
MATH 210A, FALL 2017
HW 8 SOLUTIONS

WRITTEN BY DAN DORE

(If you find any errors, please email ddore@stanford.edu)

Question 1. Let V = R2n with basis v1, . . . , v2n.
Find an explicit vector ω ∈

∧2V such that ω ∧ ω ∧ · · · ∧ ω ∈
∧2nV is nonzero.

Solution. Relabel the basis v1, . . . , v2n as e1, . . . , en, f1, . . . , fn (i.e. ei = vi and fi = vn+i for 1 ≤ i ≤ n).
Define

ω = e1 ∧ f1 + · · ·+ en ∧ fn

We will show by induction on m that

∧m (ω) = m!
∑
I⊂[n]
|I|=m

∧
i∈I(ei ∧ fi) := m!

∑
1≤i1<i2<···<im≤n

(ei1 ∧ fi1) ∧ (ei2 ∧ fi2) ∧ · · · ∧ (eim ∧ fim) (1)

Clearly this formula holds for m = 1, by definition of ω. Now we may assume that it holds for some m. We
compute:

∧m+1(ω) = ω ∧
(
∧m(ω)

)
= m!

∑
I⊂[n]
|I|=m

ω ∧
(∧

i∈I(ei ∧ fi)
)

= m!
∑
I⊂[n]
|I|=m

n∑
j=1

(
ej ∧ fj

)
∧
(∧

i∈I(ei ∧ fi)
)

Now, note that (ej ∧ fj) ∧
(∧

i∈I(ei ∧ fi)
)

= 0 whenever j ∈ I , since the wedge product is alternating. In
addition, we have (ej∧fj)∧(ei∧fi) = (ei∧fi)∧(ej∧fj), since the permutation swapping these two wedge
products is even. Thus, for j 6∈ I , we may rewrite the term (ej ∧ fj) ∧

(∧
i∈I(ei ∧ fi)

)
as
∧
i∈I∪{j}(ei ∧ fi)

(recalling that the latter notation means by definition that the i are taken in increasing order). Thus, we have:

∧m+1(ω) = m!
∑
I⊂[n]
|I|=m

∑
j 6∈I

(∧
i∈I∪{j}(ei ∧ fi)

)
= (m+ 1)!

∑
J⊂[n]
|J |=m+1

∧
j∈J(ej ∧ fj)

The last equality is true because there are exactly m + 1 ways to each J ⊆ [n] with |J | = m + 1 as
J = I ∪ {j} for j 6∈ I and |I| = m. Thus, we have proved our desired formula (1). Taking m = n in (1)
shows that ∧n(ω) = n!

∧
i∈[n](ei ∧ fi) = n! (−1)n (v1 ∧ v2 ∧ · · · ∧ v2n). This is a nonzero multiple of the

standard basis element for one-dimensional R-vector space
∧2nV with respect to the basis v1, . . . , v2n, so it

is nonzero.
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Question 2. Let R = Z and let M be the R-module M = Q/Z. Compute T ∗(M).

Solution. First, we will show that M ⊗RM = 0. Indeed, consider any elementary tensor mn ⊗
p
q . Then since

p
q = pn

qn , we have m
n ⊗

p
q = m

n ⊗
pn
qn = nm

n ⊗
p
qn = 0, since nm

n = m ∈ Z, so it is 0 in Q/Z. More generally,
this argument shows that the tensor product over Z of any torsion abelian group1 with any “divisible” abelian
group2 is 0. In this case Q/Z is both torsion and divisible, so the tensor vanishes. Thus,

T ∗(M) = ⊕n≥0M⊗n = R⊕M = Z⊕ (Q/Z).

This ring consists of all pairs (a, bc) with b
c ∈ Q/Z, and the multiplication is given by (a, bc) · (a

′, b
′

c′ ) =

(aa′, a
′b
c + ab′

c ).
The above is a sufficient answer to the question. But if we liked we could rewrite it in various ways. For

example, writing εn = 1
n ∈ Q/Z, we could write this ring alternatively as:

T ∗(M) = Z[εn | n ∈ Z>0]/(nεn = 0, aεan = εn, εn + εm = (n+m)εnm, εn · εm = 0)

More parsimoniously, using the fact that Q/Z =
⊕

p Z[1p ]/Z, we could write this as:

T ∗(M) = Z[εpk | p prime, k > 0]/(pkεpk = 0, pεpk = εpk−1 , εpk · εq` = 0)

Question 3. Let R = Z[
√
−30], and let I be the ideal I = {2a+ b

√
−30 | a, b ∈ Z} = (2,

√
−30) ⊂ R.

Compute
∧2I as an abelian group.

(but keep in mind the
∧2 is as an R-module, i.e. it’s a quotient of I ⊗R I).

Solution. First, we will describe I ⊗R I . Since I is generated as an R-module by 2 and
√
−30, I ⊗R I is

generated by {2⊗
√
−30,

√
−30⊗ 2, 2⊗ 2,

√
−30⊗

√
−30} =: {e1, e2, e3, e4}. If π : I ⊗R I →

∧2I is
the canonical quotient map, we have π(e3) = π(e4) = 0 and π(e2) = −π(e1). Thus,

∧2I is generated by
v1 := π(e1) = 2 ∧

√
−30.

