Math 210A: Modern Algebra Thomas Church (tfchurch@stanford.edu) http://math.stanford.edu/~church/teaching/210A-F17

Homework 7

Due Thursday night, November 9 (technically 2am Nov. 10)

Question 1. Recall that in class we used the free resolution from HW4 Q4(g) to compute for $G = \mathbb{Z}/2 = \{1, s\}$ that

$$H^{k}(\mathbb{Z}/2; M) = \begin{cases} M^{G} & k = 0\\ \frac{\{m \in M | sm + m = 0\}}{\{sn - n | n \in M\}} & k = 1, 3, 5, \dots\\ \frac{\{m \in M | sm = m\}}{\{sn + n | n \in M\}} & k = 2, 4, 6, \dots \end{cases}$$

For $G = \mathbb{Z}/n = \{1, s, \dots, s^{n-1}\}$, find a similar description of $H^k(\mathbb{Z}/n; M)$ for a $\mathbb{Z}G$ -module M. (Hint: find a free resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module; note that $\mathbb{Z}G \cong \mathbb{Z}[s]/(s^n - 1)$. The resolution will again be 2-periodic just like for $\mathbb{Z}[s]/(s^2 - 1)$.

Question 2. Let G be a group.

- (a) Prove that $H^0(G; \mathbb{Z}G) \cong \mathbb{Z}$ if G is finite, and $H^0(G; \mathbb{Z}G) = 0$ if G is infinite.
- (b) Prove that $H^1(G; \mathbb{Z}G) \neq 0$ if $G = \mathbb{Z} = \{\dots, t^{-1}, 1, t, \dots\}$.
- (c) (Hard, very optional) Can you find another group for which $H^1(G; \mathbb{Z}G) \neq 0$?

Question 3. Let L/K be a finite Galois extension with Galois group G = Gal(L/K). The unit group L^{\times} is an abelian group with an action of G, so we may consider the group cohomology $H^k(G; L^{\times})$. A theorem of Noether states that $H^1(G; L^{\times}) = 0$; you may assume this without proof.

- (a) Use Noether's theorem to prove that if $\operatorname{Gal}(L/K)$ is generated by a single element s, then every element $\ell \in L$ with norm 1 has¹ the form s(z)/z for some $z \in L$.
- (b) Use part (a) to give a parametrization in two rational parameters of the rational points on the unit circle:

$$S^{1}(\mathbb{Q}) = \{ (x \in \mathbb{Q}, y \in \mathbb{Q}) \, | \, x^{2} + y^{2} = 1 \}.$$

That is, give two rational functions $x(a,b) \in \mathbb{Q}(a,b)$ and $y(a,b) \in \mathbb{Q}(a,b)$ such that the resulting function $f: \mathbb{Q}^2 \to \mathbb{Q}^2$ given by $(a,b) \mapsto (x(a,b), y(a,b))$ has image $S^1(\mathbb{Q})$.

NOTE: f might not not actually be a function $\mathbb{Q}^2 \to \mathbb{Q}^2$ because a rational function like x(a, b) might take the value ∞ sometimes. So formally this should say

"the resulting function $f: \{ \text{subset of } \mathbb{Q}^2 \text{ where both } x \text{ and } y \text{ are not } \infty \} \to \mathbb{Q}^2 \text{ has image } S^1(\mathbb{Q}).$ "

(cont.)

¹Recall that for a Galois extension L/K the norm $N_K^L: L \to K$ is given by $N_K^L(\ell) = \prod_{g \in \text{Gal}(L/K)} g \cdot \ell$.

Given a chain complex $C_{\bullet} = \rightarrow \cdots C_2 \rightarrow C_1 \rightarrow C_0 \rightarrow 0$ and a chain map $f: C_{\bullet} \rightarrow C_{\bullet}$: We call f an *involution* if $f \circ f = \text{id}$. We call f a *weak involution* if there is a *homotopy* $f \circ f \sim \text{id}$.

Question 4. Give an example of a chain complex C_{\bullet} and a weak involution $f: C_{\bullet} \to C_{\bullet}$ that is not an involution.

Question 5. (Optional, replaces Q4) Give an example of a chain complex C_{\bullet} and a weak involution $f: C_{\bullet} \to C_{\bullet}$ that is not *homotopic* to an involution.

(That is, there does not exist any involution $g: C_{\bullet} \to C_{\bullet}$ with $g \circ g = \text{id}$ and $f \sim g$.)

Question 6. (Stupid hard, worth 0 points; only respect and admiration) OK to discuss with classmates and even turn in joint solution, but *not* to discuss with others outside class. Can be turned in any time before the last day of class.

Give an example of a chain complex C_{\bullet} and a weak involution $f: C_{\bullet} \to C_{\bullet}$ that cannot be made homotopic to an involution even if we replace C_{\bullet} by a homotopy equivalent complex.

More precisely, note that given a homotopy equivalence $\varphi \colon C_{\bullet} \to D_{\bullet}$ with homotopy inverse $\psi \colon D_{\bullet} \to C_{\bullet}$, then the map $\varphi \circ f \circ \psi \colon D_{\bullet} \to D_{\bullet}$ will be a weak involution.

Say that f is "fixable" if for some such φ and ψ this weak involution $\varphi \circ f \circ \psi$ is homotopic to an involution $g: D_{\bullet} \to D_{\bullet}$.

Give an example of a chain complex C_{\bullet} and weak involution $f: C_{\bullet} \to C_{\bullet}$ that is not "fixable".