since $f \circ f$ will be homotopic to id no matter what it is). Therefore we can take any $f$ which is not actually an involution; this is accomplished by taking any $n \in \mathbf{Z} \backslash\{-1,1\}$.

Question 5. (Optional, replaces Q4) Give an example of a chain complex $C_{\bullet}$. and a weak involution $f: C_{\bullet} \rightarrow C_{\bullet}$ that is not homotopic to an involution.
(That is, there does not exist any involution $g: C_{\bullet} \rightarrow C_{\bullet}$ with $g \circ g=\mathrm{id}$ and $f \sim g$.)
Solution. Let us return to our example with $C_{0}=C_{1}=\mathbf{Z}$ and $d: C_{1} \rightarrow C_{0}$ is multiplication by some $d \in \mathbf{Z} \backslash\{0\}$, but this time we will take some other $d$ than 1:

$$
C_{\bullet}=\mathbf{Z} \xrightarrow{d} \mathbf{Z}
$$

The same argument as before shows that any chain map $g: C_{\bullet} \rightarrow C_{\bullet}$ has to have both $g_{0}$ and $g_{1}$ be multiplication by the same $m \in \mathbf{Z}$ (using just that $\mathbf{Z}$ is a domain and $d \neq 0$ ). Therefore we can speak simply about the chain map $m: C_{\bullet} \rightarrow C_{\bullet}$ for $m \in \mathbf{Z}$.

First, let us understand when two such maps are homotopic. A homotopy $n \sim m$ means exactly that there is some map $h_{0}: C_{0} \rightarrow C_{1}$ with $n-m=d \circ h_{0}$ and $n-m=h_{0} \circ d$. This is possible if and only if $d$ divides $n-m$ (in which case we take $h_{0}: C_{0} \rightarrow C_{1}$ to be multiplication by $\frac{n-m}{d}$ ). To sum up, two chain maps $n$ and $m$ are homotopic if and only if $n \equiv m \bmod d$.

Therefore if $f: C_{\bullet} \rightarrow C_{\bullet}$ is multiplication by $n$, we see that $f$ is a weak involution iff $n^{2} \equiv 1 \bmod d$. As for actual involutions, the only involutions are multiplication by 1 or -1 . Therefore $f$ is homotopic to an actual involution iff $n \equiv \pm 1 \bmod d$.

So to find a weak involution that is not homotopic to an involution, we must find some $n$ such that $n^{2} \equiv 1 \bmod d$ but $n \not \equiv \pm 1 \bmod d$. This is impossible if $d$ is prime, but as long as $d$ has more than 1 odd prime factor (or $d$ is divisible by 8 , or $d$ is divisible by both 4 and an odd prime) we can do it (thanks to the Chinese Remainder Theorem, plus knowledge of the structure of $\left.\left(\mathbf{Z} / p^{k}\right)^{\times}\right)$. For example, we could take $d=15$ and $n=4$; or $d=8$ and $n=3$; or $d=12$ and $n=5$.


[^0]:    ${ }^{1}$ If $\mathbf{Z} / n$ is the Galois group of a field extension $L / K$ and $M=L^{\times}$, then $N$ is the norm map $N_{L / K}$ as in Question 3. (If $M$ is the additive group $M=L$, then $N$ is the trace map $\operatorname{Tr}_{L / K}$.) This is an important construction in algebraic number theory.

[^1]:    ${ }^{2}$ for those who want a reference, it follows from the fact that $\mathbf{Z} G$ is "co-induced" from the trivial group when $G$ is finite, together with Shapiro's lemma
    ${ }^{3}$ This is proved as Prop. VIII.7.5, pp. 209, in the book Cohomology of Groups by Brown (available for free download via the Stanford library by clicking here); plus Exercise VIII.7.4 for the finite stabilizers.
    ${ }^{4}$ Recall that for a Galois extension $L / K$ the norm $N_{K}^{L}: L \rightarrow K$ is given by $N_{K}^{L}(\ell)=\prod_{g \in \operatorname{Gal}(L / K)} g \cdot \ell$.