We now check directly that v1 = 0. First, we check that 2 · v1 = 0. Indeed,

2v1 = 2 ∧ 2
√
−30 = (

√
−30) · (2 ∧ 2) = (

√
−30) · 0 = 0.

Second, we check that 15 · v1 = 0. Indeed,

15v1 = 30 ∧
√
−30 = (

√
−30) · (

√
−30 ∧

√
−30) = (

√
−30) · 0 = 0.

Therefore 15v1 − 2v1 − · · · − 2v1 = v1 is also equal to 0. This proves that
∧2I = 0.

For a less direct approach, we could consider the exact sequence

0→ I → R→ R/I ' F2 → 0

We get an associated long exact Tor sequence:

· · ·TorR1 (R, I)→ TorR1 (R/I, I)→ I ⊗R I → I → I/I2 → 0

But I is projective, so TorR1 (R/I, I) = 0 and thus I ⊗R I ' ker(I → I/I2) = I2. This is the ideal of R
given by (4, 2

√
−30,−30) = (2) (note that 2 is the greatest common divisor of 4 and −30, so 2 is contained

1i.e. every element has finite order
2i.e. an abelian group A where for any integer n and any a ∈ A there exists some b ∈ A with a = nb

2



in this ideal, and conversely every element of this ideal is a multiple of 2). The map I ⊗R I → I2 is given by
i1 ⊗ i2 7→ i1i2. The isomorphism I ⊗R I

∼−→ I2 maps e1, e2 to 2
√
−30, e3 to 4, and e4 to −30. Thus, this

isomorphism sends 8e3 + e4 to the generator 2. Therefore, 8e3 + e4 generates I ⊗R I as an R-module. But
we’ve seen that π(e3) = π(e4) = 0, so π(8e3 + e4) = 0 and therefore

∧2I = 0.
There is an even less direct way to show that

∧2I = 0 which might shed some light on what is “really”
going on [TC: but this is not what I was looking for here]. Recall that I is a finitely presented projective R-
module, and in fact it is locally free of rank one. (This follows essentially from the fact that Rm is a principal
ideal domain for each maximal ideal m of R, so Im ⊆ Rm is a principal ideal and thus a free Rm-module). It
is not hard to see that the formation of

∧2I commutes with localization, i.e. that (
∧2I)m =

∧2Im (indeed,
since localizing at m is the same thing as tensoring with Rm, this is obvious for I⊗2, and then it is easy to
check that this isomorphism preserves the submodule of elements of the form i⊗ i). But Im ' Rm, and we
know that exterior powers of rank-one free modules are zero. Thus, (

∧2I)m = 0 for all maximal ideals m,
and thus

∧2I = 0. This argument is perfectly general and shows that the exterior powers
∧kM with k > r

all vanish when M is locally free of rank r over any ring.

Question 4. Prove that for any R-modules M and N , and any k ≥ 0, there is an isomorphism∧k(M ⊕N) ∼=
⊕
a+b=k

(
∧aM)⊗ (

∧bN).

(If M and N are free, this is pretty easy, because the natural basis for
∧k

(M ⊕N) splits up appropriately; the resulting
partition corresponds to the combinatorial identity

(
m+n
k

)
=
∑

a+b=k

(
m
a

)(
n
b

)
. This doesn’t help directly for general

M and N , but perhaps it at least helps you get straight what’s going on.)
NOTE on Q4: If you like, you can prove this just for k = 3, i.e. that∧3(M ⊕N) ∼=

∧3M

⊕ (
∧2M)⊗N

⊕ M ⊗ (
∧2N)

⊕
∧3N

This is no harder or easier than the general case, but might be simpler notationally.

Solution. We will define maps in both directions and then verify that they are inverse to each other. First, we
define a map from right to left, i.e. a map

Ψ:
⊕
a+b=k

(∧aM
)
⊗
(∧bN

)
→
∧k(M ⊕N)

To do this, via the universal property of the direct sum, this is equivalent to defining maps Ψa,b for each

summand. Thus, we need to define Ψa,b :
(∧aM

)
⊗
(∧bN

)
to
∧k(M ⊕ N). By the universal prop-

erty of the tensor product and the exterior power, this is the same thing as defining a multilinear map
ψ(m1, . . . ,ma, n1, . . . , nb) with mi ∈M,ni ∈ N taking values in

∧k(M ⊕N) such that if any two mi or
any two ni are equal, then ψ(m1, . . . ,ma, n1, . . . , nb) = 0. We define:

ψ(m1, . . . ,ma, n1, . . . , nb) = m1 ∧ · · · ∧ma ∧ n1 · · · ∧ nb

Since the wedge product is alternating and multilinear, we see that this definition satisfies the required
properties, so we get a well-defined map Ψ.
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Going the other direction, to define Φ:
∧k(M ⊕ N) →

⊕
a+b=k

(∧aM
)
⊗
(∧bN

)
, the universal

property of the direct product (which is naturally isomorphic to the direct sum since there are finitely
many summands) implies that it is equivalent to define Φa,b :

∧k(M ⊕ N) →
(∧aM

)
⊗
(∧bN

)
. Then,

the universal property of the exterior power says that this is equivalent to defining a multilinear map
ϕ((m1, n1), . . . , (mk, nk)) to

(∧aM
)
⊗
(∧bN

)
. Using the notation defined in (1), we define:

ϕ((m1, n1), . . . , (mk, nk)) =
∑

ItJ=[k]
|I|=a

εI,J
(∧

i∈Imi

)
⊗
(∧

j∈Jnj

)
(2)

Here, the εI,J are ±1. We will leave these as indeterminates for now, and derive what they have to be in order
to make Φ,Ψ well-defined and mutually inverse.

To see that this is alternating, assume that (mi, ni) = (mj , nj) for some i < j. If I t J = [k] and i, j are
either both in I or both in J , then the corresponding term in the sum vanishes due to the fact that the wedge
product is alternating and mi = mj , ni = nj . For all of the remaining terms, either i ∈ I or j ∈ J , so we
may write:

ϕ((m,n)) =
∑

ItJ=[k]
|I|=a
i∈I,j∈J

εI,J
(∧

i∈Imi

)
⊗
(∧

j∈Jnj

)
+

∑
ItJ=[k]
|I|=a
i∈J,j∈I

εI,J

(∧
i∈Imi

)
⊗
(∧

j∈Jnj

)

=
∑

ItJ=[k]
|I|=a
i∈I,j∈J

(
εI,J

(∧
i∈Imi

)
⊗
(∧

j∈Jnj

)
+ εI′,J ′

(∧
i∈I′mi

)
⊗
(∧

j∈J ′nj

))

Here, for any I, J with i ∈ I , j ∈ J , we define I ′, J ′ by swapping i and j, i.e. I ′ = (I − {i}) ∪ {j} and
J ′ = (J − {j}) ∪ {i}. Since mi = mj ,

∧
i∈I′mi = (−1)NI,i,j

∧
i∈Imi, with NI,i,j equal to the number

of elements of I which are strictly between i and j. Similarly,
∧
j∈J ′nj = (−1)NJ,i,j

∧
j∈Jnj . Note that

NI,i,j +NJ,i,j is just the number of elements of [n] strictly between i and j, which is (j − i)− 1.
Thus, we come to our first requirement on εI,J :

εI′,J ′ = (−1)(j−i)εI,J (3)

If the εI,J satisfy Equation (3), then Φ is well-defined. Now, let’s see that Φ and Ψ are mutually inverse.

To see that Φ ◦Ψ:
⊕

a+b=k

(∧aM
)
⊗
(∧bN

)
→
⊕

a+b=k

(∧aM
)
⊗
(∧bN

)
is equal to the identity, we

may check it on each component, i.e. we may check that Φa,b ◦Ψa,b is the identity. Unwinding the definitions,
we see that this is the statement that:

ϕ((m1, 0), . . . , (ma, 0), (0, n1), . . . , (0, nb)) = (m1 ∧ · · ·ma)⊗ (n1 ∧ · · · ∧ nb)

But we can compute the left-hand side via (2) as:

ϕ((m1, 0), . . . , (ma, 0), (0, n1), . . . , (0, nb)) = ε[1,...,a],[a+1,...,k](m1 ∧ · · · ∧ma)⊗ (n1 ∧ · · · ∧ nb)

Thus, we get our second requirement on εI,J :

ε[1,...,a],[a+1,...,k] = 1 (4)
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We’ve shown that as long as (4) is satisfied, Φ ◦ Ψ = id. Now, we need to check that Ψ ◦ Φ = id. By
unwinding the definitions, this says that:

(m1 + n1) ∧ · · · ∧ (mk + nk) =
∑
a+b=k

∑
ItJ=[k]
|I|=a

εI,J
(∧

i∈Imi

)
∧
(∧

j∈Jnj

)

The linearity of the wedge product shows that:

(m1 + n1) ∧ · · · ∧ (mk + nk) =
∑
a+b=k

∑
ItJ=[k]
|I|=a

∧
i∈[n]αi

Here, αi = mi if i ∈ I and αi = ni if i ∈ J . By the skew-symmetry of the wedge product, we see that:∧
i∈[n]αi = sgn(σI,J)

(∧
i∈Imi

)
∧
(∧

j∈Jnj

)
Here, σI,J is the permutation of [k] which maps 1, . . . , a to i1, . . . , ia (meaning that it maps 1 to i1, 2 to i2,
etc.) and a + 1, . . . , k to j1, . . . , jb, where i1 < i2 < · · · < ia and j1 < j2 < · · · < jb are the elements of
I, J respectively. Thus, we get our third requirement on εI,J , which serves as a definition for εI,J .

εI,J = sgn(σI,J) (5)

Now, we are reduced to checking that if we define the εI,J via (5), they satisfy (3) and (4). It is easy to check
(4), since σ[1,...,a],[a+1,...,k] is the identity permutation. Now, (3) says that:

sgn(σI′,J ′) = (−1)(j−i) sgn(σI,J)

To do this, we will write σI′,J ′ = σi,jσI,J and show that sgn(σi,j) = (−1)(j−i). We have σi,j = σI′,J ′σ
−1
I,J .

Since σ−1I,J takes i1, . . . , ia to 1, . . . , a and σI′,J ′ takes 1, . . . , a to i′1, . . . , i
′
a, we see that σi,j takes i1, . . . , ia

to i′1, . . . , i
′
a and likewise for J .

If p < i or p > j, then this permutation fixes p: this is because the segments of I (resp. J) and I ′ (resp.
J ′) below i and above j are the same. Label the elements of I such that:

i1 < · · · < i = iα < iα+1 < · · · < iβ < j < iβ+1 < · · · < ia

and similarly for J :

j1 < · · · < jγ−1 < i < jγ < · · · < jδ = j < jδ+1 < · · · < jb

Now, i′p = ip for p < α or p > β, i′p = ip+1 for α ≤ p < β, i′β = j. Similarly, j′p = jp for p < γ or p > δ,
j′γ = i, j′p = jp−1 for γ < p ≤ δ. Thus, σi,j is:

(i iα+1 iα+2 · · · iβ−1 iβ j jδ−1 jδ−2 · · · jγ+1 jγ)

This is a cyclic permutation moving all elements p ∈ [k] with i ≤ p ≤ j. There are (j − i) + 1 of these. Now,
a cyclic permutation moving ` elements is a product of `− 1 transpositions and thus it has sign (−1)`−1, so
we have sgn(σi,j) = (−1)j−i, as desired. This concludes the proof.
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Question 5. Given an abelian group M and a subgroup A ⊂M , define the saturation of A to be

sat(A) = {m ∈M | ∃n 6= 0 ∈ Z s.t. n ·m ∈ A}.

This sat(A) is a subgroup of M (you may assume this without proof).
Prove that if M is finitely generated, then for any subgroup A ⊂ M the saturation sat(A) is a direct

summand of M ; that is, there exists a subgroup N ⊂M such that M = sat(A)⊕N .

Solution. First, note that if A is a submodule of an abelian group M , then sat(A) is saturated, meaning
that if m ∈M is such that nm ∈ sat(A) for some n 6= 0 ∈ Z, then m ∈ sat(A). Indeed, by the definition
of sat(A), if nm ∈ sat(A), then for some n′ 6= 0 ∈ Z, (n′n)m = n′(nm) ∈ A. But since Z is a domain,
n′n 6= 0, so this means that m ∈ sat(A).

Now, since abelian groups are the same thing as Z-modules, we may apply the structure theorem for
finitely generated modules over a PID. In the case that the PID is equal to Z, this says that any finitely
generated abelian group L satisfies:

L ' Zr ⊕ T

Here, T is a finite torsion abelian group. We will apply this to the finitely generated Z-module M/sat(A):
M/sat(A) ' Zr ⊕ T . Now, let m ∈ M be such that [m] ∈ T . Since T is torsion, for some n 6= 0 ∈ Z,
n[m] = [nm] = 0 in M/A. This means that nm ∈ sat(A). But because sat(A) is saturated, this implies
m ∈ sat(A), i.e. [m] = 0. Thus, we’ve seen that T = 0, so M/sat(A) ' Zr. Thus, we have an exact
sequence of abelian groups:

0→ sat(A)→M → Zr → 0

However, since Zr is a free Z-module, it is projective, so the above exact sequence splits. Let σ : Zr →M

be a splitting. Define N = σ(Zr) ' Zr (since σ is injective). Then the map sat(A)⊕N →M induced by
the inclusions is an isomorphism (this follows from the definition of a splitting since the composite of the
inclusion of N into M and the isomorphism Zr

∼−→ N induced by σ is exactly σ).

Question 6. Given k linearly independent vectors v1, . . . , vk in Zn, there are two definitions of the discrimi-
nant:

Definition 1: Consider the element ω = v1 ∧ · · · ∧ vk ∈
∧kZn.

Let disc1(v1, . . . , vk) be the largest d ∈ N such that ω is divisible by d.
(i.e. such that there exists some other µ ∈

∧k
Zn such that ω = d · µ)

Definition 2: Let K = 〈v1, . . . , vk〉 be the subgroup of Zn generated by these elements. Let L be the
quotient L = Zn/K. Let disc2(v1, . . . , vk) be the cardinality of the torsion subgroup Torsion(L).

Prove that disc1(v1, . . . , vk) = disc2(v1, . . . , vk).

Solution. Let K0 = sat(K). Then by Question 5, we have Zn ' K0 ⊕N for a subgroup N of Zn. Since
K0, N are subgroups of the finitely generated free Z-module Zn, they are both free. Thus, K0 ' Zm1 and
N ' Zm2 for some m1,m2. Since K0 ⊕ N ' Zn, we have m1 + m2 = n. The fact that v1, . . . , vk are
linearly independent says exactly that the morphism Zk → K given by mapping the basis vectors to the
vi is injective. Since it is clearly surjective, we see that K ' Zk. Now, since K ⊆ K0, we have k ≤ m1.
Conversely, let w1, . . . , wm1 be a basis for K0. For each wi, there is some `i 6= 0 ∈ Z such that `iwi ∈ K.
Taking ` to be the least common multiple of the `i, we see that ` ·K0 ⊆ K. But ` ·K0 ' K0 ' Zm1 since
multiplication by ` is injective and thus an isomorphism onto its image. Thus, m1 ≤ k so m1 = k and
m2 = n− k.
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Since K ⊆ K0, the isomorphism K0 ⊕N
∼−→ Zn gives an isomorphism K0/K ⊕N

∼−→ L. Now, since
K0 = sat(K), for any m ∈ K0 we have some n 6= 0 ∈ Z such that nm ∈ K, so n[m] = 0 in K0/K. Thus,
K0/K is torsion. Since N is free, we see that the torsion subgroup of L is isomorphic to K0/K. Thus,
disc2(v1, . . . , vk) defined as above is the same as disc2(v1, . . . , vk) when we regard the vi as elements of
K0 ' Zk.

Using Question 4 and the isomorphism K0 ⊕N ' Zn, we will show the analogous statement is true for
disc1(v1, . . . , vk), and this will allow us to assume that n = k. Indeed, Question 4 shows us that:∧k(Zn) '

⊕
a+b=k

(
∧aK0)⊗ (

∧bN)

Now, since vi ∈ K0 for each i, ω = v1 ∧ · · · ∧ vk maps into the summand
∧kK0 (i.e. the summand with

a = k and b = 0). This is because the N -component of vi is 0 for each i, so by looking at the definition
(2) of the above isomorphism Φ, we see that Φa,b = 0 unless (a, b) = (k, 0). Thus, if ω = d · µ with
µ ∈

∧kZn, d ∈ Z, then µ ∈
∧kK0. (This is because

∧k(Zn) is a torsion-free Z-module, so if d · µ is in a
direct summand of this module, then the components of µ in the other direct summands must vanish since
their d-multiples do). Thus, we see that disc1(v1, . . . , vk) is the same when we regard the vi as elements of
K0 ' Zk. Thus, we may assume n = k.

Now, if e1, . . . , ek is a basis for Zk, the Z-module
∧k(Zk) is free with generator e1 ∧ · · · ∧ ek. Thus,

we may write ω = Ce1 ∧ · · · ∧ ek, for some C ∈ Z. If ω = d · µ for some µ ∈
∧k(Zk), we may also

write µ = C ′e1 ∧ · · · ∧ ek, so C = dC ′. Thus, we see that disc1(v1, . . . , vk) = |C|; since the definition of
the discriminant does not depend on a choice of basis, neither does |C|. Furthermore, if we write the vj as
vj =

∑
i aijei, the matrix Me,v = (aij) sends ej to vj . Then, we have C = detMe,v, as we can see by

expanding ω as:

ω = v1 ∧ · · · ∧ vk =

∑
i

ai1ei

 ∧ · · · ∧
∑

i

aikei

 =

∑
σ

sgn(σ)
∏
j

aσ(j)j

 e1 ∧ · · · ∧ ek

This holds since eσ(1) ∧ · · · ∧ eσ(k) = sgn(σ)e1 ∧ · · · ∧ ek, and any terms with one of the ei repeated are 0.
This is one of the definitions of the determinant of the matrix Me,v = (aij). Note that if we pick another
basis f1, . . . , fk of Zk, we have Mf ,v = Me,fMe,vMf ,e = M−1f ,eMe,vMf ,e, so detMe,v = detMf ,v. Thus,
we see that even C does not depend on the choice of basis for Zk.

Now, we will show that |C| = disc(v1, . . . , vk) is unchanged by replacing v1, . . . , vk by any set of
generators of K, the submodule of Zk generated by the vi. Indeed, K ' Zk (this follows from linear
independence of the vi, as we’ve seen above). Thus, a set of generators w1, . . . , wk of Zk is actually a basis
(this follows from the fact that a surjective endomorphism of free modules is actually an isomorphism). This
means that the matrix Mv,w = (bij) taking vj to wj =

∑
i bijvi is invertible, so its determinant is ±1. Since

Me,w = Mv,wMe,v, we see that disc1(w1, . . . , wk) =
∣∣detMe,w

∣∣ =
∣∣±detMe,v

∣∣ = disc1(v1, . . . , vk).
Note that disc2(v1, . . . , vk) by construction only depends on the submoduleK generated by v1, . . . , vk. Thus,
we may freely replace v1, . . . , vk by any other basis for K.

Now, we need to pick some basis e1, . . . , ek of Zk and v1, . . . , vk of K where we can compute detMe,v,
and then show that it is equal to disc2(v1, . . . , vk). We claim that we may choose these bases such that
for each i, vi = di · ei for some di ∈ Z. This follows from the proof of the structure theorem for finitely
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generated modules over a PID. Now, we may write down Me,v as:

Me,v =


d1

d2
. . .

dn


Thus, detMe,v =

∏
i di, so disc1(v1, . . . , vk) =

∏
i |di|. On the other hand, we may compute Zk/K as:

Zk/K ' Ze1 ⊕ · · · ⊕ Zek/(Z(d1e1)⊕ · · · ⊕ Z(dkek)) ' (Z/d1Z)⊕ · · · ⊕ (Z/dkZ)

This group is torsion and clearly has order disc2(v1, . . . , vk) =
∏
i |di|, so we are done.

Question 7. Let V be an n-dimensional vector space over Q, and fix k ≥ 1.
Recall from class that for any endomorphism T : V → V , we obtain an endomorphism

T∗ : V ⊗k → V ⊗k defined on generators by

T∗(v1 ⊗ · · · ⊗ vk) = T (v1)⊗ · · · ⊗ T (vk).

In this question, we want to find the endomorphisms of V ⊗k that commute with T∗ for all T .
Recall from class that the permutation group Sk acts on V ⊗k (on the right) by

(v1 ⊗ · · · ⊗ vk) · σ = vσ(1) ⊗ · · · ⊗ vσ(k)

Let fσ ∈ EndQ(V ⊗k) be this endomorphism. We can easily check that this commutes with T∗, since

(T∗(v1 ⊗ · · · ⊗ vk)
)
· σ =

(
T (v1)⊗ · · · ⊗ T (vk)

)
· σ

= T (vσ(1))⊗ · · · ⊗ T (vσ(k))

= T∗(vσ(1) ⊗ · · · ⊗ vσ(k)
= T∗

(
(v1 ⊗ · · · ⊗ vk) · σ

)
In other words, fσ ◦ T∗ = T∗ ◦ fσ.

The same is automatically true for linear combinations: for any x =
∑
aσσ ∈ Q[Sk], the endomorphism

fx :=
∑
aσfσ has the same property that fx ◦ T∗ = T∗ ◦ fx for all T ∈ EndQ(V ).

Your task: prove that these are the only endomorphisms that commute with all T∗.
That is, prove that if g ∈ EndQ(V ⊗k) satisfies g ◦ T∗ = T∗ ◦ g for all T ∈ EndQ(V ),
then there exists some x ∈ Q[Sk] such that g = fx.

Solution. First, we will assume that n ≥ k. Let e1, . . . , en be a basis for V . Recall that V ⊗k has a basis
consisting of all vectors of the form ei1 ⊗ · · · ⊗ eik for arbitrary i1, . . . , ik. We want to show that there are
constants aσ ∈ Q such that g =

∑
σ aσfσ. This means exactly that for any i1, . . . , ik, we have:

g
(
ei1 ⊗ · · · ⊗ eik

)
=
∑
σ

aσ

(
eiσ(1) ⊗ · · · ⊗ eiσ(k)

)
(6)

Since n ≥ k, the element e1 ⊗ · · · ⊗ ek is in V ⊗k. Thus, if Equation (6) holds, we must have:

g (e1 ⊗ · · · ⊗ ek) =
∑
σ

aσ

(
eσ(1) ⊗ · · · ⊗ eσ(k)

)
(7)
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and that the terms on the right-hand side are linearly independent, so Equation (7) uniquely determines the
aσ. Now, we will show that Equation (7) holds and use this to define the aσ, then show that this implies that
Equation (6) holds.

Let T be the matrix T =

 p1
p2

. . .
pn

 where the pi ∈ Z ⊆ Q are distinct prime numbers. Then

T∗(e1 ⊗ · · · ⊗ ek) =
(∏k

i=1 pi

)
(e1 ⊗ · · · ⊗ ek). Since g commutes with T∗, g must preserve the

∏k
i=1 pi-

eigenspace of T∗. Now, we have T∗(ei1 ⊗ · · · ⊗ eik) =
∏k
j=1 pij . By uniqueness of prime factorization, this

number is equal to
∏k
i=1 pi iff {i1, . . . , ik} = {1, . . . , k} as subsets of [n] = {1, . . . , n}. For I ⊆ [n] with

|I| = k, define pI =
∏
i∈I pi. We may partition the basis {ei1 ⊗ · · · ⊗ eik} in terms of the sets {i1, . . . , ik}:

the basis can be written as

{ei1 ⊗ · · · ⊗ eik} =
⊔
I⊆[n]
|I|=k

{eiσ(1) ⊗ · · · ⊗ eiσ(k)}I={i1,...,ik}
σ∈Sk

Thus, we may write g(e1 ⊗ · · · ⊗ ek) uniquely as:

g(e1 ⊗ · · · ⊗ ek) =
∑
I⊆[n]
|I|=k

∑
σ

aIσeiσ(1) ⊗ · · · ⊗ eiσ(k) (8)

Then we have:

p[k]g(e1 ⊗ · · · ⊗ ek) = g(T∗(e1 ⊗ · · · ⊗ ek))
= T∗(g(e1 ⊗ · · · ⊗ ek))

= T∗

∑
I⊆[n]
|I|=k

∑
σ

aIσeiσ(1) ⊗ · · · ⊗ eiσ(k)


=
∑
I⊆[n]
|I|=k

pI
∑
σ

aIσeiσ(1) ⊗ · · · ⊗ eiσ(k)

Since the {ei1 ⊗ · · · ⊗ eik} are linearly independent, we may compare coefficients to see that aIσ = 0 for
I 6= [k]. Thus, the formula (8) gives us (7).

Now, let x =
∑

σ aσσ ∈ Q[Sk] with the aσ defined by (7), so fx =
∑

σ aσfσ. Since this is in the image
of the map from Q[Sk] to End(V ⊗k), we see that fx commutes with the action of End(V ). Now, we want
to show that g = fx. Let h = g − fx. This commutes with the action of End(V ), since g and fx both do,
and by (7), we know that h(e1 ⊗ · · · ⊗ ek) = 0. Now, we want to show that h = 0.

It suffices to show that h(ei1 ⊗ · · · ⊗ eik) = 0 for any i1, . . . , ik, so fix some such i1, . . . , ik. Define an
operator T ∈ End(V ) which sends ej to eij for j = 1, . . . , k and sends ej to 0 for j > k. This is possible
since e1, . . . , ek are linearly independent (so we’re really using that n ≥ k). Then we have:

h(ei1 ⊗ · · · ⊗ eik) = h ◦ T∗(e1 ⊗ · · · ⊗ ek) = T∗ ◦ h(e1 ⊗ · · · ⊗ ek) = T∗(0) = 0

Thus, h = 0, so we have shown the case n ≥ k.
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Now, for the case n < k, we need to use a few ideas from representation theory. We will give the proof
with Q replaced by C (or any algebraically closed field of characteristic 0). It turns out that a similar proof
works over Q, but this requires knowing some non-trivial information about the representation theory of
symmetric groups.

Our strategy will be to try to embed V in a vector space W of dimension at least k and extend g to a map
g̃ : W⊗k →W⊗k which commutes with the action of End(W ) and such that g̃|V ⊗k = g. Then by the case
n ≥ k, we have g̃ =

∑
σ aσfσ, and we can see directly that this continues to hold when we restrict to V ⊗k.

The action of Sk on V ⊗k makes V ⊗k into an Sk-module. Since Q has characteristic 0, any Sk-module
W is a direct sum of irreducible representations of Sk. This is called Maschke’s Theorem.

Theorem 1 (Maschke’s Theorem). If W is a finite-dimensional vector space over a field of characteristic 0

and G is a finite group acting on W , then W = ⊕iWi with Wi irreducible representations of G.

Proof. We need to show that if W1 is an G-invariant subspace of W , then W = W1 ⊕W2 for some G-
invariant subspace W2. Then we may induct on the dimension of W . In order to construct W2, we will
construct a projection operator p : W →W with im p = W1 and p|W1 = idW1 . ThenW = W1⊕ker p. If we
arrange that p(g ·w) = g ·p(w) for all g ∈ G,w ∈W , then ker p isG-invariant and gives the desired splitting.
Now, we may chose some projection operator p0 with image W1. Let p(w) = 1

|G|
∑

h∈G h · p0(h−1 · w).
Then

p(gw) =
1

|G|
∑
h∈G

h · p0(h−1g · w) =
1

|G|
∑
h∈G

g(g−1h) · p0((g−1h)−1 · w) = gp(w)

Moreover, if w ∈W1, h−1 · w ∈W1, so p0(h−1 · w) = h−1 · w. Thus, p(w) = 1
|G|
∑

h∈G(hh−1) · w = w.
Finally, the image of p is contained in W1 because W1 is G-stable and the image of p0 is contained in
W1.

Thus, we may write V ⊗k '
⊕

λ

⊕nλ
i=1 Uλ,i. Here, λ ranges through a set indexing all isomorphism

classes of irreducible representations Uλ of Sk,3 and nλ is the number of times Uλ appears as a direct
summand of V ⊗k. Uλ,i just denotes the i-th copy of Uλ. In the case k = 2, this is just saying that we can
choose a basis for V ⊗2 where every tensor appearing in the basis is either symmetric or anti-symmetric: a
symmetric or anti-symmetric tensor is an eigenvector for the action of the non-trivial element of S2, so it
spans a one-dimensional irreducible representation of S2.

We want to show that if g commutes with the action of End(V ), then in fact g preserves the Uλ,i. In fact,
we will prove the following stronger result: 4

3For any finite group, there are only finitely many non-isomorphic irreducible representations over any given field of characteristic
0, and all of these are finite-dimensional. Neither fact is necessary here, however, since we know V ⊗k is a finite-dimensional space
and we only need to consider the isomorphism classes appearing as direct summands of this representation. In addition, we know
that for the group Sk, the irreducible representations of Sk are indexed by partitions λ of [n]. The representation associated to a
partition λ is determined by studying the “Young tableaux of shape λ”. This is an interesting (and accessible) fact at the intersection
of combinatorics and representation theory.

4 In fact, this result implies the full statement of the problem due to the double centralizer theorem. LetW be a representation of a
group G over a field k which is a direct sum of irreducible representations (a “semi-simple” representation). Define CG ⊆ End(W )

to be the centralizer of G, i.e. the set of endomorphisms which commute with the action of G. Then this theorem says that if
h ∈ End(W ) commutes with every element of CG, actually h is the image of an element of k[G]. We can take W = V ⊗k and
G = Sk. Then Lemma 2 says that CG is the image of End(V ) in End(W ), so the double centralizer theorem says that any element
of End(W ) which commutes with the action of End(V ) is actually of the form fx for x ∈ Q[Sk].
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Lemma 2. If h : V ⊗k → V ⊗k commutes with fσ for every σ ∈ Sk, then h is a k-linear combination of T∗
for various T ∈ End(V ).

Proof. First of all, we may write any such h as a sum of elements of the form h1 ⊗ · · · ⊗ hk, which we may
furthermore assume are linearly independent from each other:

h =
∑
i

hi1 ⊗ · · · ⊗ hik (9)

Indeed, we have a natural map
(
End(V )

)⊗k → End(V ⊗k) induced by the multilinear map sending
(h1, . . . , hk) to h1 ⊗ · · · ⊗ hk. The space on the left has a basis consisting of all tensors of the form
(ei1j1)⊗ · · · ⊗ (eikjk) for elementary matrices ei`j` . The image of an element of this basis is the endomor-
phism of V ⊗k which sends ei1 ⊗ · · · eik to ej1 ⊗ · · · ⊗ ejk and is zero on any other element of the basis
{ep1 ⊗ · · · ⊗ epk} of V ⊗k. Thus, the image of these basis elements are linearly independent in End(V ⊗k).

Now, since h commutes with fσ for all σ, we have fσ ◦ h ◦ fσ−1 = h. Note that for any v1 ⊗ · · · vk, we
have:

fσ ◦ hi1 ⊗ · · · ⊗ hik ◦ fσ−1 (v1 ⊗ · · · ⊗ vk) = fσ ◦ (hi1 ⊗ · · · ⊗ hik)(vσ−1(1) ⊗ · · · ⊗ vσ−1(k)) (10)

= fσ

(
hi1(vσ−1(1)))⊗ · · · ⊗ (hik(vσ−1(k))

)
(11)

= hiσ(1)(v1)⊗ · · · ⊗ h
i
σ(k)(vk) (12)

= (hiσ(1) ⊗ · · · ⊗ h
i
σ(k))(v1 ⊗ · · · ⊗ vk) (13)

We expand this identity using (9) and (10):∑
i

hi1 ⊗ · · · ⊗ hik =
∑
i

hiσ(1) ⊗ · · · ⊗ h
i
σ(k)

By linear independence we may conclude that for each i, we have:

hi1 ⊗ · · · ⊗ hik = hiσ(1) ⊗ · · · ⊗ h
i
σ(k)

This implies that:

hi1 ⊗ · · · ⊗ hik =
1

k!

∑
σ∈Sk

hiσ(1) ⊗ · · · ⊗ h
i
σ(k) (14)

Now, for J ⊆ [k], let T iJ be the endomorphism
∑

j∈J h
i
j . We will use the following fact:

Lemma 3. ∑
σ∈Sk

hiσ(1) ⊗ · · · ⊗ h
i
σ(k) =

∑
J⊆[k]

(−1)k−|J |(T iJ)∗ (15)

We will give the proof only in the case k = 2, but the general case is a messy but straightforward
induction (think “inclusion-exclusion”). For k = 2, the formula is the obvious statement that:

hi1 ⊗ hi2 + hi2 ⊗ hi1 = (hi1 + hi2)⊗ (hi1 + hi2)− (hi1 ⊗ hi1 + hi2 ⊗ hi2)

Thus, we see that hi is a k-linear combination of T∗ for various T ∈ End(V ).
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Now, the projection operator pλ,i from V ⊗k to Uλ,i is Sk-invariant, so by Lemma 2, it is a linear
combination of T∗ for various T . Since g commutes with all such T∗, it commutes with this projection
operator. Thus, for u ∈ Uλ,i, g(u) = g ◦ pλ,i(u) = pλ,i ◦ g(u) ∈ Uλ,i, so g preserves Uλ,i. Let gλ,i = g|Uλ,i .
Now, for each i < j choose a map αi,j : Uλ,i

∼−→ Uλ,j which is an Sk-equivariant isomorphism. We can
extend this to an endomorphism hi,j of V ⊗k by requiring h|Uµ,j = 0 whenever (µ, j) 6= (λ, i). This is
Sk-invariant, so it commutes with g as above. Thus, for u ∈ Ui,λ, we have αi,j ◦ gλ,i(u) = hi,j ◦ g(u) =

g ◦ hi,j(u) = gλ,j ◦ αi,j(u). Thus, for each i, j, we have:

gλ,j = αi,j ◦ gλ,1 ◦ α−1i,j (16)

Now, we will use this to construct the extension g̃. Write W⊗k =
⊕

λ

⊕n′λ
i=1 Uλ,i. Here, n′λ ≥ nλ for

each λ, and we may assume that for i ≤ nλ, Uλ,i ⊆ V ⊗k and that it is the same Uλ,i from the decomposition
of V ⊗k. For each λ, choose isomorphisms of Sk-modules αi,j : Uλ,i

∼−→ Uλ,j such that for i, j ≤ nλ, these
are the same αi,j considered above. Now, we define g̃|Uλ,i to be 0 whenever nλ = 0 and α1,i ◦ gλ,1 ◦ α−11,i

whenever nλ 6= 0. By the previous paragraph, for i ≤ nλ, g̃|Uλ,i = gλ,i = g|Uλ,i .
Now, we must show that g̃ commutes with End(W ). Let T ∈ End(W ). Note that T∗ commutes with

Q[Sk], so (T∗)|Uλ,i maps into
⊕n′λ

j=1 Uλ,j . Then, for each j, we get a map Tλ,i,j : Uλ,i → Uλ,j by projecting
to the j-th term of this direct sum. Thus, α−1i,j ◦ Tλ,i,j is an Sk-equivariant endomorphism of the irreducible
representation Uλ,i. We claim that it must be a scalar 5. This is:

Lemma 4 (Schur’s Lemma). Any endomorphism ρ of an irreducible representation U of a group G over an
algebraically closed field which commutes with the G-action is a scalar.

Proof. Since the field is algebraically closed, any endomorphism of U must have an eigenvector v, so
ρ(v) = λ · v for some scalar λ. But then the nonzero eigenspace ker(ρ− λ) is G-invariant: if ρ(v) = λ · v,
then ρ(g(v)) = g(ρ(v)) = g(λ · v) = λ · g(v). Thus, since U is irreducible, this eigenspace is equal to
U .

Thus, Tλ,i,j = Cλ,i,jαi,j for Cλ,i,j ∈ C. It suffices to show that g commutes with Tλ,i,j for all λ, i, j.
But this is immediate from the definition of g̃|Uλ,i via Equation (16).

5this is where we are using that we are working over C instead of over Q: with more specific analysis of the representation
theory of Sk, we may prove this “by hand” over Q.
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